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Abstract. In this paper we study the global dynamics of 3–dimensional
predator prey Lotka–Volterra systems, which describes two predators com-
peting for food or shared one resource. From theoretical analysis on all pa-
rameters of this system, we show that if the resource for prey is limited, then
there exist some values of parameters such that two predators and one prey

coexist and their population are asymptotic to steady states. Otherwise, at
least one of two predator species is extinct. On the other hand, if the resource
for prey is unlimited, then there are the complete classification of parameters
values such that the system has two possible global dynamics. Either every
solution of the system is asymptotic to a closed orbit, or to the equilibrium
in the invariant coordinate plane, or every solution of the system is a periodic
orbit except the equilibrium in the positive octant of R3. This implies that the
principle of competitive exclusion holds for some values of parameters of the
Lotka–Volterra system, and it does not hold for the other values of parameters
of the Lotka–Volterra system. Hence, there are only two coexistence styles for
all three species: periodic oscillation or steady states, which depends on the
resource for prey. The results have an importance biological implication in
pest control.

1. Introduction

The study of the dynamics of predator–prey systems was originated in the works
of Lotka [17] and Volterra [25] who considered a model for one predator and one
single prey in a constant and uniform environment, known now as the standard
Lotka–Volterra model. In this model the populations of predator and prey perma-
nently oscillate for almost all positive initial conditions. In the same work, Volterra
also argued that the coexistence of two or more predators competing for fewer prey
resources is impossible, this claim was called the principle of competitive exclusion
(see [1], [7], [19]).

Hsu and Hubbell in [9] studied 4–dimensional Lotka–Volterra models with two
competing predators sharing two prey species under the assumption that prey
species were capable of self–reproduction and regenerated logistically in the ab-
sence of consumption, and obtained some conditions under which the competing
predators survive or die out. Their results revealed that the principle of competitive
exclusion was true for some of parameters values in the Lotka–Volterra model with
two competing predators sharing two prey species. Note that the predator func-
tional response to the prey density is linear in the Lotka–Volterra model. When
the predator functional response to the prey density is nonlinear, the principle of
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competitive exclusion was re–examined by Koch in [13] via numerical simulation,
which showed that the coexistence of two predators competing for a single prey
species was in fact possible when the predator functional response to the prey den-
sity was assumed according to the Michaelis–Menten kinetics, and such coexistence
occurred along what appeared to be a periodic orbit in the positive octant of R

3

rather than an equilibrium.

Hsu, Hubbell and Waltman in [10, 11] studied the competition problem of the
two predators for a single prey model. By combining theoretical analysis with
numerical simulations, they obtained the parameter range of the validity of the
principle of competitive exclusion, and provided a wide range of parameter values
for the coexistence of two predators numerically. Following these numerical obser-
vations, there have been several important theoretical developments in justifying
the coexistence for two predators competing for a single prey species model with
nonlinear functional responses. In which bifurcation techniques were applied to the
model for obtaining a stable periodic orbit in the positive octant of R

3. This sta-
ble periodic orbit bifurcates from a 2–dimensional predator–prey limit cycle in the
plane, which implies the coexistence of two competing predators (see [3], [12], [22],
[23] and their references therein). Muratori and Rinald in [20] first considered the
problem by singular perturbation arguments. Using dynamical systems techniques
and the geometric singular perturbation theory, Liu, Xiao and Yi in [16] gave pre-
cise conditions which guarantee the coexistence of two predators for the model via
rigorously analysis.

It is well known that resource competition is common in nature and society.
Global dynamics of the resource competitive model is important to understand
the mechanism of natural selection: the principle of competitive exclusion and the
coexistence of competing species. There have been some excellent works such as
[15], [26] and so on.

The aim of this paper is to study the global dynamics of 3–dimensional Lotka–
Volterra models with two predators competing for a single prey species in a constant
and uniform environment. It is assumed that the two predator species compete
purely exploitatively with no interference between rivals, the growth rate of the
prey species is logistic or linear in the absence of predation, respectively, and the
predator’s functional response is linear. Then the model is a system of ordinary
differential equations of the form

dS(t)

dt
= S(t)

(
r3 −

1

K
S(t) − b1x1(t) − b2x2(t)

)
,

dx1(t)

dt
= x1(t) (−r1 + a1S(t)) ,

dx2(t)

dt
= x2(t) (−r2 + a2S(t)) ,

(1)

where xi(t) for i = 1, 2 represents the population density of the i–th predator at
time t, S(t) represents the population density of the prey at time t, r3 > 0 is
the intrinsic rate of growth of the prey, K > 0 is the carrying capacity of the prey,
which describes the richness of resources for prey. If K = ∞, then prey can increase
unlimited, which implies that the growth rate of the prey species is linear in the
absence of predation; bi > 0 is the effect of the i–th predation on the prey, ri > 0 is
the natural death rate of the i–th predator in the absence of prey, ai is the effciency
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and propagation rate of the i–th predator in the presence of prey. It is clear that
xi(t) ≥ 0 and S(t) ≥ 0. Hence, system (1) is considered only in the closed positive
octant R

3
+, of course here R+ = [0,∞). For simplicity, we denote the open positive

octant by Int(R3
+).

