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WEIERSTRASS INTEGRABILITY FOR A CLASS OF
THE DIFFERENTIAL SYSTEMS

JAUME LLIBRE' AND CLAUDIA VALLS?

ABSTRACT. We characterize the differential equations of the form
=y, Y =a(@)y" Fan1(@)y" "+ Fai(@)y+ao(z), n>2 an(0)#0,

where a;(z) are meromorphic functions in the variable z for j = 0,...,n that admits
either a Weierstrass first integral or a Weierstrass inverse integrating factor.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let = and y be complex variables. In this paper we study the differential equations of
the form

(1)

/

v = y=P(z,y),
Y = an(@)y" +an—1(@)y" 4+ ar1(2)y + ao(z) = Q(z,y),

where n > 2, a,,(0) # 0, the functions a;(z) are meromorphic functions in the variable x for
7 =0,...,n, and the prime indicates derivative with respect to the time t, real or complex.

The goal of this paper is to analyze the integrability of the differential systems (1)
restricted to a special kind of first integrals. For such systems the notion of integrability
is based on the existence of a first integral, and we shall characterize when the differential
system (1) has a Weierstrass first integral or a Weierstrass inverse integrating factor. More
precisely, guided by the fact that system (1) is polynomial in the variable y, we study
the first integrals and the inverse integrating factors that are polynomials in the variable
y and are an analytic function in the variable z, i.e. we study the so called Weierstrass
integrability of system (1).

As usual C[[z]] is the ring of formal power series in the variable z with coefficients in C,
and Cly] is the ring of polynomials in the variable y with coefficients in C. A polynomial
of the form

(2) sz )y' € Cllz]]ly],

is called a formal Weierstrass polynomzal in the variable y of degree n if and only if w, (z) =
1 and w;(0) = 0 for ¢ < n. A formal polynomial whose coefficients are convergent is called
Weierstrass polynomial, see [1]. In other words, a Weierstrass polynomial first integral is
of the form

(3) H=y"+ Hs1(x)y* " + -+ Hi(x)y + Ho(z ZH
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(with Hs(z) = 1).

We recall that an analytic first integral H: U — C of system (1) where U is an open
subset of C? is a non-locally constant analytic function such that it is constant on the
solution of system (1) contained in U.

In what follows we prefer to work with an inverse integrating factor V= V(z,y) than
with an integrating factor R = R(x,y) = 1/V (z,y), because both work well for finding first
integrals, but V' has better properties than R, for instance in the region where V is defined
if there are limit cycles they are contained in V' = 0, see more raisons in the paper [6].

An inverse integrating factor for the differential system (1) is a function V' defined in an
open subset of the domain of definition of the differential system that satisfies

oP/V) _B@/V) _,
Ox Oy ’
or equivalently
ov ov oP  0Q
—P+—Q=|—+—1V,
oz +8yQ (0$+8y) ’
i.e. if V is an inverse integrating factor of our differential system (1) it must satisfy

ov ov n 1
! T gy @@y ana @)y e+ an @)y + ao(@))

= (nan(@)y" ' + (n = Dag1(2)y" > + - + ar(2)) V.

Therefore if V' is an inverse integrating factor of our differential system (1), then it is known
that there exists a first integral H of the Hamiltonian system

_ Yy _9oH

Vo oy’
c_an(@)y" +ap1(@)y" T 4t a(@)y tao(z)  OH
vy= v Oz

Now from the first equation we obtain

1= [ v+ ra),

and substituting this H in the second equation we determine the function f(x), and con-
sequently the first integral H. So for studying the integrability (i.e. the existence of a first
integral) of the differential system (1) it is sufficient to determine an inverse integrating
factor of system (1).

We say that a differential system (1) is Weierstrass integrable if it admits either a first
integral or an inverse integrating factor which is a Weierstrass polynomial. In [6] this
definition is given in a more general context.

The main objective of this paper is to provide the differential systems (1) that have
Weierstrass first integrals, or Weierstrass integrating factors. More precisely: How to de-
termine the functions aj(x), for j =1,...,n and n > 2 for which the differential systems
(1) are Weierstrass integrable?

