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PERIODIC SOLUTIONS OF EL NIÑO MODEL
THROUGH THE VALLIS DIFFERENTIAL SYSTEM

RODRIGO D. EUZÉBIO1,2 AND JAUME LLIBRE1

Abstract. By rescaling the variables, the parameters and the
periodic function of the Vallis differential system we provide suffi-
cient conditions for the existence of periodic solutions and we also
characterize their kind of stability. The results are obtained using
averaging theory.

1. Introduction

The Vallis system, introduced by Vallis [10] in 1988, is a periodic
non–autonomous 3–dimensional system that models the atmosphere
dynamics in the tropics over the Pacific Ocean, related to the yearly
oscillations of precipitation, temperature and wind force. Denoting by
x the wind force, by y the difference of near–surface water temperatures
of the east and west parts of the Pacific Ocean, and by z the average
near–surface water temperature, the Vallis system is

(1)

dx

dt
= −ax + by + au(t),

dy

dt
= −y + xz,

dz

dt
= −z − xy + 1,

where the parameters a and b are positive and u(t) is some C 1 T−periodic
function that describes the wind force under season motions of air
masses.

Although this model neglects some effects like Earth’s rotation, pres-
sure field and wave phenomena, it provides a correct description of the
observed processes and recovers many observed El Niño properties.
The properties of El Niño phenomena are studied analytically in [10]
and [9]. More specifically, in [10] it is shown that taking u ≡ 0, it
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is possible to observe the presence of chaos by considering a = 3 and
b = 102. Additionally, in [9] it is proved that exists a chaotic attractor
for system (1) after a Hopf bifurcation. This chaotic characteristic can
be easily understanding if we observe that there exist a strong similar-
ity between system (1) and Lorenz system, which becomes more clear
under the replacement of z by z + 1 in (1).

In [4] the authors examine the localization problem of compact in-
variant sets of nonlinear time–varying systems and apply the results to
the Vallis system (1). In [3] it was generalized the localization method
for invariant compact sets of the autonomous dynamical system studied
in [4] to the case of a nonautonomous system and solved the localization
problem for system (1).

In this paper we provide sufficient conditions in order that system
(1) has periodic orbits, and additionally we characterize the stability
of these periodic orbits. As far as we know, the study of existence
of periodic orbits in the Vallis system has not been considered in the
literature, with the exception of the Hopf bifurcation studied in [9].

We observe that, the method used here for studying the periodic
orbits can be applied to any periodic non–autonomous differential sys-
tem. Indeed, in [5] the authors applied this method in order to prove
the existence of periodic solutions in a periodic FitzHugh–Nagumo sys-
tem.

This paper is organized as follows. In this section we state the main
results. Next, in section 2 we prove the results on the periodic solutions
in the Vallis system using averaging theory. Finally, in section 3 we
give a brief summary of the results that we use from averaging theory.

From now on, unless we say the contrary, we will call

I =

∫ T

0

u(s)ds.

Now we state our main results.

Theorem 1. For ε > 0 sufficiently small, I ̸= 0 and assuming that
a ̸= b and (a, b, u(t)) = (εA, εB, εU(t)) the Vallis system (1) has a
T–periodic solution (x(t, ε), y(t, ε), z(t, ε)) such that

(x(0, ε), y(0, ε), z(0, ε)) = (γ1 + O(ε), γ1 + O(ε), 1 + O(ε)) ,

where γ1 = aI/(T (b − a)ε). Moreover this periodic orbit is stable if
a > b and unstable if a < b.

Theorem 2. For ε > 0 sufficiently small, I ̸= 0 and assuming that
(a, b) = (ε2A, εB) the Vallis system (1) has a T–periodic solution
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(x(t, ε), y(t, ε), z(t, ε)) such that

(x(0, ε), y(0, ε), z(0, ε)) = (γ2 + O(ε), γ2 + O(ε), 1 + O(ε)) ,

where γ2 = −aI/(Tbε). Moreover this periodic orbit is always unstable.

Theorem 3. For ε > 0 sufficiently small, I ̸= 0 and assuming (a, u(t)) =
(εA, εU(t)) the Vallis system (1) has a T–periodic solution (x(t, ε),
y(t, ε), z(t, ε)) such that

(x(0, ε), y1(0, ε), z(0, ε)) = (γ3 + O(ε), γ3 + O(ε), 1 + O(ε)) ,

where γ3 = I/(Tε) ̸= 0. Moreover this periodic orbit is always stable.

Theorem 4. For ε > 0 sufficiently small, I ̸= 0 and assuming (a, u(t)) =
(εA, εU(t)) the Vallis system (1) has a T–periodic solution (x(t, ε),
y(t, ε), z(t, ε)) such that

(x(0, ε), y1(0, ε), z(0, ε)) = (γ3 + O(ε),O(ε), 1 + O(ε)) ,

where γ3 = I/(Tε) ̸= 0. Moreover this periodic orbit is always stable.

