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PERIODIC SOLUTIONS OF EL NINO MODEL
THROUGH THE VALLIS DIFFERENTIAL SYSTEM

RODRIGO D. EUZEBIO!"2 AND JAUME LLIBRE!

ABSTRACT. By rescaling the variables, the parameters and the
periodic function of the Vallis differential system we provide suffi-
cient conditions for the existence of periodic solutions and we also
characterize their kind of stability. The results are obtained using
averaging theory.

1. INTRODUCTION

The Vallis system, introduced by Vallis [10] in 1988, is a periodic
non-autonomous 3-dimensional system that models the atmosphere
dynamics in the tropics over the Pacific Ocean, related to the yearly
oscillations of precipitation, temperature and wind force. Denoting by
x the wind force, by y the difference of near—surface water temperatures
of the east and west parts of the Pacific Ocean, and by z the average
near—surface water temperature, the Vallis system is

d
d—j = —ax + by + au(t),
d
(1) == —ytaz
d= 4
a z— Ty )

where the parameters a and b are positive and u(t) is some C'!' T'—periodic
function that describes the wind force under season motions of air
masses.

Although this model neglects some effects like Earth’s rotation, pres-
sure field and wave phenomena, it provides a correct description of the
observed processes and recovers many observed El Nino properties.
The properties of El Nino phenomena are studied analytically in [10]
and [9]. More specifically, in [10] it is shown that taking u = 0, it
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is possible to observe the presence of chaos by considering a = 3 and
b = 102. Additionally, in [9] it is proved that exists a chaotic attractor
for system (1) after a Hopf bifurcation. This chaotic characteristic can
be easily understanding if we observe that there exist a strong similar-
ity between system (1) and Lorenz system, which becomes more clear
under the replacement of z by z + 1 in (1).

In [4] the authors examine the localization problem of compact in-
variant sets of nonlinear time—varying systems and apply the results to
the Vallis system (1). In [3] it was generalized the localization method
for invariant compact sets of the autonomous dynamical system studied
in [4] to the case of a nonautonomous system and solved the localization
problem for system (1).

In this paper we provide sufficient conditions in order that system
(1) has periodic orbits, and additionally we characterize the stability
of these periodic orbits. As far as we know, the study of existence
of periodic orbits in the Vallis system has not been considered in the
literature, with the exception of the Hopf bifurcation studied in [9].

We observe that, the method used here for studying the periodic
orbits can be applied to any periodic non—autonomous differential sys-
tem. Indeed, in [5] the authors applied this method in order to prove
the existence of periodic solutions in a periodic FitzHugh—Nagumo sys-
tem.

This paper is organized as follows. In this section we state the main
results. Next, in section 2 we prove the results on the periodic solutions
in the Vallis system using averaging theory. Finally, in section 3 we
give a brief summary of the results that we use from averaging theory.

From now on, unless we say the contrary, we will call

I= /0 " u(s)ds.

Now we state our main results.

Theorem 1. For € > 0 sufficiently small, I # 0 and assuming that
a # b and (a,b,u(t)) = (¢A,eB,eU(t)) the Vallis system (1) has a
T—periodic solution (z(t,e),y(t,e), z(t,e)) such that

(56(0,8),y(0,8),2(0,€)) = (71 + O<8>>71 + 0(8)7 1+ 0(8))7

where v1 = al /(T'(b — a)e). Moreover this periodic orbit is stable if
a > b and unstable if a < b.

Theorem 2. For ¢ > 0 sufficiently small, I # 0 and assuming that
(a,b) = (¢A,eB) the Vallis system (1) has a T-periodic solution
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(x(t,e),y(t,e), 2(t,e)) such that

(2(0,€),5(0,€),2(0,¢)) = (12 + O(e), 12+ O(e), 1 + O(e)),,
where vo = —al /(Tbe). Moreover this periodic orbit is always unstable.

Theorem 3. Fore > 0 sufficiently small, I # 0 and assuming (a, u(t))
(eA,eU(t)) the Vallis system (1) has a T-periodic solution (x(t,e)
y(t,e), z(t,e)) such that

(2(0,€),11(0,¢),2(0,¢)) = (73 + O(e),v3 + O(e),1 + O(¢)),

Y

where v3 = 1 /(Te) # 0. Moreover this periodic orbit is always stable.

