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CENTERS OF QUASI–HOMOGENEOUS POLYNOMIAL

DIFFERENTIAL EQUATIONS OF DEGREE THREE

WALEED AZIZ1, JAUME LLIBRE2 AND CHARA PANTAZI3

Abstract. We characterize the centers of the quasi–homogeneous planar polynomial dif-
ferential systems of degree three. Such systems do not admit isochronous centers. At most
one limit cycle can bifurcate from the periodic orbits of a center of a cubic homogeneous
polynomial system using the averaging theory of first order.

1. Introduction and statement of the results

Poincaré in [25] was the first to introduce the notion of a center for a vector field defined
on the real plane. So according to Poincaré a center is a singular point surrounded by a
neighborhood filled of closed orbits with the unique exception of the singular point.

Since then the center–focus problem, i.e. the problem to distinguish when a singular point
is either a focus or a center is one of the hardest problem in the qualitative theory of planar
differential systems, see for instance [1] and the references quoted there. This paper deals
mainly with the characterization of the centers problem for the class of quasi–homogeneous
polynomial differential systems of degree 3.

In the literature we found classifications of polynomial differential systems having a
center. For the quadratic systems we refer to the works of Dulac [10], Kapteyn [13, 14],
Bautin [3] among others. In [28] Schlomiuk, Guckenheimer and Rand gave a brief history
of the center problem for quadratic systems.

There are many partial results about centers for polynomial differential systems of degree
greater than two. Some of them (closed to our work) are for instance, the classification by
Malkin [19] and Vulpe and Sibirskii [28] about the centers for cubic polynomial differential
systems of the form linear with homogeneous nonlinearities of degree three. Note that
for polynomial differential systems of the form linear with homogeneous nonlinearities of
degree k > 3 the centers are not classified. However, there are some results for k = 4, 5
see for instance the works by Chavarriga and Giné [7, 8]. It seems difficult for the moment
to obtain a complete classification of the centers for the class of all polynomial differential
systems of degree 3. Actually, there are some subclasses of cubic systems well studied like
the ones of Rousseau and Schlomiuk [26] and the ones of Zo la̧dek [31, 32]. Some centers
for arbitrary degree polynomial differential systems have been studied in [18].

In what follows we denote by R[x, y] the ring of all polynomials in the variables x and
y and coefficients in the real numbers R. In this work we consider polynomial differential
systems of the form

ẋ = P (x, y), ẏ = Q(x, y), (1)
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with P,Q ∈ R[x, y] and its corresponding vector field X = (P,Q). Here the dot denotes
derivative with respect to the time t (independent variable). The degree of the differential
polynomial system (1) is the maximum of the degrees of the polynomials P and Q.

System (1) is a quasi–homogeneous polynomial differential system if there exist natural
numbers s1, s2, d such that for an arbitrary non–negative real number α it holds

P (αs1x, αs2y) = αs1+d−1P (x, y), Q(αs1x, αs2y) = αs2+d−1Q(x, y). (2)

The natural numbers s1 and s2 are the weight exponents of system (1) and d is the weight
degree with respect to the weight exponents s1 and s2. When s1 = s2 = s then we obtain
the classical homogeneous polynomial differential system of degree s + d− 1.

It is well known that all quasi–homogeneous vector fields are integrable with a Liouvillian
first integral [11, 12, 16].

From Theorem 2 of [17] we have that there are only two families of cubic polynomial
differential homogeneous systems with a center.

In the next result we characterize all the centers of quasi–homogeneous polynomial dif-
ferential systems.

z2

z1

.
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(a) (z1, z2) = (0, 0) on the (U1, F1.) (b) On the Poincaré disk.

Figure 1. (a) The local phase portrait at the origin in the local chart U1.
(b) Phase portrait of a cubic quasi–homogeneous non–homogeneous system
(3) in the Poincaré disk. This system has a global center.

Theorem 1. The following two statements hold.