In what follows we consider the function

J(t) =

∫ t

0

u(s)ds.

and note that J(T ) = I. So we have the following result.

Theorem 5. Consider ε > 0 sufficiently small, I = 0, J(t) ̸= 0 if
0 < t < T and assume that (a, u(t)) = (εA, εU(t)). Then the Vallis
system (1) has a T–periodic solution (x(t, ε), y(t, ε), z(t, ε)) such that

(x(0, ε), y1(0, ε), z(0, ε)) = (γ4 + O(ε),O(ε), 1 + O(ε)) ,

where γ4 = − a

Tε2

∫ T

0

J(s)ds ̸= 0. Moreover this periodic orbit is al-

ways stable.

We observe that the periodic solution presented in each one of the
theorems tends to infinity when ε tends to zero. Consequently, these
periodic solutions are different from that one found via a Hopf bifur-
cation in [9].

Moreover, we shall prove that the tools used for proving Theorems
1, 2, 3, 4 and 5 do not provide more periodic solutions outside the ones
provided in the mentioned theorems, see Proposition 6
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2. Proof of the results

In order to study the periodic solutions of the differential system (1),
we start doing a rescaling of the variables (x, y, z), of the function u(t),
and of the parameters a and b, as follows

(2)
x = εm1X, y = εm2Y, z = εm3Z,

u(t) = εn1U(t), a = εn2A, b = εn3B,

where ε always is positive and sufficiently small and mi and nj are
non–negative integers, for all i, j = 1, 2, 3. Then, in the new variables
(X, Y, Z) system (1) writes

(3)

dX

dt
= −εn2AX + ε−m1+m2+n3BY + ε−m1+n1+n2AU(t),

dY

dt
= −Y + εm1−m2+m3XZ,

dZ

dt
= −Z − εm1+m2−m3XY + ε−m3 .

Consequently, in order to have non–negative powers of ε, we must
impose the conditions

(4) m3 = 0 and 0 ≤ m2 ≤ m1 ≤ L,

where L = min{m2 + n3, n1 + n2}. So system (3) becomes

(5)

dX

dt
= −εn2AX + ε−m1+m2+n3BY + ε−m1+n1+n2AU(t),

dY

dt
= −Y + εm1−m2XZ,

dZ

dt
= 1 − Z − εm1+m2XY.

Our aim is to find periodic solutions of system (5) for some special
values of mi, nj, i, j = 1, 2, 3, and after going back by the rescaling to
guarantee the existence of periodic solutions in system (1). In what
follows we consider the case where n2 and n3 are positives and m2 =
m1 < n1 + n2. These conditions lead to the proofs of Theorems 1, 2
and 3. For this reason we present this proofs together in order to avoid
repetitive arguments.
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Proof of Theorems 1, 2 and 3: We start considering system (5) with n2

and n3 positives and m2 = m1 < n1 + n2. So we have

(6)

dX

dt
= −εn2AX + εn3BY + ε−m1+n1+n2AU(t),

dY

dt
= −Y + XZ,

dZ

dt
= 1 − Z − ε2m1XY.

Now we apply the averaging method to the differential system (6). De-
noting again the variables (X, Y, Z) by (x, y, z), and using the notation
of section 3 we have x= (x, y, z)T and

(7) F0(t,x) =




0

−y + xz

1 − z


 .

We start considering the system

(8) ẋ = F0(t,x).

Its solution x(t, z, 0) = (x(t), y(t), z(t)) such that x(0, z, 0) = z =
(x0, y0, z0) is

x(t) = x0,

y(t) = (1 − e−t(1 + t))x0 + e−ty0 + e−ttx0z0,

z(t) = 1 − e−t + e−tz0.

In order that x(t, z, 0) is a periodic solution we must choose y0 = x0

and z0 = 1. This implies that for every point of the straight line
x = y, z = 1 passes a periodic orbit that lies in the phase space
(x, y, z, t) ∈ R3 × S1. Here and what follows S1 is the interval [0, T ]
identifying T with 0.

Observe that, using the notation of section 3, we have n = 3, k = 1,
α = x0 and β(x0) = (x0, 1), and consequently M is an one–dimensional
manifold given by M = {(x0, x0, 1) ∈ R3 : x0 ∈ R}. The fundamental
matrix Mzx0

(t) of (8) satisfying that Mzx0
(0) is the identity of R3 is




1 0 0

1 − cosh t + sinh t e−t e−ttx0

0 0 e−t


 ,
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and its inverse matrix M−1
zx0

(t) is



1 0 0

1 − et et −ettx0

0 0 et


 .

