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GLOBAL DYNAMICS OF THE BENOÎT SYSTEM

MAURÍCIO FIRMINO SILVA LIMA1 AND JAUME LLIBRE2

Abstract. In this paper we work with a two-degree polynomial differential
system in R3 related with the canard phenomena. We show that this system is
completely integrable, and we provide its global phase portrait in the Poincaré
ball using the Poincaré-Lyapunov compactification.

1. Introduction

We recall that the relevant canard phenomena were discorever dy the French
mathematicians E. Benôıt, J.C. Callot, F. Diener and M. Diener [4] in 1981 when
they studied the 2-dimensional van der Pol oscillator. These canard phenomena
are generically persistent under small parameter changes in singular perturbed dif-
ferential systems with two or more slow variables and one fast variable, see [2] and
also [8], [9], [3] and [10].

In the paper of Benôıt [2] of the year 1983 a slow–fast system in R3 was studied
with 2 slow and 1 fast variable. This paper becomes seminal because it leads to the
well–known mixed–mode oscillations investigated up to now. Choosing appropriate
weights, the main part of the vector field is the quasi–homogeneous part of degree 2
that exhibits the more interesting dynamics. It is precisely this quasi–homogeneous
part that we choose as the differential system to study in this paper. A reason
for looking at this quasi–homogeneous part comes from the geometric approach
of singular perturbations, due to Wechselberger and Szmolyan (see [10] and [9]),
where a blow–up (rescaling) is used and all terms of the vector field that do not
belong to this quasi–homogeneous part become of higher order after the rescaling.
Another reason is that up to know no body described the global dynamics of this
interesting system.

In short we consider the 3-dimensional polynomial differential system in R3 given
by

(1)

X ′ = −2Y,
Y ′ = 1,

Z ′ = −X + Z2

ε
.

Here ε is a nonzero real parameter and the prime denotes the derivative with respect
to the independent variable T that we call the time. This system in this paper will
be called the Benôıt system.

The objective of this paper is to describe the global dynamics of the Benôıt
system (1). For doing this, first we rescale all the variables and we eliminate the
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redundant parameter ε. After we will use the Poincaré compactification of R3. This
compactification identifies R3 with the interior of the unit ball in R3 and the infinity
of R3 with the boundary S2 of that ball, and the Benôıt system is analytically
extended to the closed ball which is called the Poincaré ball. This extended flow
has the sphere S2 invariant. We shall describe the phase of the Benôıt system in
the Poincaré sphere using the Poincaré–Lyapunov compactification, see for more
details section 2.

All the results that we shall present and prove will be for ε > 0. In fact it is not
difficult to see that the dynamics for the case ε < 0 can be studied in a similar way
to the case ε > 0. In fact, it is easy to check that the phase portrait of the Benôıt
system in the Poincaré ball for ε = ε∗ < 0 are the same that for ε = −ε∗ > 0 but
changing the sign of the z coordinate.

Doing the rescaling (X,Y, Z, T ) → (x, y, z, t) defined by X = εx, Y = ε1/2y,
Z = ε1/2z and T = ε1/2t the differential system (1) becomes

(2)
ẋ = −2y = P1(x, y, z),
ẏ = 1 = P2(x, y, z),
ż = −x− z2 = P3(x, y, z).

The strategy for providing the phase portrait in the Poincaré ball of the Benôıt
system is the following. First we study the Benôıt system (2) at infinity that
corresponds to analyze the extended Benôıt system restricted to the boundary S2.
Second we state two independent first integrals for the Benôıt system and we also
provide the explicit solutions of the Benôıt system in function of the new time t.
Third we describe its global dynamics in the Poincaré ball. We shall see that all
the orbits of the Benôıt system will have their α− and ω−limit at infinity.

The main results of this paper are the following.

Proposition 1. The extended Benôıt system at infinity has as equilibrium points,
at the Poincaré-Lyapunov sphere, the end of the x-axis (which are saddle-nodes)
and z-axis (which are hyperbolic nodes). Moreover the phase portrait of the extended
Benôıt system on the Poincaré-Lyapunov sphere is represented, in Figure 1.

x
y

z

Figure 1. Phase portrait of the Benôıt system at the Poincaré-
Lyapunov sphere at infinity.

Proposition 1 is proved in section 3.
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Proposition 2. The Benôıt system is completely integrable having the following
two independent first integrals

H1 = x+ y2
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The first integral H1 is well known (see [2]), but as far as we know the second
integral H2 is new.

Here W1(µ, ν, z) and W2(µ, ν, z) represent the Whittaker functions that are two
independent solutions of the differential equation

ÿ +

(
−1

4
+

µ

ν
+

1
4 − ν2

z2

)
y = 0.

They can be defined in terms of the Hypergeometric and Kummer functions in the
following way:

W2(µ, ν, z) = e−z/2e1/2+νH

([
1

2
+ ν − µ

]
, [1 + 2ν] , z

)
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and

W1(µ, ν, z) = e−z/2e1/2+νK

(
1

2
+ ν − µ, 1 + 2ν, z

)
.

For more details in these functions see for instance [1].

Proposition 3. The solution (x(t), y(t), z(t)) of the Benôıt system satisfying (x(0),
y(0), z(0)) = (x0, y0, z0) ∈ R3 is given by x(t) = −t2 − y0t+ x0, y(t) = t+ y0, and
z(t) is equal to
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Corollary 4. All the orbits of the Benôıt system are unbounded in forward and
backward time.

Theorem 5. The possible orbits of the Benôıt system restricted to the level H1 = h1

are of three types:

(i) Disconnecting orbits: homoclinic orbits to the equilibrium point at infinity
(−1, 0, 0) ∈ S2.

(ii) Intermediate orbits: heteroclinic orbits going from the equilibrium (0, 0, 1) ∈
S2 to the equilibrium (−1, 0, 0) ∈ S2, or going from the equilibrium (−1, 0, 0) ∈
S2 to the equilibrium (0, 0,−1) ∈ S2.