We completely characterize the qualitative behavior of system (1) in two cases:
the limited resource for prey (i.e. K is bounded) and the unlimited resource for
prey (i.e. K = ∞). It is shown that as K is bounded, there exist some values
of parameters of system (1) such that two predators and one prey coexist and
their population are asymptotic to steady states. Otherwise one of two predators
species is extinct. On the other hand, if K = ∞, then there are only two possible
global dynamics for the system. Either the system has a global attractor which
is a boundary equilibrium, or every solution of the system is a periodic orbit in
the positive octant of R

3. These results imply that the principle of competitive
exclusion hold for some values of parameters of the Lotka–Volterra system, and it
does not hold for the other values of parameters of the Lotka–Volterra system. And
there are only two coexistence styles for all three species of system (1): periodic
oscillation or steady states, which depends on the resource for prey.

This paper is organized as follows. In section 2 we study the global dynamics of
the two predators–one prey system as K is a bounded parameter. In section 3 we
study the global dynamics of the two predators–one prey system when K = +∞.
The paper ends with a brief discussion.

2. Global dynamics of system (1) with limited resource for prey

In this section we consider system (1) with the bounded K in R
3
+. We first

study the existence and topological classification of finite equilibria and equilibria
at infinity for system (1), then we study the global dynamics of this system.

2.1. The existence and topological classification of equilibria. It is clear
that system (1) has an equilibrium at the origin O(0, 0, 0), and an equilibrium at the
point E0(r3K, 0, 0) for all the values of the parameters. Except the two boundary
equilibria, system (1) may have other boundary equilibria and the positive equilibria
in R

3
+ for some values of parameters. Doing easy algebra calculations we obtain

the following result.

Proposition 1. The following statements hold.

(i) System (1) has a boundary equilibrium E1

(
r1

a1
, 1

b1
(r3K − r1

a1
), 0

)
in R

3
+ ex-

cept the boundary equilibria O and E0 if r3K > r1

a1
; and system (1) has a

boundary equilibrium E2

(
r2

a2
, 0, 1

b2
(r3K − r2

a2
)
)

in R
3
+ except the boundary

equilibria O and E0 if r3K > r2

a2
.

(ii) System (1) has positive equilibria E+(S, x1, x2) in Int(R3
+) if and only if

r1

a1
= r2

a2
and r3K > r1

a1
. And if system (1) has a positive equilibria in

Int(R3
+), then system (1) has infinitely many positive equilibria E+(S, x1, x2)

in Int(R3
+), which fill up a segment L with endpoints at boundary equilibria

E1 and E2, respectively in Int(R3
+), where

L = {(S, x1, x2) : S =
r1
a1

, b1x1 + b2x2 = r3K − r1
a1

, x1 ≥ 0, x2 ≥ 0}.
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We now study the local phase portraits of the boundary equilibria and positive
equilibria. Since the Jacobian matrix J(S, x1, x2) of system (1) at an equilibrium
(S, x1, x2) is

J(S, x1, x2) =




r3 − 2
K S − b1x1 − b2x2 −b1S −b2S

a1x1 −r1 + a1S 0
a2x2 0 −r2 + a2S


 ,

we obtain the following local phase portraits for the equilibria after some compu-
tations and the applications of standard results.

Proposition 2. The following statements hold.

(i) O(0, 0, 0) is a saddle with a 2–dimensional stable manifold and an 1–dimensional
unstable manifold for all parameters.

(ii) E0(r3K, 0, 0) has the following local phase portraits depending on the values
of the parameters.

(ii.a) E0 is a stable node if r3K < min{ r1

a1
, r2

a2
};

(ii.b) E0 is saddle with a 2–dimensional stable manifold and an 1–dimensional
unstable manifold if min{ r1

a1
, r2

a2
} < r3K < max{ r1

a1
, r2

a2
};

(ii.c) E0 is saddle with a 1-dimensional stable manifold and a 2–dimensional
unstable manifold if max{ r1

a1
, r2

a2
} < r3K;

(ii.d) E0 is degenerated equilibrium if either r3K = r1

a1
or r3K = r2

a2
.