Moreover, once the matrix M−1
zx0

(0) − M−1
zx0

(T ) has a zero matrix 1 × 2

in the upper right corner and a lower right corner 2 × 2 matrix ∆x0(
1 − eT eT Tx0

0 1 − eT

)
,

with det(∆x0) = (1 − eT )2 ̸= 0 since T ̸= 0, we can apply averaging
theory described in section 3. Indeed, considering the function F given
by the vector field of system (6) subtracted by F0, then the components
of the function M−1

zx0
(t)F (t,x(t, z, 0)) are

g1(x0, t) = −εn2Ax0 + εn3Bx0 + ε−m1+n1+n2AU(t),

g2(x0, t) = ε2m1ettx3
0 + (1 − et)g1(x0, t),

g3(x0, t) = −ε2m1etx2
0.

To apply averaging theory of first order we need to consider only terms
up to order ε. Analysing the expressions of g1, g2 and g3 we note that
these terms depend on the values of m1 and nj, for each j = 1, 2, 3. In
fact, we just need to study the integral of g1, once k = 1. Moreover,
studying the function g1, we observe that the only possibility to obtain
an isolated zero by integrating g1 is assuming that n1 + n2 − m1 =
1. Otherwise, if we denote F = (f1, f2, f3), the only x0 such that
f1(x0, y0, z0) = 0 is x0 = 0, and this value is not interesting because
the point (0, 0, 1) is the equilibrium point of system (8). The same
occurs if n2 and n3 are greater than 1 simultaneously. This analysis
reduces the existence of possible periodic solutions to the following
cases:

(p1) n2 = 1 and n3 = 1;
(p2) n2 > 1 and n3 = 1;
(p3) n2 = 1 and n3 > 1.

In the case (p1), we have M−1
zx0

(t)F1(t, x(t, z, 0)) = −Ax0 +Bx0 +AU(t)

and then
f1(x0) = (−A + B)Tx0 + AIε−n1 .

Consequently, if A ̸= B, then f1(x0) = 0 implies

x0 =
AIε−n1

T (B − A)
.



PERIODIC SOLUTIONS OF THE VALLIS DIFFERENTIAL SYSTEM 7

Therefore, if we take n2 = n3 = 1, then going back through the rescal-
ing (2) and considering n1 = 1, x0 becomes

x0 =
(aε−1)(Iε−1)

Tε−1(b − a)
=

aI

T (b − a)ε
.

Moreover, we note that f ′
1(x0) = −A+B = (−a+b)/ε ̸= 0, so the peri-

odic orbit corresponding to x0 is stable if a > b and unstable otherwise.
So this concludes the proof of Theorem 1.

Analogously the function f1 in the cases (p2) and (p3) are respectively

f1(x0) = TBx0 + AIε−n1 and f1(x0) = −TAx0 + AIε−n1 .

In the first case, the condition f1(x0) = 0 implies

x0 =
−AIε−n1

TB
.

Now observe that we have n2 > 1 and n3 = 1. So, going back by the
rescaling, we obtain

x0 =
(−aε−n2)(Iε−n1)

Tbε−1
=

aI

Tbεn1+n2−1
.

and consequently, choosing n1 = 0 and n2 = 2, we get x0 = aI/(Tbε).
Note also that f ′

1(x0) = TB = Tb/ε, then the periodic orbit corre-
sponding to x0 is always unstable. Thus Theorem 2 is proved.

Finally, in the case (p3), f1(x0) = 0 implies x0 = Iε−n1/T . So,
taking n1 = 1, we have x0 = I/(Tε). Additionally, in this case
f ′

1(x0) = −Ta/ε, since n2 = 1 and A = ε−n1a. Consequently the
periodic solution that comes from x0 is always stable. This proves
Theorem 3. �

Proof of Theorem 4: As the last proof, we start considering a more
general case on the powers of ε in (5) taking n2 > 0 and m2 < m1 < L.
In this case, system (24) writes

(9) F0(t,x) =




0

y

1 − z


 ,

whose solution x(t, z, 0) satisfying x(0, z, 0) = z is given by

(x(t), y(t), z(t)) = (x0, e
−ty0, 1 − e−t + e−tz0).

This solution is periodic if y0 = 0 and z0 = 1. In this case for every
point of the straight line y = 0, z = 1 passes a periodic orbit that lies
in the phase space (x, y, z, t) ∈ R3 × S1. We observe that, using the
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notation of section 3, in this case we have n = 3, k = 1, α = x0 and
β(α) = (0, 1). Consequently M is an one–dimensional manifold given
by M = {(x0, 0, 1) ∈ R3 : x0 ∈ R}.

The fundamental matrix Mzx0
(t) of (24) with F0 given by (9) satis-

fying Mzx0
(0) = Id3 and its inverse M−1

zx0
(t) are given by

Mzx0
(t) =




1 0 0

0 e−t 0

0 0 e−t


 and M−1

zx0
(t)




1 0 0

0 et 0

0 0 et


 .