(a) The unique cubic quasi–homogeneous non–homogeneous polynomial differential sys-
tem (1) with P and Q coprime and s1 > s2 having a center after a rescaling of the
variables can be written as

ẋ = y(ax + by2), ẏ = x + y2, (3)

with (a−2)2+8b < 0. For all a and b satisfying (a−2)2+8b < 0 the phase portrait in
the Poincaré disk of system (3) is topologically equivalent to the one given in Figure
1(b). Moreover, its parameter space (a, b) is described in Figure 2(a). Additionally,
these centers are not isochronous.
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(b) The unique cubic homogeneous polynomial differential systems having a center after
a linear transformation and a rescaling of independent variable can be written in
one of the following four forms:

ẋ = −3αµx2y − αy3 + P3, ẏ = αx3 + 3αµxy2 + Q3, (4)

where α = ±1, µ > −1/3 and µ 6= 1/3;

ẋ = −αx2y − αy3 + P3, ẏ = αx3 + αxy2 + Q3, (5)

with α = ±1. Here P3 = p1x
3 + p2x

2y − p1xy
2 and Q3 = p1x

2y + p2xy
2 − p1y

3.
The phase portraits in the Poincaré disk of systems (4) and (5) are topologically
equivalent to the ones of Figure 2(b). Moreover, these centers are not isochronous.

The proof of Theorem 1 is given in section 3.

. ..
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(a) cubic quasi–homogeneous (b) cubic homogeneous

Figure 2. (a) The parameter space (a, b) and the phase portrait of cubic
quasi–homogeneous systems (3). (b) Cubic homogeneous systems (5) having
a center, see also [5].

Additional to the classification of centers, another classical problem in the qualitative
theory of planar differential systems is the study of their limit cycles. Recall that a limit
cycle of a planar polynomial differential system is a periodic orbit of the system isolated
in the set of all periodic orbits of the system. Thus in what follows we study, using the
averaging theory of first order, the limit cycles which bifurcate from the periodic orbits of
the centers (4) and (5) of Theorem 1 when these centers are perturbed inside the class of
all cubic polynomial differential systems.

Theorem 2. Consider the cubic homogeneous system (4) and (5) and its perturbation
inside the class of all cubic polynomial differential systems. Then, for |ε| 6= 0 sufficiently
small one limit cycle can bifurcate from the continuum of the periodic orbits of the center
of systems (4) and (5) using averaging theory of first order.

The proof of Theorem 2 is given in section 4.

In section 2 we provide the basic results that we shall need for proving Theorems 1 and
2.
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2. some known results

2.1. Classification of quasi–homogeneous non–homogeneous cubic polynomial
differential systems. For proving Theorem 1 we should need the following result.

Proposition 3. A quasi–homogeneous non–homogeneous cubic polynomial differential sys-
tems (1) with P and Q coprime and s1 > s2 after a rescaling of the variables can be written
as one of the following systems.

(a) ẋ = y(ax + by2), ẏ = x + y2, with a 6= b, or ẋ = y(ax± y2), y′ = x, and

both with minimal weight vector (2, 1, 2).

(b) ẋ = x2 + y3, ẏ = axy, with a 6= 0and minimal weight vector (3, 2, 4).

(c) ẋ = y3, ẏ = x2, and minimal weight vector (4, 3, 6).

(d) ẋ = x(x + ay2), ẏ = y(bx + y2), with (a, b) 6= (1, 1), and minimal

weight vector (2, 1, 3).

(e) ẋ = axy2, ẏ = ±x2 + y2, with a 6= 0and minimal weight vector (3, 2, 5).

(f) ẋ = axy2, ẏ = x + y3, with a 6= 0 and minimal weight vector (3, 1, 3).

(g) ẋ = ax + y3, ẏ = y, or ẋ = ax, ẏ = y with a 6= 0, and minimal

weight vector (3, 1, 1).

Proof. See [12]. �
2.2. Nilpotent center–focus. A singular point is nilpotent if both eigenvalues of its lin-
ear part are zero but its linear part is not identically zero. Andreev [2] was the first in
characterizing the local phase portraits of the nilpotent singular points. In what follows we
summarize the results of the local phase portraits of the nilpotent singular points that we
need in this paper, for more details see Theorem 3.5 of [9].

Theorem 4. Let (0, 0) be an isolated singular point of the vector field X given by

ẋ = y + A(x, y), ẏ = B(x, y),

where A and B are analytic in a neighborhood of the point (0, 0) starting with terms of
second degree.

Let y = f(x) be the solution of the equation y + A(x, y) = 0 in a neighborhood of the
point (0, 0), and consider F (x) = B(x, f(x)) and G(x) = (∂A/∂x + ∂B/∂y)(x, f(x)).