(iii) E1(
r1

a1
, 1

b1
(r3K− r1

a1
), 0) has the following local phase portraits depending on

the values of the parameters.

(iii.a) E1 is a stable node if r1

a1
< r3K ≤ r1+

√
r2
1+r1r3

2a1
and r1

a1
< r2

a2
;

(iii.b) E1 is saddle with a 2–dimensional stable manifold and an 1–dimensional

unstable manifold if r1

a1
< r3K ≤ r1+

√
r2
1+r1r3

2a1
and r1

a1
> r2

a2
;

(iii.c) E1 is stable focus if r3K >
r1+

√
r2
1+r1r3

2a1
and r1

a1
< r2

a2
;

(iii.d) E1 is a saddle–focus with a 2–dimensional stable manifold and an 1–

dimensional unstable manifold if r3K >
r1+

√
r2
1+r1r3

2a1
and r1

a1
> r2

a2
;

(iii.e) E1 is a degenerated equilibrium if r1

a1
< r3K and r1

a1
= r2

a2
.

(iv) E2(
r2

a2
, 0, 1

b2
(r3K− r2

a2
)) has the following local phase portraits depending on

the values of the parameters.

(iv.a) E2 is a stable node if r2

a2
< r3K ≤ r2+

√
r2
2+r2r3

2a2
and r1

a1
> r2

a2
;

(iv.b) E2 is saddle with a 2–dimensional stable manifold and an 1–dimensional

unstable manifold if r2

a2
< r3K ≤ r2+

√
r2
2+r2r3

2a2
and r1

a1
< r2

a2
;

(iv.c) E2 is stable focus if r3K >
r2+

√
r2
2+r2r3

2a2
and r1

a1
> r2

a2
;

(iv.d) E2 is a saddle–focus with a 2–dimensional stable manifold and an 1–

dimensional unstable manifold if r3K >
r2+

√
r2
2+r2r3

2a2
and r1

a1
< r2

a2
;

(iv.e) E2 is a degenerated equilibrium if r2

a2
< r3K and r1

a1
= r2

a2
.

(v) Each positive equilibrium E+ is a degenerated equilibrium with a 2–dimensional
stable manifold and an 1–dimensional center manifold filled by equilibria.

It is clear that system (1) has three invariant planes S = 0, x1 = 0 and x2 = 0,
respectively. Our objective is to study the global dynamics of system (1) in R

3
+.
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However, it is not clear whether or not all solutions of system (1) with positive
initial conditions are bounded in forward time. So we must study the equilibria
of system (1) at infinity and we shall use the Poincaré compactification of R

3
+ for

doing this study. Note that system (1) defines a polynomial vector field in R
3.

Using the Poincaré compactification in R
3 (see for more details [6]), we consider

the unit sphere S
3 = {(y1, y2, y3, y4) ∈ R

4 :
∑4

i=1 y2
i = 1} in R

4. Its equator is
S
2 = {(y1, y2, y3, y4) ∈ S

3 : y4 = 0}. We identify R
3 with the tangent hyperplane

at the north pole of the sphere S
3, i.e. at the point (0, 0, 0, 1). Doing central

projection of this hyperplane over the sphere S
3, R

3 is identified with the open
north hemisphere of S

3. Clearly S
2 is the boundary of this open north hemisphere.

The open north hemisphere together with its boundary S
2 is topologically a closed

ball B, whose interior is identified with R
3 and whose boundary is identified with

the infinity of R
3. Every point of S

2 corresponds with one direction for reaching
the infinity.

Summarizing system (1) in R
3 can be extended analytically to a vector field in

the closed ball B, called the Poincaré compactification of system (1). The infinity
S
2 is invariant under the flow of the extended vector field. The flow on S

2 is studied
taking the local charts defined in [6].

In the local chart U1 with coordinates

S =
1

z3
, x1 =

z1
z3

, x2 =
z2
z3

,

system (1) becomes

dz1(t)

dt
= a1z1 +

z1
K

+ b1z
2
1 + b2z1z2 − r1z1z3 − r3z1z3,

dz2(t)

dt
= a2z2 +

z2
K

+ b1z1z2 + b2z
2
2 − r2z2z3 − r3z2z3,

dz3(t)

dt
=

z3
K

+ b1z1z3 + b2z2z3 − r3z
2
3 .