Moreover, once the matrix M−1
zx0

(0) − M−1
zx0

T has a zero matrix 1 × 2

in the upper right corner and a lower right corner 2 × 2 matrix ∆x0

(
1 − eT 0

0 1 − eT

)
,

with det(∆x0) = (1 − ET )0 ̸= 0, we can apply averaging theory de-
scribed in section 3. Again, using the notation introduced in the last
proof, since k = 1 we will look only to the integral of the first coordinate
of F = (f1, f2, f3). In this case we have

g1(x0, y0, z0, t) = −εn2Ax0 + ε−m1+n1+n2AU(t).

Comparing this function g1 with the same function obtained in the
proof of Theorem 1, it is easy to see that this case correspond to the
case (p3) of the last proof. Then, in order to have periodic solutions,
we need choose n2 = 1 and n1 + n2 − m1 = 1. So, following the steps
of the case (p3) in the last proof, by choosing n1 = 1 and coming back
by the rescaling (2) to system (1), Theorem 3 is proved. �

Proof of Theorem 5: We start considering system (5) with n3 = 2, n2 >
0, m1 = n1+n2 and m2 < m1 < m2+n3. With these conditions system
(5) writes

(10)

dX

dt
= −εn2AX + εm2−n1−n2+n3BY + AU(t),

dY

dt
= −Y + ε−m2+n1+n2XZ,

dZ

dt
= 1 − Z − εm2+n1+n2XY.
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In order to use the averaging theory described in section 3 we denote
again the variables (X,Y, Z) by (x, y, z). So we have x = (x, y, z)T and

(11) F0(t,x) =




AU(t)

−y

1 − z


 .

Now we note that the solution x(t, z, 0) = (x(t), y(t), z(t)) such that
x(0, z, 0) = z = (x0, y0, z0) of the system

(12) ẋ = F0(t,x).

is

x(t) = x0 +

∫ t

0

AU(s)ds, y(t) = e−ty0, z(t) = 1 − e−t + e−tz0.

Observe that, since I = 0 and J(t) ̸= 0 for 0 < t < T , in order that
x(t, z, 0) is a periodic solution we need to fix y0 = 0 and z0 = 1. This
implies that for every point in a neighbourhood of x0 in the straight
line y = 0, z = 1 passes a periodic orbit that lies in the phase space
(x, y, z, t) ∈ R3 × S1.

Following the notation of section 3, we obtain n = 3, k = 1, α = x0

and β(x0) = (0, 1). Hence M is an one–dimensional manifold M =
{(x0, 0, 1) ∈ R3 : x0 ∈ R} and the fhe fundamental matrix Mzx0

(t) of

(12) satisfying that Mzx0
(0) is the identity of R3 is



1 0 0

0 e−t 0

0 0 e−t


 .

It is easy to see that the matrix M−1
zx0

(0) − M−1
zx0

(T ) has a 1 × 2 zero

matrix in the upper right corner and a 2 × 2 lower right corner matrix

∆x0 =

(
1 − eT 0

0 1 − eT

)
,

with det(∆x0) = (1 − eT )2 ̸= 0. Then the hypotheses of Theorem 7 are
satisfied. Moreover, the components of the function M−1

zx0
(t)F (t, x(t, z,0))

are

g1(x0, t) = −εn2A

(
x0 +

∫ t

0

AU(s)ds

)
+ AU(t),

g2(x0, t) = ε−m2+n1+n2

(
x0 +

∫ t

0

AU(s)ds

)
et,

g3(x0, t) = 0.
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Taking n1 and n2 equal to one and observing that k = 1 and n = 3,
we are interested only in the first component of the function F1 =
(F11, F12, F13) described in section 3. Indeed, applying the averaging
theory and considering F(x0) = (f1(x0), f2(x0), f3(x0)), we will study
the first component of the integral

F(x0) =

∫ T

0

M−1
zx0

(t, zx0)F11(t,x(t, zx0))dt.

Function F11 writes

F11 = −A

(
x0 +

∫ t

0

AU(s)ds

)

and then, coming back by the rescaling function f1 is

f1(x0) =

∫ T

0

−A

(
x0 +

∫ t

0

AU(s)ds

)
dt

= −a

ε
Tx0 − a2

ε3

∫ T

0

J(s)ds.

Therefore, doing f1(x0) = 0 we obtain

x0 = − a

Tε2

∫ T

0

J(s)ds ̸= 0.

Moreover, f ′
1(x0) = −(a/ε)T < 0, since a and ε are positives. Conse-

quently the T−periodic orbit detected by averaging theory is always
stable. This ends the proof. �

The following shows that there is no other configuration of power
of ε defining the rescaling (2) for which we can detect other periodic
solutions of system (1) using the averaging theory.

