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LIOUVILLIAN AND ANALYTIC INTEGRABILITY
OF THE QUADRATIC VECTOR FIELDS

HAVING AN INVARIANT ELLIPSE

JAUME LLIBRE1 AND CLÀUDIA VALLS2

Abstract. We characterize the Liouvillian and analytic integrability of the qua-
dratic polynomial vector fields in R2 having an invariant ellipse. More precisely,
a quadratic system having an invariant ellipse can be written into the form ẋ =
x2+y2−1+y(ax+by+c), ẏ = −x(ax+by+c), and the ellipse becomes x2+y2 = 1.
We prove that

(i) this quadratic system is analytic integrable if and only if a = 0;
(ii) if x2 + y2 = 1 is a periodic orbit, then this quadratic system is Liouvillian

integrable if and only if x2 + y2 = 1 is not a limit cycle; and
(iii) if x2 + y2 = 1 is not a periodic orbit, then this quadratic system is Liouvilian

integrable if and only if a = 0.

1. Introduction and statement of the main results

We study polynomial differential systems in R2 defined by

(1) ẋ = P (x, y), ẏ = Q(x, y),

where P and Q are polynomials with real coefficients such that the maximum degree of
P and Q is at most m. When m = 2 we call these differential systems simply quadratic
systems. The dot denotes derivative with respect to the independent variable t, which
is called here the time. Associated with system (1) we have the quadratic polynomial
vector field X with

X = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y
.

We also refer to X as a quadratic vector field. For general properties on quadratic
systems see [1, 14].

In spite of over a thousand papers published on quadratic systems (see for instance
[11] or [14]) questions about their integrability are hard to tackle. Here we complete
the characterization of the Liouvillian and analytic integrability of the quadratic
systems having an invariant ellipse.

An isolated singular point of a quadratic system is called a center if it has a
neighborhood such that every solution passing through one of its points other than the
singularity is a non-trivial periodic solution. The set of all periodic orbits surrounding
a given center is called the period annulus of that center.

2010 Mathematics Subject Classification. Primary 34C05, 34A34, 34C14.
Key words and phrases. Liouvillian integrability, quadratic planar polynomial vector fields, in-

variant ellipse.
1

This is a preprint of: “Liouvillian and analytic integrability of the quadratic vector fields having
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A limit cycle of a differential system (1) is a periodic orbit isolated in the set of all
periodic orbits of system (1).

As usual C[x, y] denotes the ring of all complex polynomials in the variables x and
y. Let f(x, y) ∈ C[x, y]. We say that f = 0 is an invariant algebraic curve of the
polynomial vector field X if it satisfies

(2) X f = P
∂f

∂x
+ Q

∂f

∂y
= Kf,

the polynomial K = K(x, y) ∈ C[x, y] is called the cofactor of f = 0. It has degree
at most m − 1. When f = 0 is an ellipse and f = 0 is an invariant algebraic
curve, we will say simply that f = 0 is an invariant ellipse. Moreover if f(x, y) ̸∈
R[x, y] then the conjugate of f(x, y) provides also an invariant algebraic curve with
cofactor the conjugate of K(x, y). Independently of working with real polynomial
vector fields X when we study their Liouvillian first integrability we need to consider
the complex invariant algebraic curves, because sometimes these complex invariant
algebraic curves force the real integrability.

An exponential factor F of the polynomial vector field X of degree m is an expo-
nential function of the form F = exp(h/g) ̸∈ C with g, h ∈ C[x, y] satisfying

(3) XF = P
∂F

∂x
+ Q

∂F

∂y
= LF,

for some polynomial L of degree at most m−1, called the cofactor of the exponential
factor F . Exponential factors of the form exp(h/g) with g ̸= 1 appear when the
multiplicity of the invariant algebraic curve g = 0 is larger than one, and with g = 1
appear when the multiplicity of the invariant straight line at infinity is larger than
one, see for more details [6].

Let U be an open and dense set in R2. We say that a non-constant C1 function
H : U → R is a first integral of the polynomial vector field X on U , if H(x(t), y(t))
is constant for all values of t for which the solution (x(t), y(t)) of X is defined on U .
Clearly H is a first integral of X on U if and only if XH = 0 on U . We say that it
is an analytic first integral if the function H is analytic.