Then the origin can be a focus or a center if and only if one of the following statements
holds:

(a) If G(x) ≡ 0 and F (x) = axm + o(xm) for m ∈ N with m ≥ 1, m odd and a < 0 then
the origin of X is a center or a focus.

(b) If F (x) = αxm+o(xm) with α < 0 , m ∈ N, m ≥ 2, m odd, and G(x) = βxn+o(xn)
with β 6= 0, n ∈ N, n ≥ 1 and if either m < 2n+1, or m = 2n+1 and β2+4α(n+1) <
0, then the origin of X is a center or a focus.

2.3. Isochronicity. The following result characterizes the isochronous centers.

Theorem 5. A center of an analytic system is isochronous if and only if there exists an
analytic change of coordinates of the form u = x+ o(x, y) and v = y + o(x, y) changing the
system to the linear isochronous system

u̇ = −kv, v̇ = ku,
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where k is a real constant.

For a proof of Theorem 5, see [20].

Assume that the origin is an isochronous center for system (1). Then Theorem 5 guaran-
tees that there exists an analytic change of coordinates u = x + o(x, y) and v = y + o(x, y)
such that u̇ = −kv, v̇ = ku. Then since ü + u = 0, and v̈ + v = 0, and doing a rescalling
we can take k = 1.

2.4. Poincaré compactification. In order to plot the global phase portrait of the poly-
nomial vector field (1) of degree m we should be able to control the orbits that come or
escape at infinity. For this reason we consider the so called Poincaré compactification of
the polynomial vector field X .

Consider R2 as the plane in R3 defined by (y1, y2, y3) = (x1, x2, 1). We also consider the
Poincaré sphere S2 = {y = (y1, y2, y3) ∈ R3 : y1 +y2 +y3 = 1} (see also [24]) and we denote
by T(0,0,1)S2 the tangent space to S2 at the point (0, 0, 1). The Poincaré compactified vector

field p(X ) of X is an analytic vector field induced on S2 in the following way: We consider
the central projection f : T(0,0,1) : S2 → S2. This map defines two copies of X , one in the

northern hemisphere {y ∈ S2 : y3 > 0} and the other in the southern hemisphere. We

denote by X̃ the vector field Df ◦ X defined on S2 except on its equator. We notice that
the points at infinity of R2 are in bijective correspondence with the points of the equator
of S2, S1 = {y ∈ S2 : y3 = 0} and so we identify S1 to be the infinity of R2.

Now we would like to extend the induced vector field X̃ from S2 \ S1 to S2. It is possible

that X̃ does not stay bounded as we get close to S1. However, it turns out that if we
multiply X̃ by the factor ym−1

3 , namely, if we consider the vector field ym−1
3 X̃ the extension

is possible in the whole S2.

Note that on S2 \ S1 there are two symmetric copies of X and knowing the behavior
of p(X ) around S1, we know the behavior of X at infinity. The Poincaré disk D2 is the
projection of the closed northern hemisphere of S2 on y3 = 0 under (y1, y2, y3) 7−→ (y1, y2).
Moreover, S1 is invariant under the flow of p(X ).

We also say that two polynomial vector fields X and Y on R2 are topologically equivalent
if there exists a homeomorphism on S2 preserving the infinity S1 carrying orbits of the
flow induced by p(X ) into orbits of the flow induced by p(Y). The homeomorphism should
preserve or reverse simultaneously the sense of all orbits of the two compactified vector
fields p(X ) and p(Y).

Since S2 is a differentiable manifold we can consider the six local charts Ui = {y ∈ S2 :
yi > 0}, and Vi = {y ∈ S2 : yi < 0} for i = 1, 2, 3 and the diffeomorphisms Fi : Vi −→ R2

and Gi : Vi −→ R2 are the inverses of the central projections from the planes tangent at
the points (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and (0, 0,−1) respectively. Now we
denote by z = (z1, z2) the value of Fi(y) or Gi(y) for any i = 1, 2, 3. Then we obtain the
following expressions of the compactified vector field p(X ) of X (for more details we refer
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to chapter V of [9] and references therein)

zn2 ∆(z)

(
Q
( 1

z2
,
z1
z2

)
− z1P

( 1

z2
,
z1
z2

)
, −z2P

( 1

z1
,
z1
z2

))
in U1,

zn2 ∆(z)

(
P
(z1
z2

,
1

z2

)
− z1Q

(z1
z2

,
1

z2

)
, −z2Q

(z1
z2

,
1

z2

))
in U2,

∆(z)
(
P (z1, z2), Q(z1, z2)

)
in U3,

where ∆(z) = (z21 + z22 + 1)
− 1

2(n−1) . Note that in the two sets Ui and Vi the expressions of
the vector field p(X ) are the same and only difference by the multiplicative factor (−1)n−1.
In these coordinates z2 = 0 always denotes the points of S1. In what follows we omit the
factor ∆(z) by rescaling the vector field p(X ) and so we obtain a polynomial vector field in
each local chart.