(iii) Passage orbits: heteroclinic orbits going from the equilibrium (0, 0, 1) ∈ S2
to the equilibrium (0, 0,−1) ∈ S2.

The three possible configurations of the orbits are drawn in Figure 2.
Moreover all these three possible types appear in the Benôıt system but in different

levels of H1.

Propositions 2 and 3 and Corollary 4 are proved in section 4, and Theorem 5 is
proved in section 5.

In the next section we present the Poincaré-Lyapunov compactification in R3.



BENOÎT SYSTEM 5

(0, 0, 1) ∈ S2(0, 0, 1) ∈ S2

(0, 0, 1) ∈ S2

(0, 0,−1) ∈ S2(0, 0,−1) ∈ S2

(0, 0,−1) ∈ S2

(−1, 0, 0) ∈ S2(−1, 0, 0) ∈ S2

(−1, 0, 0) ∈ S2

z

x

y

(a) (b)

(c)

Figure 2. Possible phase portrait of the Benôıt system restricted
to the compactified level H1 = h1. Picture (a) has a continuum
of orbits of disconnecting type. Picture (b) has a unique orbit of
disconnecting type. Picture (c) has no orbits of disconnecting type.

2. Poincaré and Poincaré-Lyapunov compactification in R3

A polynomial vector field X in R3 can be extended to a unique analytic vec-
tor field on the sphere S2. The technique for doing such an extension is called the
Poincaré compactification and allows to study a polynomial vector field in a neigh-
borhood of infinity, which corresponds to the equator S2 of the sphere S3. Poincaré
introduced this compactification for polynomial vector fields in R2. Its extension to
R3 can be found in [5]. For completeness we will give here a small introduction on
this technic as it appears in [5].
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In R3 we consider the polynomial differential system

ẋ = P1(x, y, z), ẏ = P2(x, y, z), ż = P3(x, y, z),

or equivalently its associated polynomial vector field X = (P1, P2, P3). The degree
m of X is defined as m = max (deg(Pi); i = 1, 2, 3) .

Let S3 = {y = (y1, y2, y3, y4) ∈ R4; ‖y‖ = 1} be the unit sphere in R4, S+ = {y ∈
S3; y4 > 0} and S− = {y ∈ S3; y4 < 0} be the northern and southern hemispheres
of S3 respectively. The tangent space to S3 at the point y is denoted by TyS3. Then
the tangent plane

T(0,0,0,1)S3 = {(x1, x2, x3, 1) ∈ R4; (x1, x2, x3) ∈ R3}

is identified with R3.
We consider the central projections f+ : T(0,0,0,1)S3 → S+ and f− : T(0,0,0,1)S3 →

S− defined by f±(x) = ±(x1, x2, x3, 1)/∆x, where ∆(x) =

(
1 +

3∑

i=1

x2
i

)1/2

. Through

these central projection R3 is identified with the northern and southern hemi-
spheres. The equator of S3 is S2 = {y ∈ S3; y4 = 0}. Clearly S2 can be identified
with the infinity of R3.

The maps f+ and f− define two copies of X on S3, one Df+ ◦X in the northern
hemisphere and the other Df− ◦X in the southern one. Denote by X̄ the vector
field on S3 \ S2 which, restricted to S+ coincides with Df+ ◦ X and restricted to
S− coincides with Df− ◦X.

The expression for X̄(y) on S+ ∪ S− is

X̄(y) = y4




1− y21 −y2y1 −y3y1
−y1y2 1− y22 −y3y2
−y1y3 −y2y3 1− y23
−y1y4 −y2y4 −y3y4







P1

P2

P3


 ,

where Pi = Pi(y1/|y4|, y2/|y4|, y3/|y4|). Written in this way X̄(y) is a vector field
in R4 tangent to the sphere S3.

Now we can analytically extend the vector field X̄(y) to the whole sphere S3 by
considering p(X) = ym−1

4 X̄(y), where m is the degree of X. This extended vector
field p(X) is called the Poincaré compactification of X on S3.

As S3 is a differentiable manifold, in order to compute the expression for p(X)
we can consider the eight local charts (Ui, Fi), (Vi, Gi), where Ui = {y ∈ S3; yi > 0}
and Vi = {y ∈ S3; yi < 0} for i = 1, 2, 3, 4; the diffeomorphisms Fi : Ui → R3 and
Gi : Vi → R3 for i = 1, 2, 3, 4 are the inverses of the central projections from the
origin to the tangent planes at the points (±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0) and
(0, 0, 0,±1), respectively. Therefore Fi(y) = −Gi(y). Now we do the computations
on U1. Suppose that the origin (0, 0, 0, 0), the point (y1, y2, y3, y4) ∈ S3 and the point
(1, z1, z2, z3) in the tangent plane to S3 at (1, 0, 0, 0) are collinear. Then we have
1/y1 = z1/y2 = z2/y3 = z3/y4, and consequently F1(y) = (y2/y1, y3/y1, y4/y1) =
(z1, z2, z3) defines the coordinates on U1. As

DF1(y) =




−y2/y
2
1 1/y1 0 0

−y3/y
2
1 0 1/y1 0

−y4/y
2
1 0 0 1/y1



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and ym−1
4 = (z3/∆z)

m−1
, the analytical vector field p(X) becomes

zm3
(∆z)m−1

(−z1P1 + P2,−z2P1 + P3,−z3P1) ,

where Pi = Pi (1/z3, z1/z3, z2/z3) .
In a similar way we can deduce the expression of p (X) in U2 and U3. These are

zm3
(∆z)m−1

(−z1P2 + P1,−z2P2 + P3,−z3P2) ,

where Pi = Pi(z1/z3, 1/z3, z2/z3) in U2, and

zm3
(∆z)m−1

(−z1P3 + P1,−z2P3 + P2,−z3P3) ,

where Pi = Pi(z1/z3, z2/z3, 1/z3) in U3.
The expression for p(X) in U4 is zm+1

3 (P1, P2, P3) where Pi = Pi(z1, z2, z3). The
expression for p(X) in the local chart Vi is the same as in Ui multiplied by (−1)m−1.