A non-constant complex function R : U → R is an integrating factor for the poly-
nomial vector field X , if one of the following three equivalent conditions holds

(4)
∂(RP )

∂x
= −∂(RQ)

∂y
, div (RP,RQ) = 0, XR = −R div (P,Q)

on U . As usual the divergence of the vector field X is defined by

div (P,Q) =
∂P

∂x
+

∂Q

∂y
.

Knowing an integrating factor R of (1) we can compute a first integral H of X as

H = −
∫

R(x, y)P (x, y) dy + h(x),

where the function h(x) is determined from the equality
∂H

∂x
= R(x, y)Q(x, y).
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Let fi, gj, hj ∈ C[x, y] for i = 1, . . . , p and j = 1, . . . , q. Then the (multi-valued)
function

(5) fλ1
1 · · · fλp

p eµ1g1/h1 · · · eµqgq/hq

with λi, µj ∈ C is called a generalized Darboux function.

We say that a polynomial differential system (1) is Liouvillian integrable if it has
a first integral or an integrating factor given by a generalized Darboux function.
Roughly speaking Liouvillian integrable polynomial differential systems are polyno-
mial differential systems having first integrals given by elementary functions or by
integrals of elementary functions, for more details see Singer [13].

It is well-known that doing an affine change of variables in R2 a quadratic system
having an invariant ellipse can be written into the form

ẋ = x2 + y2 − 1 + y(ax + by + c),

ẏ = −x(ax + by + c),
(6)

and the ellipse becomes x2 + y2 = 1, the unit circle. For more details see [14] or [12].
The next result characterizes the quadratic systems which are analytic integrable.

Theorem 1. The quadratic system (6) is analytic integrable if and only if a = 0.

The proof of Theorem 1 is given in section 2.

The next result characterizes the quadratic systems having an invariant ellipse
which are Liouvillian integrable.

Theorem 2. Consider the quadratic system (6) with the invariant ellipse x2+y2 = 1.

(a) Assume that x2 + y2 = 1 is a periodic orbit. Then system (6) is Liouvillian
integrable if and only if x2 + y2 = 1 is not a limit cycle.

(b) Assume that x2 +y2 = 1 is not a periodic orbit. Then system (6) is Liouvilian
integrable if and only if a = 0.

Chavarriga, Giacomini and Grau in [3] proved that if x2 + y2 = 1 is a limit cycle
then system (6) is not Liouvillian integrable. Llibre and Schlomiuk in [12] proved
that if x2 + y2 = 1 is a periodic orbit but not a limit cycle, then x2 + y2 = 1 is
contained in the period annulus of a center. It is well-known that quadratic systems
having a center are Liouvillian integrable, see [12] and the references quoted therein,
or see section 8.7 of [8]. In short, statement (a) of Theorem 2 is proved.

The proof of statement (b) of Theorem 2 is given in section 3.

2. Proof of Theorem 1

Note that when a = 0 system (6) has the first integral

H = (c + by)2(x2 + y2 − 1)b

which is an analytic first integral. Hence from now on we will assume that a ̸= 0.

We introduce the change of variables

(7) X = x + iy, Y = x − iy.
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With this change of variables system (6) becomes

ẋ = x
(
y − ia

2
(x + y) − b

2
(x − y) − ic

)
− 1,

ẏ = y
(
x +

ia

2
(x + y) +

b

2
(x − y) + ic

)
− 1,

(8)

where we have denoted again (x, y) instead of (X, Y ). The proof of Theorem 1 will
be an immediate consequence of the following lemma.

Lemma 3. System (8) with a ̸= 0 has no analytic first integrals.

Proof. Let f = f(x, y) be an analytic first integral of system (8).

We do the change of variables (x, y) → (z, y) with z = xy − 1. Then system (8)
becomes

ż = z
(z + 1

y
+ y

)
,

ẏ = y
(z

y
+

ia

2

(z + 1

y
+ y

)
+

b

2

(z + 1

y
− y

)
+ ic

)
.

(9)

Let g(z, y) = f
(

z+1
y

, y
)
. Note that g is a analytic in the variable z with coefficients

being a Laurent series around zero in the variable y. Moreover g satisfies

z
(z + 1

y
+ y

)∂g

∂z
+ y

(z

y
+

ia

2

(z + 1

y
+ y

)
+

b

2

(z + 1

y
− y

)
+ ic

)∂g

∂y
= 0.