2.5. Separatrix configuration. Let p(X ) be the Poincaré compactification of S2 of a
polynomial vector field X in R2.

In what follows we consider the definition of parallel flows given by Markus [21] and
Neumann in [22]. Let φ be a Cω local flow on the two dimensional manifold R2 or R2 \ {0}.
The flow (M,φ) is Ck parallel if it is Cω-equivalent to one of the following ones:

strip: (R2, φ) with the flow φ defined by ẋ = 1, ẏ = 0;

annular: (R2 \ {0}, φ) with the flow φ defined (in polar coordinates) by ṙ = 0, θ̇ = 1;

spiral: (R2 \ {0}, φ) with the flow φ defined by ṙ = 0, θ̇ = 1.

It is known that the separatrices of the vector field p(X ) in the Poincaré disk D are

(i) all the orbits of p(X ) which are in the boundary S1 of the Poincaré disk (recall that
S1 is the infinity of R2);

(ii) all the finite singular points of p(X );
(iii) all the limit cycles of p(X ); and
(iv) all the separatrices of the hyperbolic sectors of the finite and infinite singular points

of p(X ).

We denote by Σ the union of all separatrices of the flow (D,φ) defined by the compactified
vector field p(X ) in the Poincaré disk D. Then Σ is a closed invariant subset of D. Every
connected component of D \ Σ, with the restricted flow, is called a canonical region of φ.

For a proof of the following result see [15] and [22].

Theorem 6. Let φ be a Cω flow in the Poincaré disk with finitely many separatrices, and
let Σ be the union of all its separatrices. Then the flow restricted to every canonical region
is Cω parallel.

The separatrix configuration Σc of a flow (D,φ) is the union of all the separatrices Σ of the
flow together with an orbit belonging to each canonical region. The separatrix configuration
Σc of the flow (D,φ) is said to be topologically equivalent to the separatrix configuration Σ̃c

of the flow (D, φ̃) if there exists a homeomorphism from D to D which transforms orbits of

Σc into orbits of Σ̃c, and orbits of Σ into orbits of Σ̃.

Theorem 7. Let (D,φ) and (D, φ̃) be two compactified Poincaré flows with finitely many
separatrices coming from two polynomial vector fields (1). Then they are topologically equiv-
alent if and only if their separatrix configurations are topologically equivalent.
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For a proof of Theorem 7 see [21, 22, 23].

From Theorem 7 it follows that in order to classify the phase portraits in the Poincaré
disk of a planar polynomial differential system having finitely many finite and infinite
separatrices, it is enough to describe their separatrix configuration.

2.6. Averaging theory and periodic solutions. We consider the system

x′(t) = F0(t,x), (6)

with F0 : R × Ω → Rn a C2 function, T–periodic in the first variable and Ω is an open
subset of Rn. We assume that system (6) has a submanifold of periodic solutions.

Let ε be sufficiently small and we consider a perturbation of system (6) of the form

x′(t) = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε), (7)

with F1 : R× ω → Rn and F2 : R×Ω× (−ε0, ε0) → Rn are C2 functions, T–periodic in the
first variable and Ω is an open subset of Rn. Averaging theory deals with the problem of
the bifurcation of T–periodic solutions of system (7), see also for more information on the
averaging theory [29, 30].

Let x(t, z) be the periodic solution of the unperturbed system (6) satisfying the initial
condition x(0, z) = z. Now we consider the linearization of system (6) along the solution
x(t, z), namely

y′ = DxF0(t,x(t, z))y,

and let Mz(t) be a fundamental matrix of this linear system satisfying that M(0) is the
identity matrix.

For a proof of the following theorem see [4].

