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PERIODIC SOLUTIONS OF

DISCONTINUOUS SECOND ORDER DIFFERENTIAL SYSTEMS

JAUME LLIBRE1 AND MARCO ANTONIO TEIXEIRA2

Abstract. We provide sufficient conditions por the existence of periodic solu-
tions of some classes of autonomous and non–autonomous second order differ-

ential equations with discontinuous right–hand sides. In the plane the disconti-
nuities considered are given by the straight lines either x = 0, or xy = 0. Two
applications of these results are made, one to control systems with variable
structure, and the other to small external periodic excitation of a discontinu-

ous nonlinear oscillator.

1. Introduction and statement of the main result

In these last tens the study of discontinuous differential systems became relevant
in the boundary between Mathematics, Physics and Engineering. In the book [2]
and in the survey [10] there are different models coming from the impacting motion
in mechanical systems, or from switchings in electronic systems, or from hybrid
dynamics in control systems, and so on. All of these models are formulated with
differential equations with discontinuous right–hand sides. Also, many studies have
been done in the qualitative aspects of the phase space of discontinuous differential
systems, see for instance the hundreds of references quoted in [2] and [10]; and also
in the periodic orbits of these discontinuous systems, see for instance [11].

In this paper we are mainly interested in the study of the periodic solutions of
autonomous and non–autonomous second order differential equations with discon-
tinuous right–hand sides. Recently discontinuous second order differential equa-
tions have been studied for several authors, mainly non–autonomous ones. Thus,
discontinuous differential equations of the form u′′ + u + α sign(y) = F (θ) where F
is a periodic function has been studied in [7]. In [5] periodic solutions of discon-
tinuous differential equations of the form u′′ + G(u) = F (θ) are analyzed, where
F is periodic and continuous, and G is continuous except at u = 0. In [6] the
authors studied the periodic solutions of the discontinuous differential equations
u′′ + ηsign(u) = α sin(βt).

Our main results will provide sufficient conditions for the existence of periodic
solutions of the following two classes of autonomous second order differential equa-
tions with discontinuous right–hand sides:

u′′ + u + εα sign(u)G(u, u′) = εH(u, u′),(1)

u′′ + u + εα sign(uu′)G(u, u′) = εH(u, u′).(2)
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Here u = u(t), α ∈ R is a parameter, ε is a small parameter, G and H are C1

functions, and the prime denotes derivative with respect to the variable t. Note
that the differential equation (1) is discontinuous at u = 0, and that the differential
equation (2) is discontinuous at uu′ = 0.

We also shall provide sufficient conditions for the existence of periodic solutions
of the following two classes of non–autonomous second order differential equations
with discontinuous right–hand sides:

r′′ + ε2α sign(cos θ)G(θ, r, r′) = ε2H(θ, r, r′),(3)

r′′ + ε2α sign(sin(2θ))G(θ, r, r′) = ε2H(θ, r, r′).(4)

Here (r, θ) are the polar coordinates of the plane, i.e. x = r cos θ and y = r sin θ,
α ∈ R is a parameter, ε is a small parameter, G and H are C1 functions in the
variables r and r′, the functions G and H are continuous and periodic in the variable
θ of period 2π, and the prime denotes derivative with respect to the variable θ. Note
that the differential equation (3) is discontinuous at the straight line x = 0 of the
plane in cartesian coordinates, and that the differential equation (4) is discontinuous
at the straight lines xy = 0.

Denoting x = u and y = u′ the autonomous differential equations of second
order (1) and (2), respectively can be written as the following differential systems
of first order in the plane

(5)

dx

dt
= x′ = y,

dy

dt
= y′ = −x − εα sign(x)G(x, y) + εH(x, y);

with the discontinuity set x = 0, and

(6)

dx

dt
= x′ = y,

dy

dt
= y′ = −x − εα sign(xy)G(x, y) + εH(x, y);

with the discontinuity set xy = 0.