We restrict the equality to z = 0, and denoting ḡ(y) = g(0, y) we get

(ia

2
(1 + y2) +

b

2
(1 − y2) + icy

)dḡ

dy
= 0,

that is ḡ is a constant, that can be always taken to be equal zero. Therefore, g = zg1

for some function g1 (which is analytic in z with coefficients Laurent series around
zero in y) that, after simplifying by z, satisfies

z
(z + 1

y
+ y

)∂g1

∂z
+ y

(z

y
+

ia

2

(z + 1

y
+ y

)
+

b

2

(z + 1

y
− y

)
+ ic

)∂g1

∂y

= −
(z + 1

y
+ y

)
g1.

We consider two different cases.

Case 1: g1 is not divisible by z. In this case if we denote by ḡ1 the restriction of g1

to z = 0, then we have that ḡ1 ̸= 0 and ḡ1 satisfies

( ia

2
(1 + y2) +

b

2
(1 − y2) + icy

)dḡ1

dy
= −1 + y2

y
ḡ1.

Solving it we get ḡ1 = C exp(h1/h2) where C ∈ C \ {0} and
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If c2 ̸= a2 + b2, then h2 = a2 + b2 and

h1 =
4iac tanh−1

(
c+(a+ib)y√

S

)

√
S

+ 2ia log y + b

(
2i tan−1

(
b (y2 − 1)

ay2 + 2cy + a

)

−2 log y + log
(
4c2y2 + 4ac

(
y2 + 1

)
y + b2

(
y2 − 1

)2
+ a2

(
y2 + 1

)2
))

.

If c2 = a2 + b2, then h2 = −(b + ia) and

h1 =
4a

(
−a + ib +

√
a2 + b2y

)

(y2 − 1) a2 + 2iby2a − b2 (y2 + 1)
+

4ib
√

a2 + b2 tan−1
(√

a+iby√
ib−a

)

√
ib − a(a + ib)3/2

−
2b tan−1

(
a(y2−1)
by2+b

)

a + ib
+ 2 log y −

ib log
(
a2 (y2 − 1)

2
+ b2 (y2 + 1)

2
)

a + ib
.

Note that ḡ1 = g̃1(y)y−2/(b+ia), where g̃1 is analytic. Since ḡ1 must be a Laurent series
around zero in the variable y and a ̸= 0 we get that ḡ1 = 0 which is not possible.

Case 2: g1 is divisible by z. Let n be the degree of g1 in the variable z. In this case
we write g1 = zjgj for some 1 ≤ j ≤ n and such that gj is not divisible by z, i.e.,
if we denote by ḡj the restriction of gj to z = 0, then we have ḡj ̸= 0. Moreover, gj

satisfies

z
(z + 1

y
+ y

)∂gj

∂z
+ y

(z

y
+

ia

2

(z + 1

y
+ y

)
+

b

2

(z + 1

y
− y

)
+ ic

)∂gj

∂y

= −j
(z + 1

y
+ y

)
gj.

If we denote by ḡj the restriction of gj to z = 0, then ḡj ̸= 0 and it satisfies

( ia

2
(1 + y2) +

b

2
(1 − y2) + icy

)dḡj

dy
= −j

1 + y2

y
ḡj.

Solving it we get ḡj = C exp(h1/h2) where C ∈ C \ {0}.

If c2 ̸= a2 + b2, then h2 = a2 + b2 and

h1 = j




4iac tanh−1
(

c+(a+ib)y√
S

)

√
S

+ 2ia log y + b

(
2i tan−1

(
b (y2 − 1)

ay2 + 2cy + a

)

−2 log y + log
(
4c2y2 + 4ac

(
y2 + 1

)
y + b2

(
y2 − 1

)2
+ a2

(
y2 + 1

)2
)))

.



6 J. LLIBRE AND C. VALLS

If c2 = a2 + b2, then h2 = −(b + ia) and

h1 = j


 4a

(
−a + ib +

√
a2 + b2y

)

(y2 − 1) a2 + 2iby2a − b2 (y2 + 1)
+

4ib
√

a2 + b2 tan−1
(√

a+iby√
ib−a

)

√
ib − a(a + ib)3/2

−
2b tan−1

(
a(y2−1)
by2+b

)

a + ib
+ 2 log y −

ib log
(
a2 (y2 − 1)

2
+ b2 (y2 + 1)

2
)

a + ib


 .