Theorem 8 (Perturbations of an isochronous set). We assume that there exists an open
bounded set V with Cl(V ) ⊂ Ω such that for each z ∈ Cl(V ), the solution x(t, z) is T–
periodic, then we consider the function F : Cl(V ) → Rn

F(z) =

T∫

0

M−1
z (t, z)F1(t,x(t, z))dt. (8)

If there exist a ∈ V with F(a) = 0 and det ((dF/dz) (a)) 6= 0, then there exists a T–periodic
solution φ(t, ε) of system (7) such that φ(0, ε) → a as ε → 0.

3. Proof of Theorem 1

All quasi–homogeneous non–homogeneous cubic polynomial differential systems are given
by Proposition 3. Note that all those systems have the origin as the unique singular point.

Now we consider the first system of statement (a) of Proposition 3. This system admits
the real first integral

(
by4 + (a− 2) xy2 − 2x2

) (
∆x− 2 by2 − ax + 2x

) 3 a+6+∆
∆−a−2

(
2 by2 + ax− 2x + ∆x

)
,

with (a− 2)2 + 8b ≥ 0 and ∆ =
√

(a− 2)2 + 8b. Note that the real invariant curve 2 by2 +
ax− 2x + ∆x = 0 passes through the origin. Hence, the origin is not a center.

Now we consider the case where (a − 2)2 + 8b < 0. Under the change of coordinates
x → Y y → X and after renaming (X,Y ) by (x, y) we obtain

ẋ = y + x2, ẏ = x(ay + bx2). (9)
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Now we apply Theorem 4 to system (9). We have A(x, y) = x2 and B(x, y) = x(ay+bx2)
We have F (x) = B(x,−x2) = (b − a)x3 and G(x) = (a + 2)x. Since a 6= b we have that
F 6≡ 0. Following the notation of Theorem 4 we have m = 3, α = b−a, n = 1 and β = a+2.

For a = −2 we have that G(x) ≡ 0 and b < −2. So α < 0 and by Theorem 4(a) the
origin is a focus or a center. System (9) has the real first integral

H =

(
y −

(
−1 +

1

2

√
2(2 + b)

)
x2
)(

y −
(
−1 − 1

2

√
2(2 + b)

)
x2
)
,

well defined at the origin and consequently the origin is a center.

For a 6= −2 we have G(x) 6≡ 0. In order that the origin of system (9) can be a focus or a
center, from Theorem 4(b), we need that α = b− a < 0 and (a − 2)2 + 8b < 0. We notice
that system (9) under these assumptions admits the real first integral

H(x, y) =

(
16 y2 + 16x2y − 8x2ay + 8x4c2 + 4x4 − 4x4a + x4a2

)2c

e
√
2(2+a) arctan

(√
2

4
−4 y−2x2+x2a

x2c

) ,

with c =
√

−2((a− 2)2 + 8b)/4. Since this first integral is defined at the origin, the origin
is a center.

The second family of systems of statement (a) of Proposition 3 admits the real invariant

curves
√
a2 + 8x± 2 y2 ± ax = 0 which pass through the origin. So these systems have no

centers.

Easy computations shows that systems (b), (c), (d),(e), (f) and (g) have real invariant
curves passing through the origin. Therefore these systems have no centers.

In short, the quasi–homogeneous non–homogeneous cubic polynomial differential systems
having a center are the system (3) satisfying either a = −2 and b < −2, or a 6= −2, b−a < 0
and (a− 2)2 + 8b < 0. An easy computation (see Figure 2) shows that these conditions for
existence of the center in system (3) reduces to the unique condition (a− 2)2 + 8b < 0.

Now we shall study the phase portrait in the Poincaré disk D and the parameter space
of system (3). So, we study the infinite singular points of system (3) using subsection 2.4.
On the local chart U1 we obtain

ż1 = z2
2 + (1 − a) z1

2z2 − bz1
4,

ż2 = −z1 z2
(
az2 + bz1

2
)
.

(10)

Since 8b+ (a− 2)2 < 0 we have that (z1, z2) = (0, 0) is the only infinite singular point in U1

and it is linearly zero. In order to classify this infinite singular point we use the standard
blow-up techniques, see for instance [9]. Then we obtain that the local phase portrait at the
origin (0, 0) of system (10) is topologically equivalent to the one described in Figure 1(a).
Additionally, note that in the chart (U2, F2) there are no infinite singular points. Hence,
in the Poincaré disk the origin and S1 are the only separatrices. If we remove the origin
and S1, then we have only one canonical region homomorphic to R2 \ {0} and the flow is
locally annular. According to Theorem 6 we obtain that the center is globally defined in
R2 \{0}. Hence, the phase portrait of the differential system (3) is topologically equivalent
to the one of Figure 1(b).