Proposition 6. By using averaging theory the Vallis system (1) has
no periodic solutions different from the ones presented in Theorems 1,
2, 3, 4 and 5.

In order to prove Proposition 6 we will study all possible powers of
ε in system (5). Indeed, we consider the set P = {n2,−m1 + m2 +
n3, −m1 + n1 + n2,m1 − m2} of the relevant powers of ε in this system
(see (4)) and observe that each integer of P must be non–negative.
Therefore, we will study each one of the 16 possible combinations of
values of the elements of P taking into account conditions (4). We
start considering n2 > 0. Then we have the following eight cases:

Case 1: n2 > 0, m1 = m2, n3 = 0 and m1 = n1 + n2,
Case 2: n2 > 0, m1 = m2, n3 = 0 and m1 < n1 + n2,
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Case 3: n2 > 0, m1 = m2, n3 > 0 and m1 = n1 + n2,
Case 4: n2 > 0, m1 = m2, n3 > 0 and m1 < n1 + n2,
Case 5: n2 > 0, m1 > m2, n3 > 0 and m1 = n1 + n2,
Case 6: n2 > 0, m1 > m2, n3 > 0 and m1 < n1 + n2,
Case 7: n2 > 0, m1 > m2, m1 < m2 + n3 and m1 = n1 + n2,
Case 8: n2 > 0, m1 > m2, m1 < m2 + n3 and m1 < n1 + n2.

The remainder cases from 9 to 16 are the same than the cases from
1 to 8, respectively, taking n2 = 0 instead of n2 > 0.

We observe that the case 4 was studied in Theorems 1, 2 and theorem
3. Additionally, Theorem 4 concerns to case 8 and Theorem 5 concerns
to case 7. Thus we will eliminate these cases of the proof of Proposition
6. In the other cases we will prove that some hypotheses of averaging
method presented in section 3 do not hold.

Proof of Proposition 6: First we prove the proposition using system (5)
in case 2. Indeed, considering x = (X,Y, Z), in case 2 system (24) is

(13) ẋ = F0(t,x) = (BY, −Y + XZ, 1 − Z)T .

The last differential equation is uncoupled and its solution Z(t) is
Z(t) = 1 − e−t + e−tZ0. It is easy to see that Z0 = 1 is the only
value of Z0 for which Z(t) is periodic. Now, substituting the solution
Z(t) in the second differential equation of (13) and solving the system
of differential equations Ẋ = BY , Ẏ = −Y + X we get

X(t) =
1

2C

(
C1e

1
2
(−C−1)t + C2e

1
2
(C−1)t

)
,

Y (t) =
1

2C

(
C3e

1
2
(−C−1)t + C4e

1
2
(C−1)t

)
,

where C =
√

1 + 4B > 1, C1 = (C − 1)X0 − 2BY0, C2 = (C + 1)X0 +
2BY0, C3 = −2X0 + (C + 1)Y0 and C4 = 2X0 + (C − 1)Y0.

Without lost of generality, we will study the conditions that turn the
solution X(t) into a periodic function. In order to do this, we need to
choose C1 and C2 equal to zero once C > 1. Fixing C1 = 0 we obtain

X0 =
−2BY0

C − 1
.

Substituting this value into C2 we obtain (1 + 4B + C)Y0 which is
positive unless Y0 = 0. On the other hand, the value Y0 = 0 implies
X0 = 0, and since Z0 = 1 we have the equilibrium point (0, 0, 1) of
system (13). This implies that system (13) has no periodic solutions,
and then the averaging method described in section 3 cannot be applied
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in this case. Moreover, there is no lost of generality when we study only
the solution X(t) because if one of the solutions X(t), Y (t) or Z(t) for
(24) is not periodic, system (13) cannot have a periodic solution. We
will use this fact to conclude the proof of Proposition 6 in some other
cases below.

In what follows we prove Proposition 6 for system (5) in case 10.
Indeed, observe that system (24) now writes

(14) ẋ = (−AX + BY, −Y + XZ, 1 − Z)T .

As before, we take the solution Z(t) = 1−e−t +e−tZ0 of Ż = 1−Z and
replace this solution with Z0 = 1 in the others differential equations of
(14). Therefore the solutions X(t) is

X(t) =
1

2D

(
D1e

1
2
(−A−1−D)t + C2e

1
2
(−A−1+D)t

)

where D =
√

(A − 1)2 + 4B > 0, D1 = (A − 1 + D)X0 − 2BY0 and
D2 = (−A + 1 + D)X0 + 2BY0. We note that this expression is very
similar to the expression of the solution X(t) of system (5) in case 2
just taking A as zero. Moreover, it is possible to show that the same
arguments used in case 2 are also true in this case, and consequently
the averaging method does not apply to system (5) in case 10.