Note that ḡj = g̃j(y)y−2j/(b+ia), where g̃j is analytic. Since ḡj must be a Laurent series
around zero in the variable y and a ̸= 0 we get that ḡj = 0 which is not possible This
completes the proof of the lemma. �

3. Proof of statement (b) of Theorem 2

Note that when a = 0, system (6) has the first integral

H = (c + by)2(x2 + y2 − 1)b

which is a Liouvillian first integral because c + by = 0 and x2 + y2 − 1 = 0 are
invariant algebraic curves of system (6) when a = 0, and consequently the function
H is a generalized Darboux function. Hence from now on we will assume that a ̸= 0.

If the invariant ellipse x2 + y2 = 1 is not a periodic orbit of system (6), then there
is a singular point on x2 + y2 = 1. Now we study the singular points of system (6).
Denote by S = a2 + b2 − c2. We have four cases.

Case 1: b ̸= −1 and S > 0. In this case system (6) has the four singular points

(10) p1,2 =

(
0,

−c ±
√

c2 + 4(b + 1)

2(b + 1)

)
, p3,4 =

(−ac ∓ b
√

S

a2 + b2
,
−bc ± a

√
S

a2 + b2

)
.

Note that p3 and p4 are in x2 + y2 = 1.

Case 2: b ̸= −1 and S = 0. In this case system (6) has the three singular points

(11) p1,2 =

(
0,

−c ±
√

c2 + 4(b + 1)

2(b + 1)

)
, p3 =

( −ac

a2 + b2
,

−bc

a2 + b2

)
.

Note that p3 is in x2 + y2 = 1.

Case 3: b = −1 and S > 0. In this case system (6) has the three singular points

(12) q1 =

(
0,

1

c

)
, q2,3 =

(−ac ∓ b
√

S

a2 + 1
,
c ± a

√
S

a2 + 1

)
.

Note that q2 and q3 are in x2 + y2 = 1.

Case 4: b = −1 and S = 0. In this case system (6) has the two singular points

(13) q1 =

(
0,

1

c

)
, q2 =

( −ac

a2 + 1
,

c

a2 + 1

)
.

Note that q2 is in x2 + y2 = 1.
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In short, for proving statement (b) of Theorem 2 it is sufficient to work with
a ̸= 0 and a2 + b2 ≥ c2, otherwise there are no singular points on x2 + y2 = 1, and
consequently x2 + y2 = 1 is a periodic orbit. The statement (b) of Theorem 2 follows
directly from the following result.

Proposition 4. System (6) with a ̸= 0 and a2 + b2 ≥ c2 has no Liouvillian first
integrals.

We introduce the change of variables in (7) and we work with system (8). Note
that the invariant ellipse f = x2 + y2 − 1 = 0 of system (6) with non–zero cofactor
2x, in system (6) becomes f = xy − 1 = 0 with the non–zero cofactor K = x + y.

We first compute the algebraic invariant curves of system (8). Note that by Lemma
3, system (8) has no polynomial first integrals. Now we study the invariant algebraic
curves with non–zero cofactor. We state an auxiliary result.

Proposition 5 ([5]). Assume f ∈ C[x, y] and let f = fn1
1 · · · fnr

r be its factorization
in irreducible factors over C[x, y]. Then, for a polynomial system (1), f = 0 is
an invariant algebraic curve with cofactor Kf if and only if fi = 0 is an invariant
algebraic curve for each i = 1, . . . , r with cofactor Kfi

. Moreover Kf = n1Kf1 + · · ·+
nrKfr .

Proposition 5 states that to characterize the invariant algebraic curves f = 0 it is
enough to characterize the irreducible ones, that is the ones such that f is irreducible.
Now we study the invariant algebraic curves with non–zero cofactor.

Lemma 6. Let f = 0 be an irreducible invariant algebraic curve polynomial of system

(14) x′ = x
(
y − ia

2
(x + y) − b

2
(x − y)

)
, y′ = y

(
x +

ia

2
(x + y) +

b

2
(x − y)

)

with cofactor K = β0 + β1x + β2y. Then

β0 = 0, β1 = − il(a − ib)

2
and β2 =

il(a + ib)

2
,

for some non-negative integer l.

Proof. We note that x = 0, y = 0 and (a− i(b+1))x+(a+ i(b+1))y = 0 are invariant
algebraic curves of system (14) with non–zero cofactors.