Theorem 4. Fore > 0 sufficiently small, I # 0 and assuming (a, u(t))
(eA,eU(t)) the Vallis system (1) has a T-periodic solution (x(t,e)
y(t,e), z(t,€)) such that

(2(0,€),1(0,€),2(0,¢)) = (13 + O(¢), O(e), 1 + O(e)) ,

Y

where v3 = I /(Te) # 0. Moreover this periodic orbit is always stable.

In what follows we consider the function

and note that J(T) = I. So we have the following result.

Theorem 5. Consider ¢ > 0 sufficiently small, I = 0, J(t) # 0 if
0 <t < T and assume that (a,u(t)) = (¢A,eU(t)). Then the Vallis
system (1) has a T'—periodic solution (x(t,e),y(t,e), z(t,€)) such that

(#(0,€),51(0,€),2(0,¢)) = (ra + O(¢), O(¢),1 + 0())
T
where v, = _TLEQ J(s)ds # 0. Moreover this periodic orbit is al-
ways stable. ’

We observe that the periodic solution presented in each one of the
theorems tends to infinity when e tends to zero. Consequently, these
periodic solutions are different from that one found via a Hopf bifur-
cation in [9].

Moreover, we shall prove that the tools used for proving Theorems
1, 2, 3, 4 and 5 do not provide more periodic solutions outside the ones
provided in the mentioned theorems, see Proposition 6
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2. PROOF OF THE RESULTS

In order to study the periodic solutions of the differential system (1),
we start doing a rescaling of the variables (x,y, z), of the function wu(¢),
and of the parameters a and b, as follows

@) r=c™mX, y =emy, z=€M™Z,
u(t) =emU(t), a=¢emA, b=e"B,

where ¢ always is positive and sufficiently small and m; and n; are
non—negative integers, for all 7,7 = 1,2,3. Then, in the new variables
(X,Y, Z) system (1) writes

dX
il —eMAX g7t RY 4 gt AU(t),
dY
3)  —— = Y femmitmxyg
(3) = +e :
dz
E = —Z—€m1+m2im3XY+€im3.

Consequently, in order to have non—negative powers of &, we must
impose the conditions

(4) m3=0 and 0<my<m; <L,

where L = min{mgy + ns,ny +ns}. So system (3) becomes

dX
- = —eMAX 47t RY gtz AU(t),
dY
5) = Y femmxg
6)  — +e :
dz
— = 1-Z-—gmtmXy.
dt

Our aim is to find periodic solutions of system (5) for some special
values of m;, nj, 1,5 = 1,2, 3, and after going back by the rescaling to
guarantee the existence of periodic solutions in system (1). In what
follows we consider the case where n, and ng are positives and mq =
my1 < ni + no. These conditions lead to the proofs of Theorems 1, 2
and 3. For this reason we present this proofs together in order to avoid
repetitive arguments.
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Proof of Theorems 1, 2 and 3: We start considering system (5) with 7
and ng positives and mo = my < nqy + ny. So we have

dX
- = —eMAX +e™BY + et AY(t),
dy
6 — = Y+ XZ
(6) yr +XZ,
A
d— = 1—7—¢’™XY.
dt

Now we apply the averaging method to the differential system (6). De-
noting again the variables (X, Y, Z) by (z,y, z), and using the notation
of section 3 we have x= (z,y,2)” and

0
(7) Fo(t,x) = [ —y+az
1—=2
We start considering the system
(8) x = Fy(t, x).

Its solution x(t,z,0) = (z(t),y(t), 2(t)) such that x(0,z,0) = z =
(20, Yo, 20) is

x(t) = o,
y(t) = (1—e (1 +1t))xo+ e tyo + e twozo,
2(t) = 1—et+etz.

In order that x(t,z,0) is a periodic solution we must choose yy = xg
and zp = 1. This implies that for every point of the straight line
xr =y, 2z = 1 passes a periodic orbit that lies in the phase space
(z,y,2,t) € R® x S'. Here and what follows S! is the interval [0, 7]
identifying 1" with 0.