Denoting x = r and y = r′/ε the non–autonomous differential equations of
second order (3) and (4), respectively can be written as the following differential
systems of first order in the plane

(7)

dx

dθ
= x′ = εy,

dy

dθ
= y′ = −εα sign(x)G(θ, x, y) + εH(θ, x, y);

with the discontinuity set x = 0, and

(8)

dx

dθ
= x′ = εy,

dy

dθ
= y′ = −εα sign(xy)G(θ, x, y) + εH(θ, x, y);

with the discontinuity set xy = 0.

The following propositions provide sufficient conditions for the existence of pe-
riodic solutions for the discontinuous differential systems (5), (6), (7) and (8), re-
spectively.
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Proposition 1. For ε ̸= 0 sufficiently small the discontinuous differential system
(5) has a periodic solution (x(t, ε), y(t, ε)) for each simple zero r∗ of the function

f1(r) =

∫ 2π

0

H(r cos θ, r sin θ) sin θ dθ

+α

(∫ 3π/2

π/2

G(r cos θ, r sin θ) sin θ dθ −
∫ π/2

−π/2

G(r cos θ, r sin θ) sin θ dθ

)
,

such that (x(0, ε), y(0, ε)) → (r∗, 0) when ε → 0.

Proposition 2. For ε ̸= 0 sufficiently small the discontinuous differential system
(6) has a periodic solution (x(t, ε), y(t, ε)) for each simple zero r∗ of the function

f2(r) =

∫ 2π

0

H(r cos θ, r sin θ) sin θ dθ

−α

(∫ π/2

0

G(r cos θ, r sin θ) sin θ dθ +

∫ 3π/2

π

G(r cos θ, r sin θ) sin θ dθ

)

+α

(∫ π

π/2

G(r cos θ, r sin θ) sin θ dθ +

∫ 2π

3π/2

G(r cos θ, r sin θ) sin θ dθ

)
,

such that (x(0, ε), y(0, ε)) → (r∗, 0) when ε → 0.

Proposition 3. For ε ̸= 0 sufficiently small the discontinuous differential system
(7) has a periodic solution (x(θ, ε), y(θ, ε)) for each simple zero x∗ of the function

f3(x) =

∫ 2π

0

H(θ, x, 0) dθ + α

(∫ 3π/2

π/2

G(θ, x, 0) dθ −
∫ π/2

−π/2

G(θ, x, 0) dθ

)
,

such that (x(0, ε), y(0, ε)) → (x∗, 0) when ε → 0.

Proposition 4. For ε ̸= 0 sufficiently small the discontinuous differential system
(8) has a periodic solution (x(t, ε), y(t, ε)) for each simple zero x∗ of the function

f4(x) =

∫ 2π

0

H(θ, x, 0) dθ − α

(∫ π/2

0

G(θ, x, 0) dθ +

∫ 3π/2

π

G(θ, x, 0) dθ

)

+α

(∫ π

π/2

G(θ, x, 0) dθ +

∫ 2π

3π/2

G(θ, x, 0) dθ

)
,

such that (x(0, ε), y(0, ε)) → (x∗, 0) when ε → 0.

The proof of these four propositions is given in section 2. The proofs are based in
a recent result on the averaging theory applied to discontinuous differential systems
obtained by the authors and also by Douglas Novaes, see the appendix.

In the study of control systems with variable structure appear the autonomous
discontinuous second order differential equations similar to

(9) u′′ + u + εα sign(u)uu′ = ε
α

π
u′,

see for instance the book [1].
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Corollary 5. For ε ̸= 0 sufficiently small the control system with variable structure
(9) has one periodic solution u(t, ε), such that

√
u(0, ε)2 + u′(0, ε)2 → 3/4 when

ε → 0.

In the next corollary we apply Proposition 3 for studying the periodic solutions
of the following small external periodic excitation of a discontinuous nonlinear os-
cillator

(10) r′′ + ε2α sign(cos θ)

(
(2 − 3r) cos

θ

2

)
= −ε2

√
2 α

π
r2.