Under the assumptions of Lemma 6, if we denote by f̄ = f̄(y) the restriction of f
to x = 0 then f̄ ̸= 0 (otherwise would be reducible) and it satisfies

( ia

2
− b

2

)
y2df̄

dy
= (β0 + β2y)f̄ .

Then

f̄ = Ke
2iβ0

(a+ib)y y
−2iβ2
a+ib , K ∈ C \ {0}.

Then since f̄ must be a polynomial we must have β0 = 0 and β2 =
il(a + ib)

2
for

some non-negative integer l.
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If we denote by f̃ = f̃(x) the restriction of f to y = 0 then f̃ ̸= 0 (otherwise would
be reducible) and we have, after simplifying by x,

−
( ia

2
+

b

2

)
x
df̃

dx
= β1f̃ .

Then

f̃ = Ky
2iβ1
a−ib , K ∈ C \ {0}.

Then since f̃ must be a polynomial we must have β1 = −ij(a − ib)

2
for some non-

negative integer j.

Now we denote by f̂ = f̂(y) the restriction of f to x = −a + i(b + 1)

a − i(b + 1)
y. Then we

have that f̂ ̸= 0 (otherwise would be reducible) and it satisfies, after simplifying by
y,

(1 + b)y

1 + b + ia
y
df̂

dy
=

i(a(j − l) + a2(j + l) + b(1 + b)(j + l))

2(a − i(1 + b))
f̂ .

Then

f̂ = Ky
−ia(j−l)+a2(j+l)+b(1+b)(j+l)

2(1+b) , K ∈ C \ {0}.

Since f̂ must be a polynomial and a ∈ R, j, l ∈ N we get that j = l. This completes
the proof of the lemma. �
Lemma 7. The unique irreducible invariant algebraic curves of system (8) with non–
zero cofactor is f = xy − 1 = 0.

Proof. Since the degree of system (8) is two, the degree of any cofactor is at most
one, that is it can be written into the form

K = α0 + α1x + α2y, (α0, α1, α2) ∈ C3 \ {(0, 0, 0)}.

It follows by direct computations that system (8) has no invariant algebraic curves
of degree one and that the only irreducible invariant algebraic curves of degree two
is xy − 1 = 0. Now we shall prove that this is the only irreducible invariant algebraic
curve. We proceed by contradiction.

Assume that f = f(x, y) = 0 is an irreducible invariant algebraic curve of system
(8) with non–zero cofactor K as above. Then it satisfies

(
x
(
y − ia

2
(x + y) − b

2
(x − y) − ic

)
− 1

)
∂f

∂x

+

(
y
(
x +

ia

2
(x + y) +

b

2
(x − y) + ic

)
− 1

)
∂f

∂y
= (α0 + α1x + α2y)f.

(15)

We do again the change of variables (x, y) → (z, y) with z = xy − 1. Then system

(8) becomes system (9). Denoting g(z, y) = f
(

z+1
y

, y
)

equation (15) becomes

z
(z + 1

y
+y

)∂g

∂z
+y

(z

y
+

ia

2

(z + 1

y
+y

)
+

b

2

(z + 1

y
−y

)
+ic

)∂g

∂y
=

(
α0+α1

z + 1

y
+α2y

)
g.
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Now we denote by ḡ the restriction of g to z = 0, i.e. ḡ(y) = g(0, y). We have that
ḡ ̸= 0 (since otherwise would be reducible) and it satisfies

(ia

2
(1 + y2) +

b

2
(1 − y2) + icy

)dḡ

dy
=

α0y + α1 + α2y
2

y
ḡ.

We consider four different cases.

Case 1: c2 ̸= a2 + b2 and b ̸= 0. Solving it we get

ḡ = Cy
2α1
ia+b

(
4c2y2 + 4ac(y2 + 1)y + b2(y2 − 1)2 + a2(y2 + 1)2

) ia(α1−α2)−(α1+α2)b

2(a2+b2)

× exp

(
a(α1 − α2) + i(α1 + α2)b

a2 + b2
tan−1

( b − by2

a + 2cy + ay2

)

+
2i(a2α0 − a(α1 + α2)c + b(α0b − i(α1 − α2)c)√

−a2 − b2 + c2(a2 + b2)
tanh−1

( c + (a + ib)y)√
−a2 − b2 + c2

))
,

where C is a non–zero constant. It is clear that f̄ must be a rational function in the
variable y. Clearly we must have

a(α1 − α2) + i(α1 + α2)b = 0 and a2α0 − a(α1 + α2)c + b(α0b − i(α1 − α2)c = 0,

that is

(16) α1 =
a − ib

a + ib
α2 and α0 =

2c

a + ib
α2.