The parameter space and phase portrait of system (3) is given in Figure 2(a).
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Now we will study the isochronicity of the center of system (3). System (3) written in
the polar coordinates is

ṙ = P1(θ)r + P2(θ)r2 + P3(θ)r3,

θ̇ = Q0(θ) + Q1(θ)r + Q2(θ)r2,

with
P1 = cos θ sin θ, P2 = (sin2 θ + a cos2 θ) sin θ, P3 = b cos θ sin3 θ,
Q0 = cos2 θ, Q1 = −(a− 1) sin2 θ cos θ, Q2 = −b sin4 θ.

Consider the analytic function H(r, θ) =
∞∑
n=1

Hn(θ)rn where Hn(θ) are trigonometric poly-

nomials of degree n. If the condition

Ḧ + H = 0,

is satisfied then in the new variables (H,−Ḣ), system (3) could be transformed into the
form

u̇ = −v, v̇ = u.

So system (3) could have an isochronous center at the origin.

If we expand Ḧ + H = 0 in power series of r we obtain a recursive system of differential
equation. The coefficient of rn for n = 1, 2, . . . in this expansion is the differential equation
of the form

cos4 θH ′′
n(θ)+2(n−1) sin θ cos θH ′

n(θ)+n cos2 θHn(θ)
(

(n−1)−(n−2) cos2 θ
)

+Hn(θ) = 0,

and its general solution for n = 1 is

H1(θ) = cos θ

(
C1 sin

( sin θ

cos θ

)
+ C2 cos

( sin θ

cos θ

))
.

For n = 2, 3, . . . we have

Hn(θ) =
(

cos 2θ + 1
)n

2

(
C1 sin

( sin 2θ

cos 2θ + 1

)
+ C2 cos

( sin 2θ

cos 2θ + 1

))
.

Since these solutions Hn(θ) must be polynomials of trigonometric functions we have that
Hn ≡ 0 for all n. Hence we have not an isochronous center and the proof of Theorem 1(a)
is completed.

Now we are going to prove Theorem 1(b). The usual forms given in (5) for the cubic
homogeneous polynomial differential systems having a center were obtained in Proposition
1 and Theorem 2 of [17]. The phase portrait were classified in [5]. See also Figure 2(b).

In order to study the isochronicity of systems (4) and (5) we can repeat the same mech-
anism used in the proof of statement (a). In polar coordinates system (5) takes the form

ṙ = P3(θ)r3, θ̇ = α r2

where P3 = p1(cos2 θ − sin2 θ) + p2 sin θ cos θ.

We can see that
H1(θ) = H2(θ) = H3(θ) = H4(θ) = 0,

and for n ≥ 5 we have that

Hn(θ) = −(α2 H ′′
n−4 + 2(n − 3)αP3 H

′
n−4 + (n− 4)Hn−4(αP ′

3 + (n− 2)P 2
3 ).

Clearly each Hn ≡ 0, for all n, so system of (5) is not an isochronous center.
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System (4) can be written in polar coordinates as

ṙ = P3(θ)r3, θ̇ = αQ2(θ) r2,

where
P3 = p1(cos2 θ − sin2 θ) + p2 sin θ cos θ,

Q2 = cos4 θ + 6µ cos2 θ sin2 θ + sin4 θ.

Again we obtain

H1(θ) = H2(θ) = H3(θ) = H4(θ) = 0,

and for n ≥ 5 we have

Hn(θ) = −(α2 Q2
2 H

′′
n−4+

(
α2 Q′2 Q2+2 (n−3)αQ2 P3

)
H ′

n−4+(n−4)Hn−4(αP ′
3Q2+(n−2)P 2

3 ).

Clearly each Hn ≡ 0, for all n and therefore system (4) is not an isochronous center. This
completes the proof of Theorem 1.