Unfortunately the differential systems (1) have no Weierstrass first integrals as the fol-
lowing results shows.

Proposition 1. The differential systems (1) have no Weierstrass first integrals.
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Proposition 1 is proved in section 2.

In view of Proposition 1 we will concentrate on investigating the inverse integrating
factors of the form

(4) V=9 +Viq(x)y™ 4+ + Vi(z)y + Volz ZV

with Vs(z) =1

Our first main theorem is the following one.

Theorem 2. If the differential system (1) with n > 2 has a Weierstrass inverse integrating
factor of the form (4) with s = n, then

an(x)
_ai(x) 1 d ap—1(z) (n—2)ai(x)an—1(x)
M@= ot e D@ dr an@) T (- D2 (@)
and
o) = %0(@) 1 dapa(@) (n-2ayi(z) d apa(z)  (n—2)%ai(z)a) ()
Volw) = an(x) * nan(x) dr an,(x) n(n —1)a2(z) dr ay(z) n(n —1)a3(x)

The proof of Theorem 2 is given in section 2.

The following result characterizes the existence of Weierstrass inverse integrating factors
of the differential systems (1) when n = 2.

Theorem 3. System (1) with n = 2 has a Weierstrass inverse integrating factor of the
form (4) with s = 2, if and only if
either ag(z) = a1(x) = 0, and then V = y?;
or ag(z) =0 and a1 (x) # 0, and then Vo =0 and
Vi(z) = el ax(@) dw/al(:v)e_f”(s) s d;
or ap(z) # 0 and a1(x) =0, and then Vi =0, and
‘/O(-T) _ _262fa2(x)dm/ao(x)e—2fa2(s) ds dz:

or ap(z)ar(x) # 0 with ap(x)ai(z)az(x) + ap(z)ad) (x) — ap(z) # 0 and

oo eto)  cole)one o) — afo)one) Sl o
3ah(x)an () (x) + ao(x)an (x)a} (x) — 2ap(x)ar (x)d (x)as(x) = O,
then
B 01 (x)ad(z)
@) = @ (2)aa@) + aolw)d, (@) — ay(@an (@)
and

Vi) = af(x)ao(x) .
ao(z)ar(z)az(x) + ao(z)a)(z) — ap(w)ar(z)
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The proof of Theorem 3 is given in section 3. After the proof of this theorem we apply it
to two examples. One satisfying the assumptions of the theorem, and consequently having
an inverse integrating factor of the form (4) with s = 2, and another which does not satisfy
the hypotheses of the theorem and consequently it has not an inverse integrating factor of
the form (4) with s = 2.

The second main result of the paper is the following.

Theorem 4. System (1) with n > 3 has a Weierstrass inverse integrating factor of the
form in (4) if and only if the following conditions hold:

ay,_1(0) ay,_5(0)
ar(0) =0 fork=2,....,n—1, a1(0) = = Dan(0) ap(0) = — nan(0)
dapp-1(z) n-—k+1 d an—2()
dr  an(x) nay(z) ankarl(x)d:z an ()
~(n—k+1)(n—2)an_1(z) . (a:)i an—1()
n(n — 1)a,(x)? PR an (2)
(= k4 D — 2% (), (2)
n(n —1)a3 () @k 1(T)-
fork=0,...,n—3,
d rai(x) 1 d apn—1(z) (n—2)ai(z)ap—1(x)
dx (an(ac) * (n—1)ap(z) dx ap(x) * (n—1)a2(x) )
(o L) ) (o) d ) (n 2>2a1<x>ai_1<x>)
nay(x)dr an(r) nn-—1) a2(z) dr ap(x) n(n —1)a3(x)
as(x) d an—1(z) (n—2)ai(z)az(x)an—1(x)
* (n —Day(z) de an(x) * (n—1)a2(z) ’
d(ao(x) N 1 dapa(r) (n—2)an-1(z) d api(z) (n— 2)%a; (:L‘)a%_l(:c)>
dz \ an(x)  nap(z)dr ap(z) n(n —1)a2(x) de ap(z) n(n —1)ad (x)
) (L) =) ) ) (n 2% 1<x>a,%_1<x>>
] nay(x) dr ap(z) n(n —1) n(x) dr an(x) n(n —1)a3 (x) ’
ao(z) d an-1(z) | (n = 2)ag(z)ar(x)an—1(z)
(n—1)dz ap(x) (n —1)ay(x)
(@) d ans@)  (0—2) a(@ana(@) d anals) (0= 2*a@)ad 4(2)
n dr ap(r) n(n —1) an () dr an(x) n(n —1)a2(x)