Such kind of differential equations are considered in the book [12]. Note that
equation (10) is a non–autonomous discontinuous second order differential equation.

Corollary 6. For ε ̸= 0 sufficiently small the small external periodic excitation of
the discontinuous nonlinear oscillator (10) has two periodic solutions rk(θ, ε) for
k = 1, 2, such that r1(0, ε) → cos θ and r2(0, ε) → 2 cos θ when ε → 0.

The proof of the two corollaries are given in section 3.

2. Proof of the propositions

In this section we prove the four propositions using the averaging theory for
discontinuous differential systems described in the appendix.

Proof of Proposition 1. We write the discontinuous differential system (5) in polar
coordinates (r, θ) where x = r cos θ and y = r sin θ, and we obtain

dr

dt
= ε
(
H(r cos θ, r sin θ) − α sgn(cos θ)G(r cos θ, r sin θ)

)
sin θ,

dθ

dt
= −1 +

ε

r

((
H(r cos θ, r sin θ) − α sgn(cos θ)G(r cos θ, r sin θ)

)
cos θ

)
.

Now taking as new independent variable the angle θ this previous discontinuous
differential system becomes

(11)

dr

dθ
= ε
(
α sgn(cos θ)G(r cos θ, r sin θ) − H(r cos θ, r sin θ)

)
sin θ + O(ε2)

= εF (θ, r) + O(ε2).

This system is under the assumptions of Theorem 7, where the variables of this
theorem are in our case t = θ, T = 2π, x = r, M = h−1(0) = {x = 0}. So we apply
this theorem to our previous discontinuous differential equation and we compute

f(r) =

∫ 2π

0

F (θ, r)dθ = f1(r),

where f1(r) is the function defined in the statement of Proposition 1. Since by
assumptions G and H are C1 functions in their two variables, it follows that f1(r)
is C1. Consequently, if r∗ is a simple zero of f1(r), i.e. f1(r

∗) = 0 and

df1

dr

∣∣∣∣
r=r∗

̸= 0,

then the Brouwer degree dB(f1, V, r∗) ̸= 0 being V a convenient open neighborhood
of r∗, see for more details on the Brouwer degree [3] and [9]. Hence, by Theorem
7 it follows that for ε ̸= 0 sufficiently small the discontinuous differential system
(11) has a periodic solution r(θ, ε) such that r(0, ε) → r∗ when ε → 0. Going back
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through the polar change of variables we get that for ε ̸= 0 sufficiently small the
discontinuous differential system (5) has a periodic solution (x(t, ε), y(t, ε)) such
that (x(0, ε), y(0, ε)) → (r∗, 0) when ε → 0. So, the proposition is proved. �

Proof of Proposition 2. The discontinuous differential system (6) in polar coordi-
nates (r, θ) becomes

dr

dt
= ε
(
H(r cos θ, r sin θ) − α sgn(sin(2θ))G(r cos θ, r sin θ)

)
sin θ,

dθ

dt
= −1 +

ε

r

((
H(r cos θ, r sin θ) − α sgn(sin(2θ))G(r cos θ, r sin θ)

)
cos θ

)
.

Taking as new independent variable the angle θ this discontinuous differential sys-
tem becomes

(12)

dr

dθ
= ε
(
α sgn(sin(2θ))G(r cos θ, r sin θ) − H(r cos θ, r sin θ)

)
sin θ + O(ε2)

= εF (θ, r) + O(ε2).