When we work with the expression of the compactified vector field p(X) in the

local charts we shall omit the factor 1/ (∆z)
m−1

.We can do that through a rescaling
of the time variable.

We remark that all the points on the sphere at infinity S2 in the coordinates of
any local chart have z3 = 0.

In what follows we shall work with the orthogonal projection of p(X) from the
closed northern hemisphere to y4 = 0, and we continue denoting this projected
vector field by p(X). Note that the projection of the closed northers hemisphere
is a closed ball B of radius one, whose interior is diffeomorphic to R3 and whose
boundary S2 corresponds to the infinity of R3. Of course p(X) is defined in the
whole closed ball B in such a way that the flow on the boundary is invariant. The
new vector field on B is called the Poincaré compactification of X, and B is called
the Poincaré ball, and ∂B is called the Poincaré sphere at infinity.

The singularities at infinity in a Poincaré compactification can be quite degen-
erate, and sometimes there is the possibility of eliminate this degeneracy doing the
so called Poincaré–Lyapunov compactification. This compactification results to be
an extension of the Poincaré compactification presented before, in the sense that
we no longer keep the construction homogeneous, but make it quasihomogeneous.
In this context the construction is very similar to the one done in the Poincaré
compactification case and the representation of the vector field in the local charts
Ui and Vi are obtained in the following way: in the local chart U1 we consider

the coordinates z1, z2, z3 where x = 1/zα3 , y = z1/z
β
3 , z = z2/z

γ
3 . For the lo-

cal charts U2 and U3 we take respectively x = z1/z
α
3 , y = 1/zβ3 , z = z2/z

γ
3 and

x = z1/z
α
3 , y = z2/z

β
3 , z = 1/zγ3 . Observe that the difference between this new

compactification and the Poincaré compactification is the presence of the constants
(α, β, γ) for some well choosing positive integer numbers. The correspondent ball B
obtained in this extended version is called Poincaré–Lyapunov ball, and its frontier
∂B (that corresponds to the infinity of R3) is called the Poincaré–Lyapunov sphere
at infinity.

It is possible that for a system for which the usual Poincaré compactification has
a non–elementary singular point at infinity, for well chosen α, β and γ, the Poincaré–
Lyapunov compactification has only elementary singular points at infinity, or even
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no singular points at infinity at all. For more details in this construction see for
instance chapters 5 and 9 of [6].

3. Dynamical behavior of Benôıt system at infinity

In this section we will provide the dynamics of the Benôıt system at infinity.
For doing this we will use the Poincaré-Lyapunov compactification with weights
(α, β, γ) = (1, 2, 1).

In order to understand the behavior of the flow at the Poincaré-Lyapunov sphere
we have to describe the flow in each one of the six local charts Ui and Vi for
i = 1, 2, 3.

3.1. Local chart U1. We call the coordinates in this chart by (z1, z2, z3). In order
to obtain the expression of the vector field in this chart we must take x = 1/z3,
y = z1/z

2
3 and z = z2/z3 and, after this change, multiply the resultant vector

field by z3. After doing this the Poincaré-Lyapunov compactification of the Benôıt
system in the local chart U1 is given by

(3) ż1 = 4z21 + z23 , ż2 = −z3 − z22 + 2z1z2, ż3 = 2z1z3.

Restricting to the points of the Poincaré-Lyapunov sphere that correspond to
the points at infinity (z3 = 0) the previous system becomes

ż1 = 4z21 , ż2 = −z2(z2 − 2z1), ż3 = 0.

The last equation reflects the fact that the infinity is invariant under the flow.
From this system we see that the Benôıt system has a unique equilibrium point at
the origin of the chat U1. Moreover this equilibrium point is degenerate and, after
performing a blowing-up, we have the phase portrait give in Figure 3.

z1

z2

Figure 3. The phase portrait in the local chart U1 at infinity.

Observe that the equilibrium point (0, 0, 0) is located at the end of the positive
part of the x-axis.

3.2. Local chart U2. In a similar way the Poincaré-Lyapunov compactification of
the Benôıt system in the local chart U2 is

ż1 = −4− z1z
2
3 , ż2 = −2z1z3 − z2(2z2 + z23), ż3 = −z43 .

At infinity (z3 = 0) we have

ż1 = −4, ż2 = −2z22 , ż3 = 0.
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This system has no equilibrium point and its dynamics is given in Figure 4.

z1

z2

Figure 4. The phase portrait in the local chart U2 at infinity.

Note that in this figure the invariant line z2 = 0 is associated to half of the
equator of the Poincaré-Lyapunov sphere that is located at the end of the half-
plane π+ = {(x, y, 0), y ≥ 0}.
3.3. Local chart U3. In the local chart U3 the Poincaré-Lyapunov compactification
of the Benôıt system is given by

ż1 = z1 − 2z2 + z21z3, ż2 = 2z2(1 + z1z3) + z33 , ż3 = z3(1 + z1z3).

Restricted to z3 = 0 we obtain

ż1 = z1 − 2z2, ż2 = 2z2, ż3 = 0.

So this system has a unique equilibrium point in z3 = 0 at the origin of the
local chart U3. Moreover, restricted to the invariant set z3 = 0 we have a hyper-
bolic node that is unstable. Its phase portrait restrict to z3 = 0 is given in Figure 5.

z1

z2

Figure 5. The local phase portrait at the origin of the local chart
U3 restricted to S2.
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Remark 6. We observe that the flows in the Vi charts for i = 1, 2, 3 are the same
than the ones in the respective Ui charts for i = 1, 2, 3 but reversing the time because
the compactified vector field in Vi coincides with the vector field in Ui multiplied by
−1 for each i = 1, 2, 3.

From the subsections 3.1-3.3 it follows the proof of Proposition 1.