The proof of Theorem 4 is given in section 4.

In [9] and [10] the Weierstrass integrability has been characterized for the particular
differential systems (1) with n = 3,4.

2. PROOF OF PROPOSITION 1 AND THEOREM 2

Proof of Proposition 1. If the differential system (1) has a first integral of the form (3) we
get

Z_: Hi(z)y™*' + Z iHi(x)y" ™ an(2)y" + an—1(z)y" " + - + a1(z)y + ao(z)) = 0.
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The highest power is y**"~! (since n > 2) and its coefficient is s a,(z) = 0. Since we are
assuming that a,(z) # 0 we get s = 0. So H = Hy(z). Then, from (5), it follows that
H|(z) = 0, that is H = Hy, a constant in contradiction with the fact that H is a first
integral. O

Imposing that system (1) with n > 2 has an inverse integrating factor of the form (4) we
obtain a polynomial in the variable y whose coefficients must be zero. Hence we get that

Z_: V(@)™ + ) iVi(@)y  (an(2)y" + an1(2)y" T+ -+ ar(2)y + ao(x)
6 '

s

= (ran(@)y" " + (0 = Dan-1(@)y" 2+ + 2a3()y + ar(@) (3 Vi)'
=0

s+n—1

Now computing the terms in (6) with y with n > 2 we get

sVs(x)an(z) = nVs(z)an(x).

In short s = n > 2 because V;(0)a,(0) = a,(0) # 0. Now we state and prove some auxiliary
results.

Lemma 5. Equation (6) can be written as

(7)
-1 n 2n—2 min{l,n}

STV @)y +ao(@) Y (i + )Vigr (2)y' + Z oS Qi1 DVi@a i ().
=0

=0 t=max{0,l+1—n}

|
—

Il
=)

Proof. Since V;,(x) = 1 equation (6) can be written as
n—1 n

0=> V/(@y™*" +ao(z))_ iVi(z)y'!

=0

=1

® o+ Z Vi(@)y' Han(@)y" + an—1(@)y" " + -+ ar(z)y)

= (man(@)y™ + (1= Danoa @)y 4+ 2aa(@)y + ar (@) (Y Vi)'

=0
n—1 n—1
=> V/(@)y™ +ao(z) Y (i + )Vipa(x)y'
i=0 =0

+ Z iVi(x)y " (an(@)y"™ + an—1(x)y" "t + - + a1 (2)y)

=3 Vil (nan @) + (0= Dana (@™ + -+ ar(a)y)

1=0
n—1 ‘ n—1 ‘
=S V(@)y +aoe) Y (i + D)Viri (2)y’
i=0 =0

+ Vi(x)y (i — n)an(z)y" + (i = n+ Dan—1(z)y" " + - + (i — Day(z)y).
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We can write the last sum in (2) as

Z Vi(@)y (i = n)an(@)y" + (i = n+ Dan-1(x)y" ™ + - + (i = Dai(2)y)

=0
n—1 n . )
© =S (=t DVil@)an @)y
7=0 =0
om—2 min{l,n}

= yl Z (21 —1- l)Vi(a:)al,Hl(a:).

=0 t=max{0,l+1—n}

~

Now the proof follows immediately from (2) and (9). O
Let
-1
(10) Sna(@) =D (1= 2j)an—j(¥)an—i1(x).
j=1

Note that | < n+ 1. The following two lemmas are the Lemmas 4 and 5 of [9], respectively.
Lemma 6. We have that S, ;(z) = 0.