Observe that, using the notation of section 3, we have n = 3, k = 1,
a = xg and B(zg) = (xo, 1), and consequently M is an one-dimensional
manifold given by M = {(zg,70,1) € R?: 2y € R}. The fundamental
matrix M,, (t) of (8) satisfying that M,, (0) is the identity of R? is
1 0 0

1 —cosht+sinht et etz

0 0 et

’
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and its inverse matrix M, i (t) is

1 0 0
1—et e —eltay
0 0 et
Moreover, once the matrix Mz;i (0) — Mz;i(T) has a zero matrix 1 x 2

in the upper right corner and a lower right corner 2 x 2 matrix A,
1—el eTTax
0 1—¢e )7
with det(A,,) = (1 —e?)? # 0 since T' # 0, we can apply averaging
theory described in section 3. Indeed, considering the function F' given

by the vector field of system (6) subtracted by Fj, then the components
of the function M, ' (t)F(t,x(t,2,0)) are

g1(wo,t) = —e™Axg+ ™ By + e MM AU (),
ga(To, t) = e*™eltrd + (1 — e!)gi(zo, 1),
g3(To, t) = —e*™elad.

To apply averaging theory of first order we need to consider only terms
up to order . Analysing the expressions of g1, go and g3 we note that
these terms depend on the values of m; and n;, for each j =1,2,3. In
fact, we just need to study the integral of g;, once k = 1. Moreover,
studying the function g, we observe that the only possibility to obtain
an isolated zero by integrating ¢; is assuming that n; + no — my; =
1. Otherwise, if we denote F = (f1, fa, f3), the only zy such that
fi(xo,v0,20) = 0 is ko = 0, and this value is not interesting because
the point (0,0,1) is the equilibrium point of system (8). The same
occurs if ny and n3 are greater than 1 simultaneously. This analysis
reduces the existence of possible periodic solutions to the following
cases:

(p1) no =1 and n3 = 1;

(p2) n2 > 1 and ng = 1;

(p3) ne =1 and ng > 1.

In the case (p;), we have Mz;i(t)Fl (t,x(t,2,0)) = —Axog+ Bro+ AU(t)
and then
fi(xg) = (A + B)Txog+ Ale™™.
Consequently, if A # B, then fi(zo) = 0 implies
 Ale™m
- T(B—-A)

Zo
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Therefore, if we take ny = ng = 1, then going back through the rescal-
ing (2) and considering n; = 1, xy becomes
(eI al
o= Te-'(b—a) T(b—a)
Moreover, we note that f{(zo) = —A+B = (—a+0b)/c # 0, so the peri-

odic orbit corresponding to z is stable if a > b and unstable otherwise.
So this concludes the proof of Theorem 1.

Analogously the function f; in the cases (py) and (p3) are respectively
fi(xo) = TBxo+ Ale™™ and  fi(zg) = —TAxo+ Ale™™.
In the first case, the condition fi(xy) = 0 implies
—Ale™™
Tg= ———.
’ TB
Now observe that we have ny > 1 and n3 = 1. So, going back by the
rescaling, we obtain

(—as™"2)(Ie™™) al
The—!  Themtnz—1’
and consequently, choosing ny = 0 and ny = 2, we get xg = al/(Tbe).

Note also that f{(xg) = TB = Tb/e, then the periodic orbit corre-
sponding to g is always unstable. Thus Theorem 2 is proved.

g =

Finally, in the case (p3), fi(zo) = 0 implies zy = Ie~™ /T. So,
taking ny = 1, we have xy = I/(T¢). Additionally, in this case

fi(zo) = —Ta/e, since ng = 1 and A = £ ™a. Consequently the
periodic solution that comes from xzy is always stable. This proves
Theorem 3. U

Proof of Theorem 4: As the last proof, we start considering a more
general case on the powers of € in (5) taking ny > 0 and me < my < L.
In this case, system (24) writes

0
(9) Rtx)=1 v |,
1—-=2
whose solution x(t, z, 0) satisfying x(0,z,0) = z is given by
(z(t),y(t), 2(t)) = (zo,e "yo, 1 —e " + e "2).

This solution is periodic if yg = 0 and 2y = 1. In this case for every
point of the straight line y = 0, z = 1 passes a periodic orbit that lies
in the phase space (z,v,z,t) € R® x S!. We observe that, using the
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notation of section 3, in this case we have n = 3, k = 1, a = zy and
B(a) = (0,1). Consequently M is an one-dimensional manifold given
by M = {(20,0,1) € R®: 5 € R}.