In case 12 we have

(15) ẋ = (−AX, −Y + XZ, 1 − Z)T ,

so the solutions X(t) and Z(t) for this systems are, respectively, X(t) =
e−AtX0 and Z(t) = 1−e−t +e−tZ0. Then, choosing X0 = 0 and Z0 = 1
in order that X(t) and Z(t) be periodic, the solution Y (t) becomes
Y (t) = e−tY0 and consequently we have to fix Y0 = 0. However, the
point (X0, Y0, Z0) = (0, 0, 1) is the equilibrium point of system (15),
and consequently system (15) has no periodic solutions. Thus, in case
12 again we cannot apply the averaging theory.

In case 14 system (24) is

(16) ẋ = (−AX + BY, −Y, 1 − Z)T ,

whose solutions Y (t) and Z(t) starting at Y0 and Z0 are, respectively,
Y (t) = e−tY0 and Z(t) = 1 − e−t + e−tZ0. These solutions are periodic
if Y0 = 0 and Z0 = 1, and with these values the solution X(t) writes
X(t) = e−AtX0. So, since A ̸= 0, we need to take X0 = 0 to have X(t)
periodic. The conclusion of Proposition 6 in this case follows as in case
12.
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For proving Proposition 6 in case 16 we observe that the solutions
X(t), Y (t) and Z(t) of system (24) given by

(17) ẋ = (−AX, −Y, 1 − Z)T ,

are X(t) = e−AtX0, Y (t) = e−tY0 and Z(t) = 1−e−t+e−tZ0, whose val-
ues X0, Y0 and Z0 for which these solutions are periodic are X0, Y0, Z0) =
(0, 0, 1). So, as before we cannot apply the averaging theory.

Now we prove that the averaging method does not work in system
(5) in case 5. In fact, in this case the solutions X(t), Y (t) and Z(t) of
system (24) starting at (X0, Y0, Z0) is

(X(t), Y (t), Z(t)) =

(
X0 +

∫ t

0

AU(s)ds, e−tY0, 1 − e−t + e−tZ0

)
,

where now we suppose that
∫ T

0
u(s)ds = 0 in order that x(t) be a

T−periodic solution. Looking to the expressions of Y (t) and Z(t), it is
easy to see that Y0 = 0 and Z0 = 1 are the only values of Y0 and Z0 for
which Y (t) and Z(t) are periodic. We observe that using the notation
of section 3, we have k = 1, n = 3 and the fundamental matrix MzX0

(t)
is 


1 B(1 − cosh(t) + sinh(t)) 0

0 e−t 0

0 0 e−t


 ,

and its inverse matrix is

M−1
zX0

(t) =




1 B(1 − et) 0

0 et 0

0 0 et


 .

So the matrix M−1
zX0

(0) − M−1
zX0

T does not have a 1 × 2 zero matrix in

the upper right corner, since

M−1
zX0

(0) − M−1
zX0

T =




0 B(−1 + eT ) 0

0 1 − eT 0

0 0 1 − eT


 .

Then, since B is positive, we cannot apply averaging method in case 5.

Case 6 is similar to case 5. In fact, the solution x(t), y(t) and z(t) of
system (24) starting at (x0, y0, z0) eliminating the non periodic terms
is

(X(t), Y (t), Z(t)) = (X0, 0, 1),
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and following the steps of section 3 we obtain the same matrix M−1
zX0

(t)

of case 5. Hence, we cannot apply the averaging method in this case.

Next we prove Proposition 6 in case 3. The solutions X(t), Y (t) and
Z(t) of system (24) are

X(t) = X0 +

∫ t

0

AU(s)ds,

Y (t) = X0 − e−tX0 + e−tY0 +

∫ t

0

AU(s)ds − e−t

∫ t

0

AesU(s)ds,

Z(t) = 1 − e−t + e−tZ0.

where we suppose that I = 0 in order that X(t) be a T−periodic
solution. Observe that if I ̸= 0, X(t) is not periodic and then we
cannot apply averaging method. Indeed, the expression of Z(t) implies
that Z0 = 1 is the only value of Z0 for which Z(t) is periodic. Moreover,
we take X0 = Y0 +W . Thus, the solutions X(t), Y (t) and Z(t) become

X(t) = Y0 + W + A

∫ t

0

U(s)ds,

Y (t) = Y0 + W + A

∫ t

0

U(s)ds − e−t

(
W − A

∫ t

0

esU(s)ds

)
,

Z(t) = 1,

where
∫ t

0
U(s)ds is periodic because I = 0. Add, we suppose that

e−t(W − A
∫ t

0
esU(s)ds) is periodic, for some W ∈ R. As before, if

there is no W such that e−t(W − A
∫ t

0
esU(s)ds) is periodic, so Y (t) is

also no–periodic and averaging theory does not apply. Consequently,
the solution Y (t) is T−periodic.