Lemma 7. For k=2,...,n — 1 we have that

Lemma 8. We have that

ay(x) 1 d an—1(z) | (n—2)ai(z)an—1(x)
an(xz)  (n—1Day(z)dr an(z) (n—1)a2(x)

V1 (1‘) =

Proof. We compute in (6) with s = n the coefficient of y™. By Lemma 5 with [ = n we get

Vo (@) + > (20 — 1= n)Vi(@)an—i1 (z) = 0.
i=1

Now, using Lemma 7 we get

n—1
0=V _1(x)+ (1 —n)Vi(x)an(x) + (n — 1)Vp(2)ai(x) + Z(2z —1—=n)Vi(z)ap—i(x)
=2
n—1
= Via(w) + (1= Vi(@)an(@) + (= Dar(@) + = S (20 = mas(w)ai(x)

(2 = n)ar(2)an_1(2)
an(z)

=V (@) + (1= n)Vi(@)an(z) + (n — a1 (z) — %ﬁg) (22— n)i;((i))anl(x)
(2 —n)ai(x)an—1(x)

an ()

=Via(@) + (1 = n)Wi(x)an(z) + (n = Day(z) -
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where in the last equality we have used that S, ,(x) = 0, see Lemma 6. Therefore,

o) = 1 - Vs (x ' (n —2)ai(x)an—1(x)

W) = oy (1= Dan(o) + Vi) 4 =20t (2))
_ay(x) 1 d ap—1(z) (n—2)ai(z)an—1(x)
 an(z) * (n—1Dap(z) dr an(z) + an () '

This concludes the proof of the lemma. O

Lemma 9. We have that

_ ao(x) 1 dana(z) (n=2ani(z) d apa(e)  (n—2)%ai(z)ap ()
Vo() = an () + nan(z) dr a,(x) n(n —1)a2(z) dr an(z) n(n —1)a3 (x)

Proof. We compute in (6) with s = n the coefficient of y"~!. By Lemma 5 with [ =n — 1
we get

n—1

Vi_o(x) + nao(2)Va(z) + > (20 — n)Vi(@)an_i(z) = 0.
i=0
Now using Lemma 7 we get
n—1
Vii_a(x) + nao(x)Vu(z) — nVo(@)an(@) + (2 = n)Vi(@)an-1(x) + Y _(2i — n)Vi(x)an—i(z)
i=2
n—1
=V _o(z) + nag(x) — nVy(x)an(x) + (2 — n)Vi(x)an—1(z) + - tx) (2i — n)a;(z)an—i(x)
n =2
— V! _o(z) + nao(z) — nVo(@)an(x) + (2 — n)Vi(@)an_1 (z) — %ﬂ;;) Lo 2)21 ((Z))an_l(w
=V, _o(x) + nao(x) — nVo(x)an(x) + (2 — n)Vi(x)an_1(x) + (n— 2)25(“2)“”—1(5”) —0.
Therefore
Vole) = -t s nanle) + V(o) — (0= 2)Vilhanoa () - 1221
_ ap(z) 1 dapo(x) n-2 (al(:n)anl(m)
an(z)  nayp(x)dr ap(z) nay(x) an(z)
o) dan() Bl et )
(n—1ap(x)dx an(zx) (n—1)a2(x) an(x)
_ ap(x) 1 dapa(x) (n—2)an-1(2) d ap-1(z) (n —2)%a1(z)a?_ ()
an(z)  nap(z)dr an(zx) n(n —1)a2(z) dr an(z) n(n —1)ad (x)
This concludes the proof of the lemma. O

Proof of Theorem 2. The proof of Theorem 2 is an immediate consequence of Lemmas 7, 8
and 9. U
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3. PROOF OF THEOREM 3

In this section we consider system (1) with n = 2. In this case (6) with s = 2 and
V = Vy(x) + Vi(z)y + y? becomes