The fundamental matrix M,, (t) of (24) with Fy given by (9) satis-
fying M,, (0) = Id; and its inverse MZ;}J (t) are given by

1 0 0 1 0 0

M, ()= 0 e 0 and M, '(#)| 0 e 0
0 Eds)

0 0 et 0 0 ¢

Moreover, once the matrix M ' (0) — M, ' T has a zero matrix 1 x 2
in the upper right corner and a lower right corner 2 x 2 matrix A,,

1—eT 0
0 1—el >

with det(A,,) = (1 — ET)? # 0, we can apply averaging theory de-
scribed in section 3. Again, using the notation introduced in the last
proof, since k = 1 we will look only to the integral of the first coordinate

of F = (f1, f2, f3). In this case we have
91(%0, Yo, 20,t) = —e"2 Az + ™M TMTAU(2).

Comparing this function g; with the same function obtained in the
proof of Theorem 1, it is easy to see that this case correspond to the
case (p3) of the last proof. Then, in order to have periodic solutions,
we need choose no = 1 and ny + ny — my = 1. So, following the steps
of the case (p3) in the last proof, by choosing n; = 1 and coming back
by the rescaling (2) to system (1), Theorem 3 is proved. O

Proof of Theorem 5: We start considering system (5) with ng = 2, ny >
0, my = ny+ng and my < my < mo+ng. With these conditions system
(5) writes

dX

% = —SnZAX + gmg—nl—n2+n3BY + AU(t),
(10) g = Y+ E_m2+n1+n2XZ,

dt

dz

— = 1=-7Z - €m2+n1+n2XY
dt
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In order to use the averaging theory described in section 3 we denote
again the variables (X,Y,Z) by (z,y, ). So we have x = (z,y, 2)? and
AU (t)
(11) Fg(t,X) - Y
1—2z
Now we note that the solution x(¢,2z,0) = (x(t),y(t), 2(t)) such that
x(0,2,0) = z = (20, Yo, 20) of the system
(12) x = Fy(t,x).
is
t
x(t) = xo +/ AU(s)ds, y(t)=eTyy, 2(t)=1—e"+e 2.
0

Observe that, since I =0 and J(t) # 0 for 0 <t < T, in order that
x(t,,0) is a periodic solution we need to fix yo = 0 and zy = 1. This
implies that for every point in a neighbourhood of xy in the straight
line y = 0, z = 1 passes a periodic orbit that lies in the phase space
(z,y,2,t) € R3 x SL.

Following the notation of section 3, we obtain n =3, k=1, a = zg
and S(zg) = (0,1). Hence M is an one-dimensional manifold M =
{(20,0,1) € R* : 7y € R} and the fhe fundamental matrix M,, (t) of
(12) satisfying that M,, (0) is the identity of R? is

1 0 0
0 et 0
0 0 et

It is easy to see that the matrix Mz_z(l) (0) — M;}) (T') has a 1 x 2 zero

z
matrix in the upper right corner and a 2 x 2 lower right corner matrix

1—eT 0
Ay = ( 0 1—e¢" > ’
with det(A,,) = (1 —eT)? # 0. Then the hypotheses of Theorem 7 are

satisfied. Moreover, the components of the function Mz_z(lj (t)F(t,z(t,=z,0))
are

g1(zg, t) = —e™A (xo + /Ot AU(S)dS) + AU(t),

t
gg(iEo,t) — g—matnitn2 <;CO —|—/ AU(S)dS) et7

0
93(270, t) =0.
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Taking n; and nsy equal to one and observing that £ = 1 and n = 3,
we are interested only in the first component of the function F; =
(Fi1, Fi2, F13) described in section 3. Indeed, applying the averaging
theory and considering F(zo) = (fi1(x0), fa(zo), f3(z0)), we will study
the first component of the integral

T
Floo) = [ M (22 Fultx(t, 22
0

Function Fj; writes

Fiy=—A (xo + /O t AU(s)ds)

and then, coming back by the rescaling function f; is

filzo) = /OT —A (:co + /Ot AU(S)ds) dt

a 2 [T
= _ngO_g_g/o J(s)ds.

Therefore, doing f1(xg) = 0 we obtain

a [T
T0= s i J(s)ds # 0.