Applying Theorem 7 to this discontinuous differential equation, where the variables
of this theorem are in our case t = θ, T = 2π, x = r, M = h−1(0) = {xy = 0}, we
compute

f(r) =

∫ 2π

0

F (θ, r)dθ = f2(r),

where f2(r) is the function defined in the statement of Proposition 2. Since f2(r)
is C1, if r∗ is a simple zero of f2(r), then the Brouwer degree dB(f2, V, r∗) ̸=
0 being V a convenient open neighborhood of r∗. Therefore, by Theorem 7 it
follows that for ε ̸= 0 sufficiently small the discontinuous differential system (12)
has a periodic solution r(θ, ε) such that r(0, ε) → r∗ when ε → 0. Going back
through the polar change of variables we obtain that for ε ̸= 0 sufficiently small
the discontinuous differential system (6) has a periodic solution (x(t, ε), y(t, ε))
such that (x(0, ε), y(0, ε)) → (r∗, 0) when ε → 0. This completes the proof of the
proposition. �

Proof of Proposition 3. The discontinuous differential system (7) is already in the
form (13) for applying the averaging theory described in Theorem 7, where now
the variables of Theorem 7 are t = θ, T = 2π, x = (x, y), M = h−1(0) = {x = 0},
F (t,x) = F (θ, x, y) = (F1(θ, x, y), F2(θ, x, y)) where

F1(θ, x, y) = y,

F2(θ, x, y) = α sign(x)G(θ, x, y) + H(θ, x, y).

Therefore we apply Theorem 7 to the discontinuous differential system (7) and we
obtain

f(x, y) =

∫ 2π

0

F (θ, x, y)dθ,

where f(x, y) = (g1(x, y), g2(x, y)) with

g1(x, y) = y,

g2(x, y) =

∫ 2π

0

H(θ, x, y) dθ + α

(∫ 3π/2

π/2

G(θ, x, y) dθ −
∫ π/2

−π/2

G(θ, x, y) dθ

)
.
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A solution (x∗, y∗) of the system g1(x, y) = g2(x, y) = 0 satisfies y∗ = 0 and x∗

is a solution of f3(x) = 0 where this function is the one defined in the statement
of Proposition 3. Since G and H are C1 functions in their two variables, it follows
that g1(x, y), g2(x, y) and f3(x) are C1. Consequently, if (x∗, 0) is a zero of the
system g1(x, y) = g2(x, y) = 0, and the Jacobian

det




∂g1

∂x

∂g1

∂y

∂g2

∂x

∂g2

∂y




∣∣∣∣∣∣∣∣
(x,y)=(x∗,0)

=
df3

dx

∣∣∣∣
x=x∗

̸= 0,

then the Brouwer degree dB(f, V, (x∗, 0)) ̸= 0 being V a convenient open neighbor-
hood of (x∗, 0), see again for more details on the Brouwer degree [3] and [9]. Hence,
by Theorem 7 it follows that for ε ̸= 0 sufficiently small the discontinuous differen-
tial system (7) has a periodic solution (x(θ, ε), y(θ, ε)) such that (x(0, ε), y(0, ε)) →
(x∗, 0) when ε → 0. So, the proposition follows. �

Proof of Proposition 4. The discontinuous differential system (8) is in the form (13)
for applying the averaging theory described in Theorem 7, where the variables
of Theorem 7 now are t = θ, T = 2π, x = (x, y), M = h−1(0) = {xy = 0},
F (t,x) = F (θ, x, y) = (F1(θ, x, y), F2(θ, x, y)) where

F1(θ, x, y) = y,

F2(θ, x, y) = α sign(xy)G(θ, x, y) + H(θ, x, y).

By applying Theorem 7 to the discontinuous differential system (8) and we obtain

f(x, y) =

∫ 2π

0

F (θ, x, y)dθ,

where f(x, y) = (g1(x, y), g2(x, y)) with

g1(x, y) = y,

g2(x, y) =

∫ 2π

0

H(θ, x, y) dθ − α

(∫ π/2

0

G(θ, x, y) dθ +

∫ 3π/2

π

G(θ, x, y) dθ

)

+α

(∫ π

π/2

G(θ, x, y) dθ +

∫ 2π

3π/2

G(θ, x, y) dθ

)
.