Vo(@)y + Vi (@)y* + (Vi(z) + 2y)(az(x)y® + a1(z)y + ao(x))

(11)
= (2az(2)y + ar(2)) (Vo) + Vi(w)y + 7).
that is,
ao(z)Vi(x) — a1(z)Vo(z) = 0,

(12) Vi (2) — 2a2(2)Vo(x) + 2a0(z) = 0,

Vi(@) — az(2)Vi(z) + ar(z) = 0
Solving the third equation in system (12) we get
(13) Vi(z) = ef 2@ deg, _ efag(x)d:c/al<x)e—fa2(s)ds dr. ¢ C.

Since we are interesting in finding one Weierstrass inverse integrating and not all, we choose
cl = 0.
Moreover, solving the second equation in system (12) we get

(14) V()(.T) = 62fa2(z) dwCO — QQQIGQ(Z) dw/a()(x)ezfcu(s) s g

Again since we are interesting in finding one Weierstrass inverse integrating and not all, we
choose ¢y = 0.

Imposing the values of Vi(x) and Vj(x) in the first equation in (12) we obtain
(15) ag(x)/al(z:)e_f@(s) 4 dy = 2a1(x)ef a2(@) dm/ag(x)e_Qf@(s) s .

It is clear that if ag(z) = 0 (respectively aj(x) = 0), then Vy(xz) = 0 (respectively
Vi(z) = 0). Therefore the statement in the theorem for the cases ag(x) = ai(xz) = 0,
ap(z) = 0 and a1(x) # 0, and ap(x) # 0 and a;(z) = 0 follow.

Now assume that ag(x)ai(x) # 0. In this case we will rewrite (13), (14) and (15) in a
more compact form, without quadratures. It follows from the first relation in (12) that

(16) Vi) = 20y

ap(z)

and
ag(x)Vi(x) + ao(z)V{(x) — ay(z)Vo(z) — a1 (z)Vg(x) = 0.
Now using (16) and the second and third relations in (12) we get

chla) 22 Val) + aa(e)er (2)Vole) ~ aole)ar () - 0 (0)Vale) — 2an(e)aa(e Vol +
21 (2)ao(z) = Vo(z) (af)(az)zzég — as(z)ar(z) — (m)) + a1 (2)ag(z) = 0,
and thus
) — a1 ()ad(2)

ao(w)ar(z)ag(z) + ao(z)ay (z) — agp(z)ar(z)’
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with ag(x)a;(z)az(x) + ap(z)d)(x) — aj(x) # 0, otherwise there is no solution. Again from
(16) we get

Vi(l’) _ a%(x)aﬁ(x/) /
ao(x)ar(x)az(x) + ao(x)ay (x) — ap(x)ai(z)
Now we write (15) as
[arye sty < 28 feserie [aqg)e-2 e gy,
Taking derivatives in x we get
- dr _ 501 (%)ao(x) — ax(x)ag(x) d 2 d
al(x)e Jaz(z) dzx =2 2( ) efaz(a:) x/ag(x)e Jaa(s) S du
ag(x

n 2(11(33)((12)(33) efag(m)dm /a0($)6_2fa2(s)ds dr + 2a1(x)e—fa2(m) dx
ap(x

Hence
ay (z)ag(x) — ar(w)ap(x) + ao(x)as (x)as ()
ap(x)

6faz(:c) dz/a0($)62fa2(s) ds dr,

—ay(x)e Jo(@)dr — 9

or equivalently
a1 (z)ad(x)e2S a2(2) dz — 9 [ an(z)e-2Sa2()ds g,
T A el ~ 2 &
Taking again derivatives in = we get
ao(w) (az(w)ah(x)ar ()? + ag(v)ay(z)ar (2)? — ag(2)ar (2)? — 2a0(2)az(z)a] ()ar (z)+
3aj(w)aj (z)ar (@) + ao(w)a](z)ar () — 3ao(z)a; ()?) =

This concludes the proof of Theorem 3.