Moreover, fi(xzg) = —(a/e)T < 0, since a and € are positives. Conse-

quently the T'—periodic orbit detected by averaging theory is always

stable. This ends the proof. O

The following shows that there is no other configuration of power
of ¢ defining the rescaling (2) for which we can detect other periodic
solutions of system (1) using the averaging theory.

Proposition 6. By using averaging theory the Vallis system (1) has
no periodic solutions different from the ones presented in Theorems 1,
2,3,4 and 5.

In order to prove Proposition 6 we will study all possible powers of
e in system (5). Indeed, we consider the set P = {ng, —my + mg +
n3, —my +ny + N2, my —ma} of the relevant powers of ¢ in this system
(see (4)) and observe that each integer of P must be non-negative.
Therefore, we will study each one of the 16 possible combinations of
values of the elements of P taking into account conditions (4). We
start considering ny > 0. Then we have the following eight cases:

Case 1: ny > 0, my = mg, nz3 = 0 and m; = ny + no,
Case 2: ny > 0, my = mg, nz3 = 0 and m; < ny + no,
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Case 3: ny > 0, my = mg, nz > 0 and m; = ny + no,
Case 4: ny > 0, my = mo, n3 > 0 and m; < ny + no,
Case 5: ny > 0, my > mo, n3 > 0 and m; = nq + no,
Case 6: ny > 0, my > mo, n3 > 0 and m; < nq + no,
Case 7: ny > 0, my > mo, mqy < mo + nz and mq = nq + na,
Case 8: ny > 0, my > mo, my < mo + nz and my < nq + no.

The remainder cases from 9 to 16 are the same than the cases from
1 to 8, respectively, taking n, = 0 instead of ny > 0.

We observe that the case 4 was studied in Theorems 1, 2 and theorem
3. Additionally, Theorem 4 concerns to case 8 and Theorem 5 concerns
to case 7. Thus we will eliminate these cases of the proof of Proposition
6. In the other cases we will prove that some hypotheses of averaging
method presented in section 3 do not hold.

Proof of Proposition 6: First we prove the proposition using system (5)
in case 2. Indeed, considering x = (X, Y, Z), in case 2 system (24) is

(13) x = Fy(t,x) = (BY,-Y + XZ,1 - 2)".

The last differential equation is uncoupled and its solution Z(t) is
Z({t) =1—e'+e'Zy It is easy to see that Zy = 1 is the only
value of Zj for which Z(t) is periodic. Now, substituting the solution

Z(t) in the second differential equation of (13) and solving the system
of differential equations X = BY, Y = —Y + X we get

1
X(t) = 55 (Cred0Dr 4 Gyeder),
Y(t) = % (Cge%(’c’l)t + 0465(0’1”) :

Where C: \/1—|—4B > 1, Cl = (C— 1)X0—2B}/E], 02 = (C+1)X0+

Without lost of generality, we will study the conditions that turn the
solution X (¢) into a periodic function. In order to do this, we need to
choose ('] and C5 equal to zero once C' > 1. Fixing C'; = 0 we obtain

_2BY,
X, = .
"7 01

Substituting this value into Cy we obtain (1 4+ 4B + ()Y, which is
positive unless Yy = 0. On the other hand, the value Yy = 0 implies
Xo = 0, and since Zy = 1 we have the equilibrium point (0,0, 1) of
system (13). This implies that system (13) has no periodic solutions,
and then the averaging method described in section 3 cannot be applied
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in this case. Moreover, there is no lost of generality when we study only
the solution X (¢) because if one of the solutions X (t), Y (¢) or Z(t) for
(24) is not periodic, system (13) cannot have a periodic solution. We
will use this fact to conclude the proof of Proposition 6 in some other
cases below.

In what follows we prove Proposition 6 for system (5) in case 10.
Indeed, observe that system (24) now writes

(14) x=(-AX+BY,-Y +XZ1-2)".

As before, we take the solution Z(t) = 1—e*+eZy of Z =1—Z and
replace this solution with Zy = 1 in the others differential equations of
(14). Therefore the solutions X (¢) is

X(t) = S (Dle%(—A—l—D)t X 026%(—A—1+D)t>

where D = \/(A— 1)2+4B >0, D, = (A—1+4 D)Xy — 2BY; and
Dy = (—A+ 1+ D)Xy + 2BY,. We note that this expression is very
similar to the expression of the solution X (¢) of system (5) in case 2
just taking A as zero. Moreover, it is possible to show that the same
arguments used in case 2 are also true in this case, and consequently
the averaging method does not apply to system (5) in case 10.