We note that considering U(t) = cos t and W = A/2 the solutions
X(t), Y (t) and Z(t) are periodic, because with this considerations we
have

X(t) = Y0 + (A/2) + A sin t,

Y (t) = (1/2)(A + 2Y0 − A cos t + A sin t),

Z(t) = 1,

which is periodic. However, we will considerer the general case instead
of this particular case U(t) = cos t and W = A/2. Hence, by following
the lines of section 3, we have k = 1, n = 3 and the fundamental matrix
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MzY0
(t) is 


et 1 − et etE(A,W, Y0, t)

0 1 0

0 0 e−t


 ,

where E(A,W, Y0, t) =
∫ t

0
e−2s(Y0 + W + A

∫ s

0
U(w)dw)ds. Its inverse

matrix M−1
zY0

(t) is



e−t 1 − cosh t + sinh t −etE(A, W, Y0, t)

0 1 0

0 0 et


 .

Then the matrix M−1
zY0

(0) − M−1
zY0

T does not have a 2 × 2 lower right

matrix

∆Y0 =

(
0 0

0 1 − eT

)
,

whose determinant is zero. Then we cannot apply averaging method
in case 3.

We study system (5) in case 1. Now system (24) is

(18) (Ẋ, Ẏ , Ż) = (BY + AU(t), −Y + XZ, 1 − Z)T .

The last differential equation is uncoupled and its solution Z(t) is
Z(t) = 1 − e−t + e−tZ0. As before Z0 = 1 turn Z(t) into a periodic
solution. Now, substituting the solution Z(t) in the second differential
equation of (18) with Z0 = 1 and solving the system of differential
equations Ẋ = BY + AU(t), Ẏ = −Y + X we get solutions very simi-
lar to the ones obtained in case 2. In fact, calling X2(t) and Y2(t) the
solutions of case 2, for case 1 the solutions X(t) is

X(t) = X2(t) + (1/2C)g2(A, B, t)e
1
2
(−C−1)t,

where g2 is

A

2C
(−1 + C + CeCt)

∫ t

0

e− 1
2
(−1+C)s

(
1 + C + (−1 + C)eCs

)
U(s)ds+

2AB

C
(1 − eCt)

∫ t

0

e− 1
2
(−1+C)s

(
−1 + eCs

)
U(s)ds.

We observe that g2 does not depend neither X0 nor Y0. For this reason,
we cannot eliminate the non–periodic terms of X2(t) through the ex-

pression (1/2C)g2(A,B, t)e
1
2
(−C−1)t, whatever the function g2(A,B, t)

chosen. So, as we see in case 2 we must choose (X0, Y0) = (0, 0) in order
that X2(t) be periodic. Since Z0 = 1, system (18) has no submanifold
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of periodic solutions as demands the averaging theory described in sec-
tion 3.

Case 9 is similar to case 1 in the sense that there is no choice of X0,
Y0 and Z0 in such way that the solution of the system

(19) ẋ = (−AX + BY + AU(t),−Y + XZ, 1 − Z)T .

corresponding to system (5) in case 9 has a submanifold of periodic
solutions. As before, Z(t) = 1 − e−t + e−tZ0 is the solution of the last
differential equation of system (19) and the value Z0 for which this
solution is periodic is Z0 = 1. Substituting this solution into system
(19) and solving it, we obtain a solution similar to the solution X10(t)
corresponding to system (14) in case 10. We have

X(t) = X10(t) + g10(A,B, t),

where g10 is

A

2D
(−1 + A

(
1 − eDt

)
+ D + (1 + D)eDt)

∫ t

0

e
1
2
(1+A−D)s (1 + D+

(−1 + D)eDs + A
(
−1 + eDs

))
U(s)ds +

2AB

D
(1 − eDt)

∫ t

0

e
1
2
(1+A−D)s

(
−1 + eDs

)
U(s)ds.

Note that g10 does not depend neither X0 nor Y0. The conclusion of
this case follows from the fact that X10 and Y10 are non periodic unless
(X0, Y0) = (0, 0), and using the same arguments of the proof of case 1.

Now we consider system (5) in case 11

(20) ẋ = (−AX + AU(t),−Y + XZ, 1 − Z)T .

Considering A ̸= 1, as before we have Z(t) = 1−e−t+e−tZ0 and choose
Z0 = 1 because Z(t) must be periodic. The solution X(t) is

X(t) = e−AtX0 + A

∫ t

0

eAsU(s)ds.