Example 1: We apply Theorem 3 to the differential system
=y, y=vy>+ b+ax)y— (b+ax)(a+b+az),
with ab # 0. Then
ap(z) = (b+az)(a+b+ax)#0, ai(r)=b+axr#0, azx)=1,

satisfy the assumptions of Theorem 3 corresponding to the case ag(x)ai(z) # 0, and from
this theorem this differential system has the inverse integrating factor

V(z,y) =92+ (a+b+ax)y — (a+ b+ az)?,

as it is easy to check directly from the definition of inverse integrating factor. Once we
know an inverse integrating factor we can compute a first integral, and we obtain

H= —10z— (-5+v5)log ((-1+v5)b+ (-1 +V5)a(z+1) — 2y) +
(5+V5)log (VBb+ b+ (1 +V5) alz + 1) +2y) .

Example 2: We consider the differential system
t=y, §=y"+2+ua,
then
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and this system does not satisfy the assumptions of Theorem 3 corresponding to the case
ap(z)ai(z) # 0. Now we shall prove that this differential system has not an inverse inte-
grating factor of the form (4) with s = 2. Indeed, if it has an inverse integrating factor
V = Vo(z) + Vi(z)y + %2, then from the second and third equations of (12) we obtain

respectively. Finally from the first equation of (12) we get the contradiction

—1 — 2¢9e®* + c1ze” = 0.

4. PROOF OF THEOREM 4
Lemma 10. For k=2,...,n — 1 we have that ax(0) =0 and
" 10 ! 50
an—l( ) 7 CL()(O) — _an—Q( )
(n —1)a,(0) nan(0)

Proof. Since V(0) =0 for £k =0,...,n — 1 and a,(0) # 0, it follows from Lemma 7 that
ag(0) =0for k=2,...,n— 1.

Now using that V1(0) = 0 it follows from Lemma 8 and the explanation above (note that
an—1(0) = 0) that

al(O) = —

a1(0) a,,_1(0)

0=NO="0 " m- D20

(From here the expression of a1(0) follows. Now using that V5(0) = 0 and a,—1(0) =
an—2(0) = 0, it follows from Lemma 9 that
ag(0) | @y—(0)

0="Vo(0) = an(0) * nan,(0)?’

which completes the proof of the lemma. [l
Lemma 11. For k=0,...,n — 3, we have

dapp-1(x) n—k+1 d an—2(x)

- = Ap—p41(2) -

dr  ap(z) nap(x) dx an(x)

(n—k+1)(n—2)a,—1(x) d an—1(x)
- 5 an—k41(2) =
n(n — 1)ay(x) dr an(x)

(n—k+1)(n —2)%a1(z)az_; ()

- TL(TL — 1)@%(.%) an—k+1($)'

Proof. We compute in (6) with s = n the coefficients of 4" * with k = 0,...,n — 3. By
Lemma 5 with [ =n — k we get
n—k
(17) Vi1 (@) + (n =k + Dag(x)Vaopar (@) + > (20 = 1 = n+ E)Vi(x)an—p—is1(x) = 0.
i=0
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Using Lemma 9 we get that (17) becomes

_ 4 (@) k1) NN 1t |
0=— o (2) + (n =k + 1ag () =" @ S (21— n+B)Vi@)an_i—ir (@)
" i=0

_ di An—fk .%1. 33) (’I’L —k+ 1)a0(1‘)w _ (n —k+ 1)‘/0(1’)an_k+1($)

1 n—=k
T3 (x) (20 =1 —n+k)ai(z)an—k—it+1(z)

n =1

= G b Do) ) o )10

Sn—k+1,n—k+1(2)

an(x)

Now using Lemma 6 we get

d an—p-1(2) +(n—k+ 1)ag(x)w —(n—k+ DVW()an—k+1(z) =0,

dx an () an(z)
and by Lemma 9, we deduce that
d an_g-1(z ) an—k+1(2) ao(z)
0= In=k B 4 (g Ink ) (- k41 e
dr CLn((L') (TL + )GO(ZE) CLn(l') (7’L + )an(:c)a k+1(x)
B n—k—i—la ()L d ap—2(x) (n—k+1)(n—2)an_1(:c)a (x)ian_l(x)
nan (z) k) an(x) n(n —1)a,(x)? R an(x)
kD= Pa@d @),
n(n — a3 (x) ke
This concludes the proof of the lemma. O