4. Proof of Theorem 2

System (5) in polar coordinates can be written into the form

ṙ = r3
(
p1 cos2 θ + p2 sin θ cos θ − p1 sin2 θ

)
, θ̇ = αr2,

or equivalently
dr

dθ
=

r

α

(
p1 cos2 θ + sin θp2 cos θ − p1 sin2 θ

)
,

its solution satisfying the initial condition r(0) = r0 is

r̃ (θ, r0) = r0 exp ((p2 + 2p1 sin (2 θ) − p2 cos (2 θ))/(4α)).

Now the fundamental matrix of the linearized equation evaluated on a closed orbit is

Mr0(θ) = M(θ) = exp
( (

p2 + 2p1 sin (2 θ) − p2 cos (2 θ)
)
/(4α)

)
,

and satisfies the condition M(0) = 1.

Now we perturb system (5) inside the class of all cubic polynomial differential systems
and we have

ẋ = p1x
3 + (p2 − α)x2y − p1xy

2 − αy3 + ε

(
∑

0≤i+j≤3
aijx

iyj

)
,

ẏ = αx3 + p1x
2y + (p2 + α)xy2 − p1y

3 + ε

(
∑

0≤i+j≤3
bijx

iyj

)
.

The corresponding differential equation in polar coordinates becomes

d r

d θ
= F0(θ, r) + εF1(θ, r) + O(ǫ2),

with

F0(θ, r) =
r

α

(
p1 (2 cos2 θ − 1) + p2 sin θ cos θ

)
,

F1(θ, r) =
1

αr3
(B4r

4 + B3r
3 + B2r

2 + B1r),
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where

B4 =
1

α

(
B46 cos6 θ + B45 sin θ cos5 θ + B44 cos4 θ + B43 sin θ cos3 θ + B42 cos2 θ

+B41 sin θ cos θ + B40) ,

B3 = − 1

α

(
B35 cos5 θ + B34 sin θ cos4 θ + B33 cos3 θ + B32 sin θ cos2 θ + B31θ cos θ + B30 sin θ

)
,

B2 = − 1

α

(
B24 cos4 θ + B23 sin θ cos3 θ + B22 cos2 θ + B21 sin θ cos θ + B20

)
,

B1 = − 1

α

(
B13 cos3 θ + B12 sin θ cos2 θ + B10 sin θ

)
;

with

B46 = 2 p1 a03 + 2 p1 b12 − 2 p1 a21 − 2 p1 b30 + p2 a12 − p2 a30 + p2 b21 − p2 b03,

B45 = −2 p1 a12 + 2 p1 a30 + p2 a03 − p2 b30 − 2 p1 b21 − p2 a21 + p2 b12 + 2 p1 b03,

B44 = −5 p1 a03 + 3 p1 a21 − 3 p1 b12 − b21α− a12α + a30α + p2 a30 − p2 b21 + p1 b30
+b03α + 2 p2 b03 − 2 p2 a12,

B43 = −p2 b12 + 3 p1 a12 − a03α + p2 a21 + b30α− 3 p1 b03 − p1 a30 − b12α + p1 b21
+a21α− 2 p2 a03,

B42 = 4 p1 a03 + p1 b12 − p2 b03 + b21α + a12α− 2 b03α− p1 a21 + p2 a12,

B41 = −p1 a12 + p2 a03 + b12α + a03α + p1 b03,

B40 = b03α− p1a03,

B35 = 2 p1 b02 − 2 p1 a11 − 2 p1 b20 + p2 a02 + p2 b11 − p2 a20,

B34 = −2 p1 b11 − p2 b20 + 2 p1 a20 − p2 a11 − 2 a02p1 + p2 b02,

B33 = −a02α + p1 b20 + a20α + p2 a20 − 2 p2 a02 − p2 b11 − 3 p1 b02 + 3 p1 a11 − b11α,

B32 = −b02α + p2 a11 − p1 a20 + b20α + p1 b11 + 3 a02p1 + a11α− p2 b02,

B31 = −p1 a11 + p2 a02 + b11α + a02α + p1 b02,

B30 = −a02p1 + b02α,

B24 = −2 a01p1 − 2 p1 b10 + p2 b01 − p2 a10,

B23 = −2 p1 b01 − p2 b10 − p2 a01 + 2 p1 a10,

B22 = 3 a01p1 + a10α + α b01 + p2 a10 + p1 b10 − p2 b01,

B21 = p1 b01 − p1 a10 + b10α + a01α + p2 a01,

B20 = −a01p1 + α b01,

B13 = −2 p1 b00 − p2 a00,

B12 = 2 a00p1 − p2 b00,

B11 = p1 b00 + p2 a00 + αa00,

B10 = b00α− a00p1.
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Note that