Then ḡ = Cy
−2i(a−ib)α2

a2+b2 . Again since ḡ is a rational function in the variable y we have

α2 = −a + ib

2i
j,

for some non–negative integer j. In summary

α0 = icj, α1 =
ij

2
(a − ib) and α2 =

ij

2
(a + ib).

Now we write f in sum of its homogeneous parts as f =
∑n

i=1 fi where each fi =
fi(x, y) is a homogeneous polynomial of degree i. Without loss of generality we can
assume that n > 0 and fn ̸= 0. Moreover fn satisfies the equation

x
(
y − ia

2
(x + y) − b

2
(x − y)

)∂fn

∂x
+ y

(
x +

ia

2
(x + y) +

b

2
(x − y)

)∂fn

∂y

=
ij

2
((a − ib)x + (a + ib)y)fn

Since fn ̸= 0 we get that fn must be an invariant algebraic curve of system (14) with
cofactor K = − ij

2
((a − ib)x + (a + ib)y), i.e., β0 = 0, β1 = ij(a − ib)/2 and β2 =

ij(a+ ib)/2. It follows from Lemma 6 that j = 0 which yields that α1 = α2 = α3 = 0,
in contradiction with the fact that the cofactor is nonzero. Hence this case is not
possible.
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Case 2: c2 ̸= a2 + b2 and b = 0. Solving it we get

ḡ = Cy
2α1
ia

(
4c2y2 + 4ac(y2 + 1)y + a2(y2 + 1)2

) i(α1−α2)
2a

× exp

(
2i(aα0 − (α1 + α2)c)√

−a2 + c2a
tanh−1

( c + ay√
−a2 + c2

))
,

where C is a non–zero constant. It is clear that f̄ must be a rational function in the
variable y. Clearly we must have

α0 =
(α1 + α2)c

a
, α1 =

iaj1

2
and α2 = ia

(j1

2
+ 2j2

)

for some non–negative integers j1 and j2.

Now we write f in sum of its homogeneous parts as f =
∑n

i=1 fi where each fi =
fi(x, y) is a homogeneous polynomial of degree i. Again, without loss of generality we
can assume that n > 0 and fn ̸= 0. Moreover, proceeding as in Case 1, fn = 0 must
be an irreducible invariant algebraic curve of system (14) with b = 0 and with cofactor
K = ia

2
(j1x+(j1 +4j2)y), i.e., β0 = 0, β1 = ij1a/2 and β2 = ia(j1 +4j2)/2. It follows

from Lemma 6 that j1 = j2 = 0 which yields α1 = α2 = α3 = 0, in contradiction with
the fact that the cofactor is nonzero. Hence this case is not possible.

Case 3: c2 = a2 + b2 and b ̸= 0. Solving it we get

ḡ = Cy
−2iα1
a+ib

(
a2(y2 − 1)2 + b2(y2 + 1)2

) i(a(α1−α2)+i(α1+α2)b)
2(a+ib)

× exp

(
a(α1 − α2) + i(α1 + α2)b

(a + ib)2
tan−1

(a(y2 − 1)

by2 + b

)

− 2(a(α1 + α2) + ib(α1 + α2))
√

a2 + b2

(a2 + b2)(a + ib)2
tanh−1

(√
a + iby√
ib − a

)

− i

(a2 + b2 − (a + ib)2y2)(a + ib)

(
4((α1 + α2 + α0y)a2

+ (α2(−2ib −
√

a2 + b2y) −
√

a2 + b2(α0 + α1y))a

+ b(byα0 + i
√

a2 + b2α0 − α2b + iα2

√
a2 + b2y + α1(b − i

√
a2 + b2y)))

))
,

where C is a non–zero constant. It is clear that f̄ must be a rational function in the
variable y. Clearly we must have

a(α1 − α2) + i(α1 + α2)b = 0, a(α1 + α2) + i(α1 + α2)b = 0

which yields α1 = α2 = 0. Then, again since f̄ must be a rational function in the
variable y, and using that α1 = α2 = 0 we must have