Lemma 12. We have

Vi (z) _ 3a3(:c)( 1 d ap—2(z) (n—2) an-1(z) d ap—1(x) (n —2)2a1(z)a2_,(z)

dx nap(x)dr ap(x) nn—1) a(z) dr an(z) n(n —1)a3 (x)
az(@)  d ap-1(z) | (n—2)ai(z)az(w)an—1(x)
T S Dan(@) dz an(z) (n— a2 (2) '

where Vi(x) is given in Lemma 8.

Proof. We compute in (6) with s = n the coefficients of ? and we have

(18) Vi (z) + 3V3(z)ao(z) — 3Vo(z)az(x) — Vi(x)as(z) + Va(z)ai(x) = 0.
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Using Lemmas 7, 8 and 9 we get

vy (z) 3a3(az)a o) — 3aa(x ) 2
dx + an(z) o(w) = 3as( )<an(x) +nan(x) dx an(x)
(n—2)an—1(z) d an_1(z) (”—2)2%(90)@%—1(90))

0=

n(n —1)a2(z) de an(z) n(n —1)a3 (x)
el 1(x) 1 d ap-1(z)  (n—2)ai(z)an—1(z) ag(x)a .
L e RE e e E e AR e s ) R LU
L) gy (1 A le) 0D a0 4 s
dz nap(z) dr ap(x) n(n—1) a2(z) dr an(z)

(0 2Pa (@) 1(90)) C a@) daa(@ (- 2Qa@)a@)e (@)
n(n —1)a3 (x) (n—1)ap(z) dx an(x) (n—1)a2(x) '
This concludes the proof of the lemma.

Lemma 13. We have that

dVC'(l);x) B 2a2(;v)< 1 dapa(x) (-2) an1(2) d ap-1(z)

nan(z) dr an(x n(n—1) an(z)? dz an(z)
(n —2)%as(z )

where Vy(x) is given in Lemma 9.

Proof. We compute in (6) with s = n the coefficients of y and we have
(19) Vi (z) + 2Va(z)ao(z) — 2Vo(z)az(x) = 0.
Using Lemmas 7 and 9 we get

dVo(z) | 2az(z)ag(z) 0o ap(x) 1 dap—s(z)
dz + an () 2as( )<an(x) nap(x) dz anp(z
(0= 2) ans(@) d anal) (n- 2>2a1<m>ai_1<m>>

n(n —1) a,(z)? dr a,(v) n(n —1)a3 (x) '

This concludes the proof of the lemma.
Lemma 14. We have

() d ana(s) (0= 2ao(w)ar @)an 1 (2)
(n—1)dz ap(z (n —1)ay(x)

)
_a1(@) d ans(e)  (n=2) ai(@)an-1(z) d ani(z) (02 %af(@)ay ,(x)

n dxr ap(z) n(n —1) an () dz an(z) n(n — 1)a2(x)

n

Proof. We compute in (6) with s = n the coefficients of y° and we have

ao(z)Vi(z) = a1 () Vo(z).
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Using Lemmas 8 and 9 we get

ap(z)ai(z) ap(z)  d ap-1(z) | (n—2)ag(z)ar(x)an—1(x)
an(z) (n—1Dap(x)dx an(zx) (n—1)a2(x)
_ ai(z)ag(z) = ai(z) dana(@) (n—2) ai(z)an-1(z) d ap—1(z)
an(z) nap(x) dr an,(x) nn—1) ap(z)? dr a,(x)
(n —2)%af(x)ay_y(x

n(n —1)a3(x)

After simplifying by 1/a,(x), the lemma follows. O

Proof of Theorem 4. The proof of Theorem 4 is an immediate consequence of Lemmas 10,

11, 13 and 14. O
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