This means that we must take X0 = 0 to have X(t) periodic. Substi-
tuting X0 = 0 and Z(t) = 1 em Y (t), it becomes

Y (t) = Y0e
−t +

1

A − 1
e−(A+1)th11(A, t),

where now h11 has no Y0 terms and writes

A(eAt − et)

∫ t

0

eAsU(s)ds + AeAt

∫ t

0

(
es − eAs

)
U(s)ds.
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How A ̸= 1 and h11 does not depends on Y0 we cannot eliminate the
non periodic term Y0e

−t of Y (t) unless we take Y0 = 0. Consequently,
as cases 1 and 9 the averaging theory does not work in case 11.

Moreover, if A = 1, we have the same solutions X(t) and Z(t).
So, considering again X0 = 0 and Z0 = 1 the solution Y (t) becomes
Y (t) = e−tY0 + h(t), where h does not depend on Y0. Consequently,
considering A = 1 again we cannot eliminate the non periodic term
Y0e

−t of Y (t) unless Y0 = 0 and consequently averaging cannot be
applied.

Cases 13 and 15 are similar. System (24) for system (5) in cases 13
and 15 are, respectively,

(21) ẋ = (−AX + BY + AU(t), −Y, 1 − Z)T ,

and

(22) ẋ = (−AX + AU(t),−Y, 1 − Z)T .

In booth cases solutions Y (t) and Z(t) are Y (t) = e−tY0 and Z(t) =
1 − e−t + e−tZ0. So, in order to be Y (t) and Z(t) periodic we take
Y0 = 0 and Z0 = 1 and these values turn the solution X(t) into the
form

X(t) = e−AtX0 + A

∫ t

0

esU(s)ds.

Again, once g(t) =

∫ t

0

esU(s)ds does not depend on X0 it is not pos-

sible to eliminate the non–periodic term e−AtX0 from X(t) unless we
take X0 = 0 and then booth systems (21) and (22) do not have a
submanifold M filled with periodic solutions. Hence averaging theory
cannot be applied in cases 13 and 15. �

3. The Averaging Theory for Periodic Orbits

Now we present the basic results on the averaging theory of first
order that we need to proving our results.

Consider the problem of bifurcation of T–periodic solutions from
differential systems of the form

(23) ẋ = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε),

with ε = 0 to ε ̸= 0 sufficiently small. Here the functions F0, F1 :
R × Ω → Rn and F2 : R × Ω × (−ε0, ε0) → Rn are C2, T–periodic in
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the first variable and Ω is an open subset of Rn. The main assumption
is that the unperturbed system

(24) ẋ = F0(t,x),

has a submanifold of periodic solutions. A solution of this problem is
given using averaging theory.

Indeed, let x(t, z, ε) be the solution of system (24) such that x(0, z, ε) =
z. We write the linearization of the unperturbed system along a peri-
odic solution x(t, z, 0) as

(25) ẏ = DxF0(t,x(t, z, 0))y.

Then we have the following theorem.

Theorem 7. Assume there exists a k–dimensional submanifold M
filled with T–periodic solutions of (24). Let V be an open and bounded
subset of Rk and let β : Cl(V ) → Rn−k be a C2 function. We assume
that

(i) M = {zα = (α, β(α)); α ∈ Cl(V )} and that for each zα ∈ M
the solution x(t, zα) of (24) is T–periodic;

(ii) for each zα ∈ M there is a fundamental matrix Mzα of (25)
such that the matrix M−1

zα
(0) − M−1

zα
(T ) has in the upper right

corner the k×(n−k) zero matrix, and in the lower right corner
a (n − k) × (n − k) matrix ∆α with det ∆α ̸= 0.

Define F : Cl(V ) → Rk as

F(α) =

∫ T

0

M−1
zα

(t, zα)F1(t,x(t, zα))dt.

Then the following statements hold

(a) If there exists a ∈ V with F(a) = 0 and det((∂F/∂α)(a)) ̸= 0,
then there exist a T–periodic solution x(t, ε) of system (23) such
that x(t, ε) → zα when ε → 0.

(b) The type of stability of the periodic solution x(t, ε) is given by
the eigenvalues of the Jacobian matrix ((∂F/∂α)(a)).

In fact, the result of Theorem (7) is a classical result due to Malkin
[6] and Roseau [7]. For a shorter proof of Theorem 7, item (a), see [1].

For additional information on averaging theory see the book [8].

Acknowledgments

The first author is partially supported by the grants MICINN/FEDER
MTM 2008–03437, AGAUR 2009SGR 410, ICREA Academia and FP7
PEOPLE-2012-IRSES-316338 and 318999 and CAPES–MECD grant



PERIODIC SOLUTIONS OF THE VALLIS DIFFERENTIAL SYSTEM 19

PHB-2009-0025-PC. The second author is supported by the FAPESP-
BRAZIL 2010/18015-6 and 2012/05635-1.

References
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