√
a2 + b2α0(a − ib) − α0(b

2 + 4a2)y = 0,

which clearly yields α0 = 0, i.e. α1 = α2 = α3 = 0, in contradiction with the fact
that the cofactor is nonzero. Hence this case is not possible.
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Case 4: c2 = a2 + b2 and b = 0. Solving it we get

ḡ = Cy− 2iα1
a (y2 − 1)− i(α2−α1)

a

× exp

(
− 2i(α0(|a| − ay) + (α1 + α2)(y|a| − a))

a2(y2 − 1)
+

2i(α1 − α2)|a|
a2

tanh−1 y

)
,

where C is a non–zero constant. It is clear that f̄ must be a rational function in the
variable y. Clearly we must have

α1 − α2 = 0, α0(|a| − ay) + (α1 + α2)(y|a| − a)),
−2iα1

a
= j,

for some non–negative integer j. This yields α2 = α1, α0 = 2|a|α1/a and α1 = ija/2.

Now we write f in sum of its homogeneous parts as f =
∑n

i=1 fi where each fi =
fi(x, y) is a homogeneous polynomial of degree i. Again, without loss of generality
we can assume that n > 0 and fn ̸= 0. Moreover, proceeding as in Case 1, fn = 0
must be an irreducible invariant algebraic curve of system (14) with b = 0 and with
cofactor K = ija

2
(x + y), i.e., β0 = 0, β1 = ija/2 and β2 = iaj/2. It follows from

Lemma 6 that j = 0 which yields that α1 = α2 = α3 = 0, in contradiction with the
fact that the cofactor is nonzero. Hence this case is not possible. �

Now we present a characterization under suitable assumptions of the algebraic
multiplicity of an invariant algebraic curve using the number of exponential factors.

We say that an invariant algebraic curve f = 0 of degree m of a vector field X has
algebraic multiplicity k if fk is a factor of the so-called extactic curve of X but fk+1

is not a factor of the extactic curve, where the extactic curve of X is

det




1 x y · · · xm xm−1y · · · ym

X (1) X (x) X (y) · · · X (xm) X (xm−1y) · · · X (ym)
...

...
... · · · ...

...
...

...
X l−1(1) X l−1(x) X l−1(y) · · · X l−1(xm) X l−1(xm−1y) · · · X l−1(ym)


 ,

where l is the number of elements in the basis {1, x, y, . . . , xm, xm−1y, . . . , ym}. For
more details on the definition and properties of the extactic curve, see [6].

Proposition 8. For a given irreducible invariant algebraic curve f = 0 of degree m
of X . Then f has algebraic multiplicity k if and only if the vector field has k − 1
exponential factors exp(gi/f

i), where gi is a polynomial of degree at most im and
(gi, f) = 1 for i = 1, . . . , k − 1.

Lemma 9. System (8) has no exponential factors.

Proof. Taking into account the possible multiplicity of the line of infinity, the possible
multiplicities of the finite invariant algebraic curves through Lemmas 3 and 7, and
the change of variables (7), if system (6) has exponential factors they must be of the
form

(17) exp(h), exp(h/(x2 + y2 − 1)k),

where h is a polynomial and k is a positive integer. We denote by β0 + β1x + β2y the
cofactor of one of these exponential factors.
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First we shall see that there are no exponential factors of the form exp(h) with h a
polynomial. From the definition of exponential factor, the left hand side of equality
(3) is zero on the singular points. Then, taking into account the study of the finite
singular points of system (6) done in the beginning of this section we have:

Case 1: b ̸= −1 and S > 0. In this case

β0 + β2

(−c +
√

c2 + 4(b + 1)

2(b + 1)

)
= 0,

β0 + β2

(−c −
√

c2 + 4(b + 1)

2(b + 1)

)
= 0,

β0 + β1

(−ac − b
√

S

a2 + b2

)
+ β2

(−bc + a
√

S

a2 + b2

)
= 0,

β0 + β1

(−ac + b
√

S

a2 + b2

)
+ β2

(−bc − a
√

S

a2 + b2

)
= 0,

where S = a2 + b2 − c2. Solving this system we get that β0 = β1 = β2 = 0 and thus
h must be a polynomial first integral, in contradiction with Lemma 3.

Case 2: b ̸= −1 and S = 0. In this case

β0 + β2

(−c +
√

c2 + 4(b + 1)

2(b + 1)

)
= 0,

β0 + β2

(−c −
√

c2 + 4(b + 1)

2(b + 1)

)
= 0,

β0 + β1

( −ac

a2 + b2

)
+ β2

( −bc

a2 + b2

)
= 0.