In case 12 we have
(15) x=(—AX,-Y +XZ,1-2)",

so the solutions X (¢) and Z(t) for this systems are, respectively, X (t) =
e 4 Xgand Z(t) = 1—et+e*Z,. Then, choosing Xy =0 and Z, = 1
in order that X(¢) and Z(¢) be periodic, the solution Y (¢) becomes
Y(t) = e 'Y, and consequently we have to fix Yy = 0. However, the
point (Xo, Yo, Zp) = (0,0,1) is the equilibrium point of system (15),
and consequently system (15) has no periodic solutions. Thus, in case
12 again we cannot apply the averaging theory.

In case 14 system (24) is
(16) x = (—AX + BY,-Y,1 - 2)",

whose solutions Y (¢) and Z(t) starting at Yy and Zj are, respectively,
Y(t) =e Yy and Z(t) =1 —e "+ e 'Zy. These solutions are periodic
if Yo = 0 and Zy = 1, and with these values the solution X (t) writes
X (t) = e~ X,. So, since A # 0, we need to take Xy = 0 to have X (t)
periodic. The conclusion of Proposition 6 in this case follows as in case
12.
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For proving Proposition 6 in case 16 we observe that the solutions
X(t), Y(t) and Z(t) of system (24) given by

(17) x = (—AX,-Y,1-2)7,

are X (t) = e Xy, Y(t) = e Ypand Z(t) = 1 —e " +e7tZy, whose val-
ues Xy, Yy and Z for which these solutions are periodic are Xy, Yy, Zy) =
(0,0,1). So, as before we cannot apply the averaging theory.

Now we prove that the averaging method does not work in system
(5) in case 5. In fact, in this case the solutions X (), Y (¢) and Z(t) of
system (24) starting at (Xo, Yy, Zp) is

(X(),Y(t),Z(t) = (Xo—l—/OtAU(s)ds,e_tYo,l—e_t—l—e_tZo),

where now we suppose that fOT u(s)ds = 0 in order that z(t) be a
T—periodic solution. Looking to the expressions of Y (¢) and Z(t), it is
easy to see that Yy = 0 and Z; = 1 are the only values of Y; and Z; for
which Y (¢) and Z(t) are periodic. We observe that using the notation
of section 3, we have k = 1, n = 3 and the fundamental matrix M, (t)

: 1 B(1 — cosh(t) +sinh(¢)) 0

0 et 0 ,
0 0 et

and its inverse matrix is

0
Mo (t)=10 et 0
0 0 et

So the matrix M;;O(O) — M;;OT does not have a 1 x 2 zero matrix in
the upper right corner, since

0 B(-1+¢€') 0

Then, since B is positive, we cannot apply averaging method in case 5.
Case 6 is similar to case 5. In fact, the solution x(t), y(t) and z(¢) of

system (24) starting at (xo, %o, 20) eliminating the non periodic terms
is

(X(2), Y (1), Z(t)) = (Xo,0,1),
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and following the steps of section 3 we obtain the same matrix M;}(lo (t)
of case 5. Hence, we cannot apply the averaging method in this case.

Next we prove Proposition 6 in case 3. The solutions X (¢), Y'(¢) and
Z(t) of system (24) are

X(t) = Xo+ /t AU (s)ds,

t t
Y(t) = Xo—e " Xo+e Y+ / AU (s)ds — et/ Ae’U(s)ds,
0 0
Zt)y=1—e"t4e"Z.

where we suppose that I = 0 in order that X(¢) be a T—periodic
solution. Observe that if I # 0, X(¢) is not periodic and then we
cannot apply averaging method. Indeed, the expression of Z(t) implies
that Zy = 1 is the only value of Z, for which Z(t) is periodic. Moreover,
we take X = Yy + W. Thus, the solutions X (¢), Y (¢) and Z(t) become

t
X(t)zYo—i—W~|—A/ U(s)ds,
0

Y(t) = Yo+ W+ A /Ot U(s)ds — e (W iy /Ot eSU(s)ds) |

Z(t) =1,

where fot U(s)ds is periodic because I = 0. Add, we suppose that
et (W — Af(f e’U(s)ds) is periodic, for some W € R. As before, if
there is no W such that e *(W — Af(f e’U(s)ds) is periodic, so Y (t) is
also no—periodic and averaging theory does not apply. Consequently,
the solution Y'(t) is T—periodic.