4. First Integrals of Benôıt system, general solution and local
dynamics inside the levels of H1

In this section we will prove Proposition 2 that shows that the Benôıt system
admits two independent first integrals. Moreover we prove Proposition 3 and Corol-
lary 4 where we give an explicit form of the general solution of the Benôıt system.
We also study the local phase portrait at the equilibrium point on the compactified
levels of the first integral H1.

Proof of Proposition 2. First dividing the first and third equation of the Benôıt
system by the second one we obtain the equivalent system

dx

dy
= −2y,

dz

dy
= −x− z2.

Solving this new system we obtain

x(y) = −y2 +H1,

z(y) = − 2H2W1

(
H1
4

+ 1, 1
4
, y2

)

y(H2W1

(
H1
4
, 1
4
, y2

)
+W2

(
H1
4
, 1
4
, y2

)
)
− (H2 − 2H2y

2 +H1H2)W1

(
H1
4
, 1
4
, y2

)

2y(H2W1

(
H1
4
, 1
4
, y2

)
+W2

(
H1
4
, 1
4
, y2

)
)

+
(3 +H1)W2

(
H1
4

+ 1, 1
4
, y2

)

2y(H2W1

(
H1
4
, 1
4
, y2

)
+W2

(
H1
4
, 1
4
, y2

)
)
− (1− 2y2 +H1)W2

(
H1
4
, 1
4
, y2

)

2y(H2W1

(
H1
4
, 1
4
, y2

)
+W2

(
H1
4
, 1
4
, y2

)
)
.

Solving the above system with respect to H1 and H2 we obtain the two first
integrals given in the statement of Proposition 2. Since their gradients are linearly
independent except in a Lebesgue measure set of points of R3, these two first
integrals are independent. �

Proof of Proposition 3. Solving the first and second equation of the Benôıt system
with initial conditions x(0) = x0 and y(0) = y0, we get x(t) = −t2 − y0t + x0 and
y(t) = t+ y0.

Substituting these expressions into the third equation of the Benôıt system we
obtain ż = t2 + y0t − x0 − z2. Now solving this Riccati differential equation with
initial condition z(0) = z0, we obtain the expression given in the statement of
Proposition 3. �

Before proving Corollary 4 we give a general definition of the α− and ω−limit
set. It is well known that any solution ϕ(t) = (x(t), y(t), z(t)) given in Proposition
3 has a maximal interval of definition (α, ω) with −∞ ≤ α < 0 and 0 < ω ≤ +∞.
We say that a point y is in the α−limit set of the orbit ϕ(t) if there exists a strictly
decreasing sequence of times (tn)n∈N ⊂ (α, ω) such that tn → α when n → ∞ and
ϕ(tn) → y. In this case we denote y ∈ Lα(ϕ), and call Lα(ϕ) the α−limit set of
the orbit ϕ(t). In the same way we say that a point y is in the ω−limit set of the
orbit ϕ(t) if there exists a strictly increasing sequence of times (tn)n∈N ⊂ (α, ω)



BENOÎT SYSTEM 11

such that tn → ω when n → ∞ and ϕ(tn) → y. In this case we denote y ∈ Lω(ϕ),
and call Lω(ϕ) the ω−limit set of the orbit ϕ(t).

Remark 7. It is known (see Theorem 2.1 of [7]) that when in the maximal interval
of definition α > −∞ (resp. ω < +∞), then the solution ϕ(t) goes to the boundary
of the phase space when t → α (resp. when t → ω). In this case all the point in
Lα(ϕ) (resp. Lω(ϕ)) are in the boundary of the phase space.

Proof of Corollary 4. Note that if the solution ϕ(t) = (x(t), y(t), z(t)) given in
Proposition 3 is such that its maximal interval of definition (α, ω) has ω = +∞,
it follows from the first and second coordinates of the solution ϕ(t) that ϕ(t) is
unbounded in forward time. On the other hand if ω < +∞ it implies from Remark
7 that the solution goes to the boundary of the phase space when t → ω. But as the
phase portrait of the Benôıt system is the whole R3 it follows that also in this case
the solution is unbounded in forward time. Of course the same argument can be
applied in backward time and we can conclude that all the solutions of the Benôıt
system are unbounded in forward and backward times. �

The next result describes the geometry of the level sets of the first integral H1

in R3 and at infinity.

Proposition 8. For each h1 ∈ R the level surface H1 = h1 is a parabolic cylinder in
R3. Moreover these parabolic cylinders reach the infinity in the half great circle of the
Poincaré sphere that is located at the infinity of the half-plane π̂− = {(x, 0, z); x ≤
0}.
Proof. It is easy to see that for each h1 ∈ R the surface H1 = h1 is a parabolic
cylinder in R3. To see how these cylinders arrive at infinity we have to see the form
of these cylinders in the local charts V1, U3 and V3.

In the local chart V1 the level surface H1 = h1 is given by z23 + z21 − h1z
4
3 = 0.

So at infinity (z3 = 0) we have z21 = 0. So we obtain points of the form (0, z2, 0)
that at infinity in this local chart correspond to the end of the half-plane π̂− =
{(x, 0, z), x ≤ 0}.

Now in the local chart U3 we have z1z
3
3 + z22 − h1z

4
3 = 0 that at infinity becomes

z2 = 0. So the parabolic cylinder x + y2 = h1 at infinity in U3 is contained in
the straight line (z1, 0, 0). In this way the parallel lines contained in the parabolic
cylinders reach the infinity in the same point, the origin of the local chart U3.

The analysis in the local chart V3 follows in a similar way. �

The dynamics of the Benôıt system restricted to the levels of the H1 first integral
will be provided studying the local behavior around the equilibria that are in each
level. For this purpose we will use the next theorem that describes the topological
type of degenerated singularities that have a single non-zero eigenvalue in the plane.
This kind of singularities will be called semi-hyperbolic singularities. A proof of this
result can be found in Theorem 2.19 of [6].