F(r0) =

2π∫

0

M−1(θ)F1(θ, r̃(θ, r0)) dθ

=
1

r0
A0I0 +

2

r20

(
A1I1 + A2I2 + A3I3 + A4I4 + π C1 +

3π

4
C2

)

+2r0π(αb03 − p1a03) +
5π

8
C3,

where we have

I0 =

∫ 2π

0
E dθ, I1 =

∫ 2π

0
E cos θ sin θ dθ,

I2 =

∫ 2π

0
E cos2 θ dθ, I3 =

∫ 2π

0
E cos3 θ sin θ dθ,

I4 =

∫ 2π

0
E cos4 θ dθ, E = exp

(
−sin θ (2 p1 cos (θ) + p2 sin θ)

α

)
,

and

A0 = −a01p1 + α b01,

A1 = −1

2
((a10 − b01) p1 − p2 a01 − α (a01 + b1,0)) r0,

A2 =

((
3

2
a01 +

1

2
b10

)
p1 +

1

2
(p2 + α) (a10 − b01)

)
r0,

A3 =

(
(a10 − b01) p1 −

1

2
p2 (a01 + b10)

)
r0,

A4 =

(
(−a01 − b10) p1 −

1

2
p2 (a10 − b01)

)
r0,

C1 =

((
2 a03 +

1

2
b12 −

1

2
a21

)
p1 +

(
1

2
a12 −

1

2
b03

)
p2

−
(
−1

2
a12 + b03 −

1

2
b21

)
α

)
r0

3,

C2 =

((
3

2
a21 +

1

2
b30 − 5/2 a03 − 3/2 b12

)
p1 +

(
1

2
a30 − a1,2 −

1

2
b21 + b03

)
p2

+
1

2
α (b03 + a30 − a12 − b21)

)
r0

3,

C3 = 2

(
(b12 + a03 − a21 − b30) p1 −

1

2
p2 (b03 + a30 − a12 − b21)

)
r0.

In short, the function F(r) of Theorem 8 is of the form

F(r) =
αr2 + β

r
,

so it has at most one real positive root given by r =
√

−β/α. Moreover, we have that

F ′
(√

−β/α
)

= 2α. So by Theorem 8 if −β/α > 0 then there is one limit cycle bifurcating
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from a periodic orbit of the center of system (5). This completes the proof of Theorem 2
for system (5).

The rest of the proof of Theorem 2 for system (4) is completely analogous to the one
done for system (5), only changes the computations, and we do not repeat it here.

4.1. Examples. First we give an example satisfying the result of Theorem 2 for system
(5). We consider the system

ẋ = x3 + 2x2y − xy2 − y3, ẏ = x3 + x2y + 4xy2 − y3,

and its perturbation

ẋ = x3 + 2x2y − xy2 − y3

+ε
(
4 y3 + 3xy2 + 3x2y + 5x3 + 3 y2 + 3xy + 3x2 − y − x + 2

)
,

ẏ = x3 + x2y + 4xy2 − y3

+ε
(
−3 y3 + xy2 + x2y + x3 + 5 y2 + xy + x2 + y + 2x + 1

)
.

(11)

Then

F(r0) =
11.78097245r20 − 4.108168642

r0

and F(r) = 0 gives r = 0.5905185728. So according to Theorem 8 at most one limit cycle
can bifurcated from the origin, see also Figure 3.

ε = 0 ε = 0.01

Figure 3. Phase portrait of system (11) in the Poincaré disk.

Example-2 Now we give an example satisfying the result of Theorem 2 for system (4).
For ε = 0 the origin of the system

ẋ = x3 − 6x2y − xy2 − y3

+ǫ
(
2 y3 + 3xy2 + 3x2y − 5x3 + 3 y2 + 10xy + 3x2 − y − x− 20

)
,

ẏ = x3 + x2y + 12xy2 − y3

+ǫ
(
−3 y3 + xy2 − 10x2y + x3 + 5 y2 + xy + 1/5x2 + y + 2x + 100

)
,

(12)

is a center and for ε = 0.01 one limit cycle is produced, see Figure 4.
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ε = 0 ε = 0.01

Figure 4. Phase portrait of system (12) in the Poincaré disk.
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