We note that considering U(t) = cos t and W = A/2 the solutions
X(t), Y(t) and Z(t) are periodic, because with this considerations we
have

X(t) =Yy + (A/2) + Asin t,
Y(t) = (1/2)(A+2Yy, — Acos t + Asin t),
Z(t) =1,

which is periodic. However, we will considerer the general case instead
of this particular case U(t) = cos t and W = A/2. Hence, by following
the lines of section 3, we have k = 1, n = 3 and the fundamental matrix
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el 1—e e E(AW,Y,t)

0 1 0

0 0 et
where E(A, W, Yy, t) = [ e (Yo + W + A [ U(w)dw)ds. Its inverse
matrix Mz_yz (t) is

e 1—cosht+sinht —e'E(AW,Yy,t)

0 1 0
0 0 et
Then the matrix M, ! (0) — M, ' T does not have a 2 x 2 lower right
0 0

matrix

A 0 0
Yo 0 1—¢ )7

whose determinant is zero. Then we cannot apply averaging method
in case 3.

We study system (5) in case 1. Now system (24) is

(18) (X,Y,Z)=(BY + AU(t),-Y + XZ,1 - 2Z)".

The last differential equation is uncoupled and its solution Z(t) is
Z(t) =1—e"t+e"Zy. As before Zy = 1 turn Z(t) into a periodic
solution. Now, substituting the solution Z(t) in the second differential
equation of (18) with Z, = 1 and solving the system of differential
equations X = BY + AU(t), Y = =Y + X we get solutions very simi-
lar to the ones obtained in case 2. In fact, calling X,(¢) and Y5(¢) the
solutions of case 2, for case 1 the solutions X (t) is

X (1) = Xa(t) + (1/20)g5(A, B,t)e ¢,

where g, is

A by
%(—1 + C + Ce®t) / e 2O (14 C 4 (=1 + ©)e®*) U(s)ds+
0

¢
2ATB(l — eCt)/ e 3(-1HC)s (=14 ) U(s)ds.
0

We observe that go does not depend neither X, nor Yy. For this reason,
we cannot eliminate the non—periodic terms of X5(¢) through the ex-
pression (1/2C)g2(A, B, 1)z~ whatever the function go(A, B, )
chosen. So, as we see in case 2 we must choose (Xy, Yy) = (0,0) in order
that X5(t) be periodic. Since Zy = 1, system (18) has no submanifold
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of periodic solutions as demands the averaging theory described in sec-
tion 3.

Case 9 is similar to case 1 in the sense that there is no choice of Xy,
Yy and Z; in such way that the solution of the system

(19) x=(-AX + BY + AU(t),~-Y + XZ,1 - Z)".

corresponding to system (5) in case 9 has a submanifold of periodic
solutions. As before, Z(t) =1 — e + e 'Z, is the solution of the last
differential equation of system (19) and the value Z;, for which this
solution is periodic is Zy = 1. Substituting this solution into system
(19) and solving it, we obtain a solution similar to the solution X¢(t)
corresponding to system (14) in case 10. We have

X(t) = Xq0(t) + g10(A, B, 1),
where g is

A by
ﬁ(—1+A(1—eD'f)+D+(1+D)em)/ e2(IHA=D)s (1 4 Dy
0

(=1 + D)ePs + A (=1 + ¢P%)) U(s)ds + QATBQ oo

t
/ ez(1+A=D)s (=1+e”%) U(s)ds.
0

Note that g19 does not depend neither Xy nor Y. The conclusion of
this case follows from the fact that X9 and Yo are non periodic unless
(Xo, Yo) = (0,0), and using the same arguments of the proof of case 1.

Now we consider system (5) in case 11
(20) x=(-AX+AU®t),-Y +XZ,1-2)".