Theorem 9. Let (0, 0) be an isolated singularity of the system

ẋ = X1(x, y),
ẏ = y +X2(x, y),

where X1 and X2 are analytic in a neighborhood of the origin and have expansions
that begin with second degree terms in x and y. Let y = f(x) be the solution of the
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equation y +X2(x, y) = 0 in the neighborhood of (0, 0), and assume that the series
expansion of the function g(x) = X1(x, f(x)) has the form g(x) = amxm + . . . ,
where m ≥ 2, am 6= 0. Then

(i) If m is odd and am > 0, then (0, 0) is a topological node.
(ii) If m is odd and am < 0, then (0, 0) is a topological saddle, two of whose

separatrices tend to (0, 0) in the directions 0 and π, the other two in the
directions π/2 and 3π/2.

(iii) If m is even, then (0, 0) is a saddle-node, i.e. a singularity whose neighbor-
hood is the union of one parabolic and two hyperbolic sectors, two of whose
separatrices tend to (0, 0) in the directions π/2 and 3π/2 and the other in
the direction 0 and π according to am < 0 or am > 0.

The corresponding indices are +1, −1, 0 so they may serve to distinguish the
three types.

Going back to the Benôıt system observe that for each h1 the surface H1 = h1

has in the Poincaré sphere three singular points where two of them are hyperbolic
nodes (the equilibria (0, 0, 1) ∈ S2 and (0, 0,−1) ∈ S2) and one is semi-hyperbolic
(the equilibrium (−1, 0, 0) ∈ S2).

Now we have to study the local dynamics of the semi-hyperbolic singularity at
the equator. This dynamics will be provided by the next result.

Proposition 10. For each fixed h1 the semi-hyperbolic singularity (−1, 0, 0)S2 in
the level H1 = h1 has two nodal sectors and two hyperbolic sectors. More precisely
the local phase portrait at (−1, 0, 0) ∈ S2 and restricted to H1 = h1 is described in
Figure 6.

h1 < 0 h1 = 0 h1 > 0

(a) (b) (c)

∞∞∞

Figure 6. Local phase portrait at the equilibrium point
(−1, 0, 0) ∈ S2 on the level H1 = h1. In the picture we have in-
dicated with the symbol ∞ the local invariant straight line of the
parabolic cylinder at infinity. Picture (b) is the origin in coordi-
nates z1, z2 and picture (a) (resp. (c)) is the origin in coordinates
z2, θ see (14) (resp. (10)).

Proof. In order to study the local dynamics in a neighbourhood of (−1, 0, 0) ∈ S2
on the level H1 = h1 we consider the local chart V1. In this chart we take the
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coordinates given by the Poincaré compactification

x =
1

z3
, y =

z1
z3

, z =
z2
z3

.

Observe that the dynamics at the end of the half-plane π̂− = {(x, 0, z); x ≤
0} in these coordinates is the same one obtained using the Poincaré-Lyapunov
compactification. So H1 takes the form

(4) z3 + z21 − h1z
2
3 = 0.

Moreover the dynamics in the local chart V1 is given by

(5)
ż1 = −z3(2z

2
1 + z3) = f1(z1, z2, z3),

ż2 = z22 + z3 − 2z1z2z3 = f2(z1, z2, z3),
ż3 = −2z1z

2
3 = f3(z1, z2, z3).

Note that the equilibrium at the infinity (−1, 0, 0) ∈ S2 is represented in this local
chart by (0, 0, 0).

Now we will divide the study in three cases depending on h1.

Case 1: h1 = 0 (parabolic cylinder). In this case (4) takes the form z3 + z21 = 0.
Substituting z3 = −z21 in (5) we obtain that the dynamics in the level H1 = 0 is
given by

(6)
ż1 = f1(z1, z2,−z21) = z41 ,
ż2 = f2(z1, z2,−z21) = z22 − z21 + 2z31z2.

In this differential system the origin (0, 0) has the eigenvalue 0 with multiplicity
2. In order to understand the behavior of the flow of (6) in a neighborhood of
(0, 0) we will use a polar blow-up. So doing the change of variables z1 = r1 cos θ1,
z2 = r1 sin θ1 and the rescaling of the time s = r1t, system (6) becomes

(7)
r′1 = r1

(
r21 cos

5 θ1 + 2r21 sin
2 θ1 cos

3 θ1 − sin θ1 cos
2 θ1 + sin3 θ1

)
,

θ′1 = cos θ1
(
r21 sin θ1 cos

3 θ1 − cos2 θ1 + sin2 θ1
)
,

where the prime denotes the derivative with respect to the new time s.
Now we study the zeroes of (7) restricted to r1 = 0. For this we solve θ′1 = 0,

r1 = 0 that implies that

θ1 = ±π

4
,±π

2
,±3π

4
.

We must analyze the topological type of each one of these singularities.

Calling X the vector field (7) we have for θ∗1 =
π

4

DX
(
0,

π

4

)
=

(
0 0

0
√
2

)
.

So
(
0,

π

4

)
is a semi-hyperbolic singularity of (7) and to decide about its topological

type we use Theorem 9.

By a translation of the form R1 = r1 and φ1 = θ1−
π

4
and a time reparametriza-

tion τ =
√
2 s we obtain
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Ṙ1 =
1

4
(cosφ1 − cos(3φ1) + sinφ1 + sin(3φ1))R1+

√
2

2

(
cos5

(
φ1 +

π
4

)
+2 sin2

(
φ1 +

π
4

)
cos3

(
φ1 +

π
4

))
R3

1+O
(
R4

1

)
=X1(R1, φ1),

φ̇1 =
1

4
(− cosφ1 + cos(3φ1) + sinφ1 + sin(3φ1))

+
1√
2
cos4

(
φ1 +

π
4

)
sin
(
φ1 +

π
4

)
R2

1 +O
(
R4

1

)
= X̃2(R1, φ1),

and the dots denotes derivative with respect to τ.
Expanding X̃2(R1, φ1) in Taylor series of φ1around 0 we obtain X̃2(R1, φ1) =

φ1 +X2(R1, φ1), where X2 has terms of second order in R1 and φ1. Solving φ1 +
X2(R1, φ1) = 0 for φ1 as a function of R1 in a neighborhood of 0 we obtain

φ1 = −1

8
R2

1 +O
(
R4

1

)
= f(R1).