Solving this system we get that β0 = β1 = β2 = 0 and thus h must be a polynomial
first integral, in contradiction with Lemma 3.

Case 3: b = −1 and S > 0. In this case we have

β0 +
β2

c
= 0,

β0 + β1

(−ac +
√

S

a2 + 1

)
+ β2

(c + a
√

S

a2 + 1

)
= 0,

β0 + β1

(−ac −
√

S

a2 + 1

)
+ β2

(c − a
√

S

a2 + 1

)
= 0,

where S = a2 + 1 − c2. Solving this system we get that β0 = β1 = β2 = 0 and thus h
must be a polynomial first integral, in contradiction with Lemma 3.

Case 4: b = −1 and S = 0, i.e. b = −1 and c2 = 1 + a2. In this case

β0 +
β2

c
= 0, β0 − a

c
β1 +

β2

c
= 0.
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Solving this system we get that

β0 = −β2

c
, β1 = 0.

Working with system (9) of the proof of Lemma 3 and denoting by ĥ = ĥ(z, y) =
h(x, y) we obtain

(18) z
(z + 1

y
+y

)∂ĥ

∂z
+y

(z

y
+

ia

2

(z + 1

y
+y

)
− 1

2

(z + 1

y
−y

)
+ic

)∂ĥ

∂y
= β2

(
− 1

c
+y

)
.

Note that ĥ is a polynomial in the variable z with coefficients being rational functions
in the variable y. Now restricting equality (18) to z = 0 and denoting by h̄ = h̄(y) =

ĥ(0, y) we get
( ia

2
(1 + y2) − 1

2
(1 − y2) + icy

)dh̄

dy
= β2

(
− 1

c
+ y

)
.

Solving it we obtain that h̄(y) is equal to

2i (c2 + a − i) β2 tan−1

(
c + (a − i)y√
a2 − c2 + 1

)

(a − i)c
√

a2 − c2 + 1
− β2

2(a − i)

(
2 tan−1

(
y2 − 1

ay2 + 2cy + a

)

+i log
(
y4 + (4c2 − 2) y2 + 4ac (y2 + 1) y + a2 (y2 + 1)

2
+ 1

))
.

Since h̄(y) must be a rational function in the variable y, β2 = 0. So, β0 = β1 = β2 = 0
and thus h must be a polynomial first integral, in contradiction with Lemma 3. Hence,
there are no exponential factors of the form exp(h).

Now we shall see that there are no exponential factors of the form exp(h/(x2 +y2 −
1)k). In view of Proposition 8 it is enough to show it for k = 1 and h a polynomial
of degree one. Thus, we take h = γ0 + γ1x + γ2y. Substituting in (3) we get

(
(x2 + y2 − 1) + y(ax + by + c)

)
γ1 − x(ax + by + c)γ2 − 2x(γ0 + γ1x + γ2y)

= (β0 + β1x + β2y)(x2 + y2 − 1).

Solving it we get β0 = β1 = β2 = γ0 = γ1 = γ2 = 0. Thus, h = 0, which is not
possible. This concludes the proof of the lemma. �
Proof of Proposition 4. If system (6) has a Liouvillian first integral, then it has an
integrating factor of the form (5) where fi = 0 are the algebraic curves and Fj are
the exponential factors of system (6). In view of Lemmas 3 and 7 we have that
the unique invariant algebraic curve of system (6) is x2 + y2 − 1 = 0 (a Darboux
polynomial with cofactor 2x). Additionally, it follows from Lemma 9 that system (6)
has no exponential factors. In short, the unique possible integrating factor must be
of the form (x2 + y2 − 1)λ. From (4) we have

2λx = −2x + ay − bx, λ ∈ C,

which is a contradiction because a ̸= 0. Then, system (6) has no integrating factors
of the form (5).
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If system (6) has a first integral given by a function (5), from the above arguments
this first integral must be (x2 + y2 − 1)λ. Then X (x2 + y2 − 1)λ = 0 where X is the
vector field associated to system (6). So, we have 2λx(x2 + y2 − 1)λ = 0, i.e. λ = 0
in contradiction with the fact that (x2 + y2 − 1)0 = 1 is a first integral. Consequently
system (6) cannot have a Liouvillian first integral. �
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