Considering A # 1, as before we have Z(t) = 1 —e~"+e~"Z, and choose
Zp = 1 because Z(t) must be periodic. The solution X (t) is

t
X(t)=eMX, + A/ e U(s)ds.
0

This means that we must take X, = 0 to have X (¢) periodic. Substi-
tuting Xo =0 and Z(t) = 1 em Y (¢), it becomes

Y(t) = Yoe ' + e UL (AL,

A-1

where now h;; has no Yy terms and writes

t t
Ale — et / e U (s)ds + AeAt/ (e* — ™) U(s)ds.
0 0
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How A # 1 and hy; does not depends on Y, we cannot eliminate the
non periodic term Ype™* of Y (¢) unless we take Yy = 0. Consequently,
as cases 1 and 9 the averaging theory does not work in case 11.

Moreover, if A = 1, we have the same solutions X (¢) and Z(¢).
So, considering again Xy = 0 and Z; = 1 the solution Y'(¢) becomes
Y(t) = e 'Yy + h(t), where h does not depend on Yy. Consequently,
considering A = 1 again we cannot eliminate the non periodic term
Yoe " of Y(t) unless Yy = 0 and consequently averaging cannot be
applied.

Cases 13 and 15 are similar. System (24) for system (5) in cases 13
and 15 are, respectively,

(21) x = (—AX + BY + AU(t),-Y,1 - 2)",
and
(22) x = (—AX + AU(t),-Y,1 - Z)".

In booth cases solutions Y'(t) and Z(t) are Y (t) = e 'Yy and Z(t) =
1 —e 4+ eZy. So, in order to be Y(¢t) and Z(t) periodic we take
Yy = 0 and Zy = 1 and these values turn the solution X (¢) into the
form

t
X(t)=e Xy + A/ e*U(s)ds.
0

t
Again, once g(t) = / e®U(s)ds does not depend on Xj it is not pos-
0

sible to eliminate the non—periodic term e~4!Xy from X (¢) unless we
take Xy = 0 and then booth systems (21) and (22) do not have a
submanifold M filled with periodic solutions. Hence averaging theory
cannot be applied in cases 13 and 15. 0

3. THE AVERAGING THEORY FOR PERIODIC ORBITS

Now we present the basic results on the averaging theory of first
order that we need to proving our results.

Consider the problem of bifurcation of T-periodic solutions from
differential systems of the form

(23) %X = Fy(t,x) + eFy(t,x) + 2 Fy(t, x, €),

with ¢ = 0 to € # 0 sufficiently small. Here the functions Fy, Fy :
RxQ— R"and Fy : R X Q x (—eg,69) — R" are C?, T-periodic in
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the first variable and €2 is an open subset of R”. The main assumption
is that the unperturbed system

(24) x = Fy(t, x),

has a submanifold of periodic solutions. A solution of this problem is
given using averaging theory.

Indeed, let x(¢, z, £) be the solution of system (24) such that x(0,z,¢) =
z. We write the linearization of the unperturbed system along a peri-
odic solution x(t,z,0) as

(25) y = Dy Fy(t,x(t,2,0))y.
Then we have the following theorem.

Theorem 7. Assume there exists a k—dimensional submanifold M
filled with T—periodic solutions of (24). Let V be an open and bounded
subset of R* and let B : CI(V) — R"* be a C? function. We assume
that
(i) M ={z, = (o, B();« € CU(V)} and that for each z, € M
the solution x(t,z,) of (24) is T—periodic;
(i) for each z, € M there is a fundamental matriz M, of (25)
such that the matriz M, '(0) — M, *(T) has in the upper right

Zqo
corner the k x (n—k) zero matriz, and in the lower right corner

a (n—k)x (n—k) matriz A, with det A, # 0.
Define F : ClI(V) — R* as

F(a) :/o M, (t,z0) Fi (8, x(t, 24))dL.

Then the following statements hold
(a) If there exists a € V with F(a) = 0 and det((0F /0a)(a)) # 0,
then there exist a T—periodic solution x(t,€) of system (23) such
that x(t, ) — 2z, when € — 0.
(b) The type of stability of the periodic solution x(t,e) is given by
the eigenvalues of the Jacobian matriz ((0F /0a)(a)).
In fact, the result of Theorem (7) is a classical result due to Malkin
[6] and Roseau [7]. For a shorter proof of Theorem 7, item (a), see [1].
For additional information on averaging theory see the book [8].
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