Substituting in X1(R1, φ1) we have

g(R1) = X1(R1, f(R1)) =
1

4
R3

1 +O
(
R4

1

)
.

Using the notation of Theorem 9 we have that m = 3, and a3 =
1

4
> 0. It follows

from Theorem 9(i) that (0, 0) is a topological node.

Repeating this procedure for the equilibrium
(
0,−π

4

)
, also semi-hyperbolic, we

get

g(R1) = −1

4
R3

1 +O
(
R4

1

)
.

Then Theorem 9 implies that the equilibrium is a topological saddle.

Consider now the equilibria
(
0,±π

2

)
. For these equilibria the Jacobian matrix

satisfies

DX
(
0,±π

2

)
=

(
±1 0
0 ∓1

)
.

So these two equilibria are hyperbolic saddles with expanding (resp. contracting)

radial direction for
(
0,

π

2

) (
resp.

(
0,−π

2

))
.

Taking into account the equilibria

(
0,±3π

4

)
we have

DX

(
0,±3π

4

)
=

(
0 0

0 ±
√
2

)
,

and so both equilibria are semi-hyperbolic. Therefore we can use again Theorem 9
for deciding about their topological type.

Similar calculations to the ones done for the equilibrium
(
0,

π

4

)
show that for

(
0,

3π

4

)
the function g is given by g(R1) = −R2

1

8
+ O

(
R4

1

)
, and f(R1) = −R3

1

4
+

O
(
R4

1

)
, that implies from Theorem 9 that

(
0,

3π

4

)
is a topological saddle. Also
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(
0,−3π

4

)
is such that g(R1) = −1

8
R2

1 + O
(
R4

1

)
, and f(R1) =

R3
1

4
+O

(
R4

1

)
, and

from Theorem 9 it follows that

(
0,−3π

4

)
is a topological node.

Finally for the case h1 = 0 the local phase portrait after a polar blow-up is given
in Figure 7.

Figure 7. The radial blow-up at the equilibrium (−1, 0, 0) ∈ S2
restricted to the level H1 = 0.

This implies that the local phase portrait of system (6) in a neighborhood of
(0, 0) is given by Figure 6 (b).

For the next steps consider h1 6= 0. Here we can write (4) as

(8)
z21

− 1
4h1

+

(
z3 − 1

2h1

)2

1
4h2

1

= 1.

Equation (8) implies that the invariant surfaces H1 = h1 are represented in the
local chart V1 by a hyperbolic cylinder if h1 > 0, or by an elliptic cylinder if h1 < 0.

Case 2: h1 > 0 (hyperbolic cylinder). In this case equation (8) becomes

(9) −z21
a2

+
(z3 − b)

2

b2
= 1

where a =
√

1
4h1

and b = 1
2h1

.

Performing the change of coordinates

(10) z1 = ar sinh θ, z2 = z2 and z3 = b− br cosh θ

system (5) becomes

(11)

ṙ =
b

a
(r cosh θ − 1)

(
2a2r2 +

(
b− 2a2

)
r cosh θ − b

)
sinh θ,

ż2 = z22 + 2abrz2(r cosh θ − 1) sinh θ + b− br cosh θ,

θ̇ = − b

2ar
(r cosh θ − 1)

(
r
(
2a2 + b+

(
b − 2a2

)
cosh(2θ)

)
− 2b cosh θ

)

and (9) is given by r2 = 1.
Observe that the equilibrium (z1, z2, z3) = (0, 0, 0) in the local chart V1 now

is given, in the new coordinates by (r, z2, θ) = (1, 0, 0). As we want to study the
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dynamics in a neighborhood of (1, 0, 0) restricted to the level surface r = 1 we can
restrict to the reduced system

ż2 = z22 + 2abz2(cosh θ − 1) sinh θ + b− b cosh θ,

θ̇ =
4b

a

(
2a2 +

(
2a2 − b

)
cosh θ

)
sinh4 (θ/2) .

Now we have to investigate the topological type of the equilibrium (0, 0) of this
system. This equilibrium has all the eigenvalues zero, and so we must use the
blow-up technic again. Taking z2 = r1 cos θ1 and θ = r1 sin θ1 the previous system
becomes
(12)
ṙ1 = 8ab sin θ1 sinh

4
(
r1
2 sin θ1

)

+cos θ1
(
r21 cos

2 θ1 + abr1(sinh(2r1 sin θ1)− 2 sinh(r1 sin θ1)) cos θ1 + b
)

− b

a
cosh(r1 sin θ1)

(
4
(
b− 2a2

)
sin θ1 sinh

4
(
1
2r1 sin θ1

)
+ a cos θ1

)
,

θ̇1 =
4b

ar1
cos θ1

(
2a2 +

(
2a2 − b

)
cosh(r1 sin θ1)

)
sinh4

(
1
2r1 sin θ1

)
−r1 sin θ1 cos

2(θ1)

− sin θ1
r1

(2abr1(cosh(r1 sin θ1)− 1) sinh(r1 sin θ1) cos θ1 + b−b cosh(r1 sin θ1)) .

Expanding both equations of system (12) in Taylor series of r1 and rescaling s = r1t,
system 12 writes

r′1 =

(
cos3 θ1 −

b cos θ1 sin
2 θ1

2

)
r1 +O

(
r31
)
,

θ′1 =
b sin3 θ1 − 2 cos2 θ1 sin θ1

2
+

(
b sin5 θ1

24
− b2 cos θ1 sin

4 θ1
4a

)
r21 +O

(
r31
)
,

where the prime denotes derivative with respect to the new time s.
Now, as in the case h1 = 0, we have to study the zeroes of this system restricted

to r1 = 0. Solving θ′1 = 0 and r1 = 0 we get

θ1 = 0, arctan

√
2

b
, π − arctan

√
2

b
, π, π + arctan

√
2

b
, − arctan

√
2

b
.