A solution (x∗, y∗) of the system g1(x, y) = g2(x, y) = 0 satisfies y∗ = 0 and x∗

is a solution of f4(x) = 0 where this function is the one defined in the statement of
Proposition 4. Since g1(x, y), g2(x, y) and f4(x) are C1, and if (x∗, 0) is a zero of
the system g1(x, y) = g2(x, y) = 0, then the Jacobian

det




∂g1

∂x

∂g1

∂y

∂g2

∂x

∂g2

∂y




∣∣∣∣∣∣∣∣
(x,y)=(x∗,0)

=
df4

dx

∣∣∣∣
x=x∗

̸= 0,

then the Brouwer degree dB(f, V, (x∗, 0)) ̸= 0 being V a convenient open neighbor-
hood of (x∗, 0). Therefore, by Theorem 7 it follows that for ε ̸= 0 sufficiently small
the discontinuous differential system (8) has a periodic solution (x(θ, ε), y(θ, ε))
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such that (x(0, ε), y(0, ε)) → (x∗, 0) when ε → 0. In short, the proposition is
proved. �

3. Proof of the applications

Here we prove the two corollaries.

Proof of Corollary 5. The autonomous discontinuous differential equation of second
order (9) is a particular case of equation (1) with

G(θ, u, u′) = uu′ and H(θ, u, u′) =
α

π
u′.

Then computing for equation (9) the function f1(r) given in the statement of Propo-
sition 1 we get

f1(r) = −α

3
r(4r − 3).

Hence, f1(r) = 0 has a unique positive simple root r = 3/4. Going back through
the changes of variables described in the proof of Proposition 1, we obtain the result
stated in the corollary. �

Proof of Corollary 6. The non–autonomous discontinuous differential equation of
second order (10) is a particular case of equation (3) with

G(θ, r, r′) = (2 − 3r) cos
θ

2
and H(θ, r, r′) = −

√
2α

π
r2.

Then computing for equation (10) the function f3(x) given in the statement of
Proposition 3 we get

f3(x) = −2
√

2α(x − 2)(x − 1).

Therefore, f3(x) = 0 has two simple roots x = 1 and x = 2. Going back through
the changes of variables described in the proof of Proposition 3, it follows the result
stated in the corollary. �

Appendix: Averaging theory of first order for discontinuous
differential systems

We need the following recent result of [8] on averaging theory for computing
periodic orbits of discontinuous differential systems. Its proof uses the theory on
the Brouwer degree dB(f, V, 0) for finite dimensional spaces (see the appendix A of
[8] for a definition of the Brouwer degree), and it is based on the averaging theory
for continuous non–smooth differential system stated in [4].

Theorem 7. We consider the following discontinuous differential system

(13) x′(t) = εF (t,x) + ε2R(t,x, ε),

with
F (t,x) = F1(t,x) + sign(h(t,x))F2(t,x),

R(t,x, ε) = R1(t,x, ε) + sign(h(t,x))R2(t,x, ε),

where F1, F2 : R × D → Rn, R1, R2 : R × D × (−ε0, ε0) → Rn and h : R × D → R
are continuous functions, T–periodic in the variable t and D is an open subset of
Rn. We also suppose that h is a C1 function having 0 as a regular value. Denote
by M = h−1(0), by Σ = {0} × D * M, by Σ0 = Σ\M ̸= ∅, and its elements by
z ≡ (0, z) /∈ M.
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Define the averaged function f : D → Rn as

(14) f(x) =

∫ T

0

F (t,x)dt.

We assume the following three conditions.

(i) F1, F2, R1, R2 and h are locally L–Lipschitz with respect to x;
(ii) for a ∈ Σ0 with f(a) = 0, there exist a neighbourhood V of a such that

f(z) ̸= 0 for all z ∈ V \{a} and dB(f, V, 0) ̸= 0.
(iii) If ∂h/∂t(t0, z0) = 0 for some (t0, z0) ∈ M, then(

⟨∇xh, F1⟩2 − ⟨∇xh, F2⟩2
)
(t0, z0) > 0.

Then, for |ε| > 0 sufficiently small, there exists a T–periodic solution x(·, ε) of
system (13) such that x(0, ε) → a as ε → 0.
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