(2)

The infinity of R
3 in the local chart U1 corresponds to the invariant plane z3 = 0 and

the infinity of R
3
+ in the local chart U1 corresponds to the invariant plane z3 = 0

with z1 ≥ 0 and z2 ≥ 0. Hence, system (2) in the local chart U1 has a unique
equilibrium at infinity Oi(0, 0, 0). The linear part of system (2) at Oi(0, 0, 0) has
eigenvalues a1 + 1

K , a2 + 1
K and 1

K . This implies that equilibrium Oi(0, 0, 0) is an
unstable node.

Since the local chart U1 does not cover the plane S = 0 at the infinity of R
3, we

further consider system (1) in the local chart U2 with coordinates

S =
u1

z3
, x1 =

1

z3
, x2 =

u2

z3
,

which becomes

du1(t)

dt
= −b1u1 − a1u

2
1 −

u2
1

K
− b2u1u2 + r1u1z3 + r3u1z3,

du2(t)

dt
= −a1u1u2 + a2u1u2 + r1u2z3 − r2u2z3,

dz3(t)

dt
= −a1u1z3 + r1z

2
3 .

(3)
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Note that all the points on S
2 at infinity in the coordinates of all local chart have

z3 = 0. We are interested only in the equilibria with u1 = 0 and z3 = 0 of system
(3), which corresponds to the infinity of R

3 in the plane S = 0 for system (1). If we
further restrict at the infinity of R

3
+, then system (3) has infinitely many equilibria

EI(0, u2, 0) with u2 ≥ 0 at infinity, which fill up the quarter of a circle on S
2. At

each equilibrium EI(0, u2, 0), system (3) has a double zero eigenvalue and a negative

eigenvalue −(b1 + b2u2) with the eigenvector
(

b1+b2u2

(a1−a2)u2
, 1, 0

)T

in its infinite direc-

tion when a1 6= a2. The eigenvector associated with the negative eigenvalue when
a1 = a2 is (1, 0, 0)T in its infinite direction. Obviously, the remaining eigenvalues 0
correspond to eigenvectors going outside the infinity.

Applying the normal hyperbolicity theory (see [8]) first to the local chart U2 and
after to the invariant plane S = 0, we obtain that every equilibrium EI(0, u2, 0)
has an 1–dimensional stable manifold living at infinity (i.e. in S

2) and two 1–
dimensional unstable manifold living in the plane S = 0.

On the other hand, it is easy to check that both local charts U1 and U2 together
have covered all equilibria at the infinity of system (1) in R

3
+ except the equilibrium

point localized at the endpoint of the x2–axis in the infinity, but this equilibrium
forms part of the line filled of equilibria at infinity. Hence, we can summarize the
above analysis as follows.

Proposition 3. The following two statements hold.

(i) System (1) restricted to the compactification of the octant R
3
+ has an iso-

lated equilibrium Oi at infinity which is the endpoint of the invariant positive
S–axis, and has a line filled of equilibria EI at infinity which is the end of
the invariant plane S = 0 intersection with the compactification of the oc-
tant R

3
+. This line of equilibria fills the quarter of the maximal circle at

infinity with endpoints the endpoints of the invariant positive x1–axis and
x2–axis.

(ii) Furthermore Oi is an unstable node and each degenerate equilibria EI has
1–dimensional stable manifold living at infinity and two 1-dimensional un-
stable one living in the invariant plane S = 0, which is the central man-
ifold of the point EI . Moreover, the behavior of the flow near these two
1–dimensional manifolds in the finite positive octant is like a hyperbolic
sector. The phase portrait of these equilibria on S

2 is shown in Figure 1.

Proof. The analysis done before the statement of the proposition has shown the
existence and the local phase portraits of these equilibria at infinity. We only need
to study the dynamics of system (1) on the center manifold of each equilibria EI .

Since the positive quadrant of the x1x2-plane is invariant by the flow of system
(1) and it is tangent to the center subspaces of each equilibria EI , the x1x2-plane
is the center manifold at each equilibria EI .

We shall study the phase portrait of system (1) on the positive quadrant of the
invariant x1x2-plane. On this plane the flow is determined by

dx1(t)

dt
= −r1x1(t),

dx2(t)

dt
= −r2x2(t),

(4)
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where r1 and r2 are positive constants.