Again we have to study each one of these equilibria separately in order to obtain
the dynamics in a neighborhood of (0, 0).

We begin with the equilibrium (r∗1 , θ
∗
1) = (0, 0) of the previous system. For this

equilibrium we have DX(0, 0) =

(
1 0
0 −1

)
. So (0, 0) is a hyperbolic saddle with

expanding radial direction. For (r∗1 , θ
∗
1) = (0, π) we obtain DX(0, π) =

(
−1 0
0 1

)

and this equilibrium is also a hyperbolic saddle but with contracting radial direction.

Take now (r∗1 , θ
∗
1) =

(
0, arctan

√
2
b

)
. HereDX

(
0, arctan

√
2
b

)
=

(
0 0
0 2√

2+b
b

)
.

And as in case 1 we have a semi-hyperbolic equilibrium point. So we use one more
time Theorem 9 for deciding about the topological type of this singularity.



BENOÎT SYSTEM 17

By a translation of the form r1 = R1, θ1 = φ1 + arctan
√

2
b and the time

reparametrization τ =
√

2+b
b t we find

R′
1 = X1(R1, φ1),

φ′
1 = φ1 +X2(R1, φ2),

where

X1(R1, φ1) = − b
4

√
b+2
b cos

(
φ1 + arctan

√
2
b

)
sin2

(
φ1 + arctan

√
2
b

)
R1

+ 1
2

√
b+2
b cos3

(
φ1 + arctan

√
2
b

)
R1 +O

(
R3

1

)
,

and φ1 +X2(R1, φ2) is

1
4

√
b+2
b

(
b sin3

(
φ1 + arctan

√
2
b

)
− 2 cos2

(
φ1 + arctan

√
2
b

)
sin

(
φ1 + arctan

√
2
b

))

− b
48a

√
b+2
b

sin4
(
φ1 + arctan

√
2
b

)(
6b cos

(
φ1 + arctan

√
2
b

)
−a sin

(
φ1 + arctan

√
2
b

))
R2

1

+O
(
R4

1

)
.

Solving φ1 +X2(R1, φ2) = 0 for φ1 as a function of R1 in a neighborhood of 0 we
have

φ1= f(R1) = −b
(
a
√
2b− 6b

)

12a(2 + b)2
R2

1+

b
(
−320(b+ 2)a3+

√
2
b (9b− 2)a2+40b(5b+ 16)a+ 30

√
2(5b− 2)b5/2

)

480a2(b + 2)4
R4

1

+O
(
R5

1

)

and so

g(R1) = X1(R1, f(R1)) = − b− 4a2

2a(b+ 2)
√

2
b

R3
1 +O

(
R4

1

)
.

Now observe that a3 = −
(
b− 4a2

)

2a(b+ 2)
√

2
b

> 0 because h1 > 0. So from Theorem 9

(
0, arctan

√
2
b

)
is a topological node.

It is not difficult to see that for the equilibrium
(
0,− arctan

√
2
b

)
we have

DX
(
0,− arctan

√
2
b

)
=

(
0 0
0 2√

2+b
b

)
, and in a similar way we obtain for this

equilibrium g(R1) = X1(R1, f(R1)) =
b− 4a2

2a(b+ 2)
√

2
b

R3
1 +O

(
R4

1

)
. From Theorem 9

we get that
(
0,− arctan

√
2
b

)
is a topological saddle.

Consider now the equilibrium
(
0, π + arctan

√
2
b

)
. Here we have

DX
(
0, π + arctan

√
2
b

)
=

(
0 0
0 − 2√

2+b
b

)
. Similar calculations show that for this
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case we obtain

φ1 = f(R1) = −b
(
a
√
2b− 6b

)

12a(2 + b)2
R2

1

+
b
(
−320(b+ 2)a3 +

√
2
b (9b− 2)a2 + 40b(5b+ 16)a+ 30

√
2(5b− 2)b5/2

)

480a2(b+ 2)4
R4

1

+O
(
R5

1

)
,

and

g(R1) = X1(R1, f(R1)) = − b− 4a2

2a(b+ 2)
√

2
b

R3
1 +O

(
R5

1

)
.

As a3 = − b− 4a2

2a(b+ 2)
√

2
b

> 0 for h1 > 0 it follows from Theorem 9 that the equilib-

rium
(
0, π + arctan

√
2
b

)
is a topological node. In the same way we can show that

the equilibrium
(
0, π − arctan

√
2
b

)
is a topological saddle.

All together for the case h1 > 0 the local phase portrait after a polar blow-up is
given in Figure 8.

Figure 8. The radial blow-up at the equilibrium (−1, 0, 0) ∈ S2
restricted to the level H1 = h1 > 0.

So the dynamics restricted to the level H1 = h1 in a neighborhood of the equi-
librium at infinity (−1, 0, 0) ∈ S2 is given by Figure 6(c).

Case 3: h1 < 0 (elliptic cylinder). In this case equation (8) becomes

(13)
z21
a2

+
(z3 − b)

2

b2
= 1.

Here performing a change of coordinates of the form

(14) z1 = ar cos θ, z2 = z2 and z3 = b+ br sin θ

we obtain a system very near to the system studied in case 2. The proof for this
case is very close to the proof of case 2 and will be omitted. �

From the above proposition we are in condition to prove Theorem 5. This will
be done in the next section.
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5. Proof of Theorem 5

The proof of Theorem 5 will be divided into two parts. First we prove that
all the possible configurations of the phase portrait restricted to the levels of the
first integral H1 are the ones given in Figure 2. In the second step we provide
solutions of the Benôıt system that show that the three possible cases in fact occur
at different levels of H1.

Proof of the first part of Theorem 5. By the Poincaré-Bendixon theorem (see for
instance [6]) at the compactified level H1 = h1 inside the Poincaré ball, the only
possible α− and ω−limit sets of any orbit of the level set H1 = h1 is an equilibrium
point. Note that at H1 = h1 there are exactly 3 equilibrium points which are the
northern and southern poles that are hyperbolic nodes and the semi-hyperbolic
equilibrium at (−1, 0, 0) ∈ S2 which local dynamics is given by Proposition 10.

From the local dynamics of (−1, 0, 0) ∈ S2 (see Proposition 6) in the level H1 =
h1 we note that there are two nodal zones with one attracting and other repeller.
So if an orbit visits both nodal zones this orbit is homoclinic for the equilibrium
(−1, 0, 0) ∈ S2, being an orbit of disconnecting type. Moreover in this case we can
have a unique homoclinic orbit to (−1, 0, 0) ∈ S2 (Figure 2(b)) or a continuous of
homoclinic orbits to (−1, 0, 0) ∈ S2 (Figure 2(a)). Note that the existence of two
homoclinic orbits to (−1, 0, 0) ∈ S2 in a same level H1 = h1 implies the existence
of a continuum of such orbits. Note that if such an orbit exists it disconnects
the cylinder H1 = h1 into two connected components being one containing the
northern pole and the other containing the southern pole. In this case all the
orbits in the connected component that contains the northern pole are such that
their ω−limit set is the equilibrium (−1, 0, 0) ∈ S2, and their α−limit set is either
the northern pole and we have an heteroclinic orbits connecting the norther pole
and the equilibrium (0, 0, 1) (orbit of intermediate type), or the α−limit set is the
equilibrium (−1, 0, 0) and we have a homoclinic orbit to (−1, 0, 0) ∈ S2 (orbit of
disconnecting type).

Similar analysis can be done for the orbits in the region that contain the southern
pole and again we obtain orbits of intermediate type or disconnecting type.

Now if the Benôıt system does not admit homoclinic orbits for the equilibrium
(−1, 0, 0) at the level H1 = h1 then all the orbits that have the northern pole
as α−limit set can have either (−1, 0, 0) as ω−limit and we obtain an orbit of
intermediate type, or the southern pole as ω−limit and in this case we obtain an
orbit of passage type. �

The next proposition provide an example where all the three different phase
portraits for the levels H1 = h1 are present in a Benôıt system. So we obtain the
second part of Theorem 5.

Proposition 11. The Benôıt system realizes the three different phase portraits for
the levels H1 = h1 described in Figure 2.

Proof. Solving the Benôıt system with initial condition (0, 0, z0) we obtain

(15) ϕ(t, z0) = (x(t), y(t), z(t)) = (−t2, t, z(t, z0)),

with
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z(t, z0) =





(−
√
2πtΓ(34 )

2 + π2z0t)J1(− 3
4 ,

t2

2 )

Γ(34 )
2

+ 2tJ2(
3
4 ,

t2

2 )

(−
√
2πΓ(34 )

2 + π2z0)J1(
1
4 ,

t2

2 )

Γ(34 )
2

− 2J2(
1
4 ,

t2

2 )

if t < 0,

z0 if t = 0,

(
√
2πtΓ(34 )

2 + π2z0t)J1(− 3
4 ,

t2

2 )

Γ(− 3
4 )

2
− 2tJ2(

3
4 ,

t2

2 )

(
√
2πΓ(34 )

2 + π2z0)J1(
1
4 ,

t2

2 )

Γ(34 )
2

− 2J + 2(14 ,
t2

2 )

if t > 0,

where the function Γ(ν) is the Gamma and the functions J1(ν, s) and J2(ν, s) are the
modified Bessel functions of the first end second kinds, respectively. They satisfy
the Bessel equation s2ÿ + sẏ + (s2 + ν2)y = 0 (see for more detail [1]). Moreover
for this solution we get limt→±∞ z(t, z0)/x(t) = limt→±∞ −z(t, z0)/t

2 = 0. This
implies that in the local chart V1 this solution satisfies z1(t) = y(t)/x(t) → 0
when t → ±∞, and z2(t) = z(t, z0)/x(t) → 0 when t → ±∞. Observing that the
singularity at infinity (−1, 0, 0) ∈ S2 is represented in the local chart V1 by the
origin (0, 0, 0), it follows that this solution is homoclinic to (−1, 0, 0) ∈ S2 for each
z0 ∈ R. In this way we have proved that the Benôıt system has a phase portrait
like Figure 2(a) at the level H1 = 0 (note that the solutions (15) are inside the level
H1 = 0).

On the other hand, solving the Benôıt system with initial condition (x0, y0, z0) =
(2, 0, 0) we obtain

(16) ϕ(t, x0) = (x(t, x0), y(t), z(t, x0)) = (−t2 + 2, t, z(t))

where z(t) is

(1− t2)πJ1(− 1
4
,− t2

2
) + (−1 + t2)

√
2J2(

1
4
,− t2

2
)− t2(

√
2J2(

3
4
,− t2

2
) + πJ1(

3
4
,− t2

2
))

t(−
√
2J2(

1
4
,− t2

2
) +

√
2J2(

3
4
,− t2

2
) + πJ1(− 1

4
,− t2

2
) + πJ1(

3
4
,− t2

2
))

The denominator of this function has zeroes in t− ≈ −1.162342261 and t+ ≈
1.16234226158 moreover limtցt− z(t, 2) = ∞ and limtրt+ z(t, 2) = −∞. This im-
plies that this solution is a heteroclinic solution connecting the point (0, 0, 1) ∈ S2
and (0, 0,−1) ∈ S2. So the Benôıt system has a phase portrait like Figure 2(c) at
the level H1 = 2 (solution (16) is inside the level H1 = 2).

These two particular solutions show that the Benôıt system admits the three
possible phase portraits given in Figure 2. �

Remark 12. It is not difficult to see that for the system in Proposition 11 a
bifurcation in the phase portrait occurs for the value of the parameter h1 = 1. In
fact for h1 = 1 we have a unique homoclinic solution for the equilibrium point
(−1, 0, 0) ∈ S2 given by ϕ(t) = (−t2 + 1, t,−t) and for h1 = 1 + δ for δ > 0
sufficiently small there is no homoclinic orbit at this level.
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