It is clear that all solutions of system (4) on the x1x2-plane except the equilibria
at infinity will approach to the origin (0, 0, 0) in forward time. Hence, EI has two
1-dimensional unstable manifold on its center manifold x1x2-plane. Note that the
1–dimensional stable manifold of EI is on S

2. Hence, the phase portrait in the finite
part and near each equilibria EI looks like a saddle. And the isolated equilibrium
Oi is an unstable node. Thus, we can sketch the phase portraits near all equilibria
at infinity of system (4) on S

2 and on S = 0 in Figure 1. �

O

PSfrag replacements

x1

x2

S

Figure 1. The phase portrait of system (1) near all equilibria at
infinite on S

2.

In the following, we analytically establish that all solutions of system (1) with
positive initial conditions are bounded in forward time. This shows that system (1)
is “well behaved” as one intuits from the biological problem.

Theorem 4. All orbits of system (1) with positive initial conditions are positive
and bounded.

Proof. Since the flow of system (1) is invariant in the three coordinate planes of
R

3
+, all trajectories of system (1) with positive initial conditions remains in R

3
+.

From Proposition 3, we know that all equilibria at infinity of system (1) in its
finite direction are repeller. Therefore, all trajectories of system (1) with positive
initial conditions cannot reach the infinity. This implies that every trajectory is
bounded. �
2.2. Global dynamics. First we show that system (1) allows the coexistence of
two competing predators for some values of parameters, which implies that the
coexistence of two predators competing for a single prey species is possible when
the predator functional response to the prey density is linear. And for some other
values of parameters, both two competing predators go extinction and only prey
survives.
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Theorem 5. If r1

a1
= r2

a2
, then system (1) has a first integral F (S, x1, x2) = c,

where F (S, x1, x2) = xa2
1 x−a1

2 and c is any a constant. Furthermore

(i) if r3K > r1

a1
, then on the invariant surface F (S, x1, x2) = c with c > 0 in

Int(R+
3), system (1) has a unique positive equilibrium E+( r1

a1
, (cxa1

2 )
1
a2 , x2),

which is a global attractor on {F (S, x1, x2) = c} ∩ Int(R+
3);

(ii) if r3K ≤ r1

a1
, then on the invariant surface F (S, x1, x2) = c with c > 0 in

Int(R+
3), system (1) has not any equilibria and all orbits of (1) approach

to a boundary point (r3K, 0, 0) of this invariant surface in forward time.

Proof. Since the function F (S, x1, x2) satisfies

dF (S, x1, x2)

dt

∣∣∣∣
(1)

= a1a2

(
r2
a2

− r1
a1

)
F (S, x1, x2),

dF (S,x1,x2)
dt

∣∣∣
(1)

= 0 as r1

a1
= r2

a2
. Hence, F (S, x1, x2) is a first integral of system (1)

by definition of the first integral.

Let
F (S, x1, x2) = c, c > 0.

Then the invariant surface, F (S, x1, x2) = c, of system (1) foliates IntR3
+. Obvi-

ously, the intersection of the invariant surface F (S, x1, x2) = c and the invariant
x1x2-plane is an orbit of system (1). And the intersection of the invariant surface
and a given plane S = α with α > 0 in IntR3

+ is a curve. It is easy to check that
this curve is monotone function of x1 or x2.

We first prove statement (i). If r1

a1
= r2

a2
and r3K > r1

a1
, then from proposition 1,

we know that system (1) has infinitely many positive equilibria E+(S, x1, x2) which
fill up a segment L,

L =

{
(S, x1, x2) : S =

r1
a1

, b1x1 + b2x2 = r3K − r1
a1

, x1 ≥ 0, x2 ≥ 0

}
.

Therefore, the surface F (S, x1, x2) = c must cross L at exact one point on the plane
S = r1

a1
.

Note that the flow of system (1) is invariant on each foliation F (S, x1, x2) = c
with c > 0. Thus, the global dynamics of system (1) in IntR3

+ is equivalent to that

of system (1) restricted on each foliation F (S, x1, x2) = c of intR3
+.

In what follows, we consider the restricted system

dS(t)

dt
= S(t)

(
r3 −

1

K
S(t) − b1(cx

a1
2 (t))

1
a2 − b2x2(t)

)
,

dx2(t)

dt
= x2(t) (−r2 + a2S(t)) .

(5)

From the above analysis, we know that system (5) has a unique positive equilib-
rium at ( r1

a1
, x+

2 ), where x+
2 is a unique positive solution of

b1(cx
a1
2 )

1
a2 + b2x2 = r3 −

r1
a1K

.

By computing the Jacobian matrix of system (5) at ( r1

a1
, x+

2 ), we have that its two
eigenvalues have negative real parts. Hence, the equilibrium is local asymptotically
stable on the foliation.



GLOBAL DYNAMICS OF THREE DIMENSIONAL LOTKA–VOLTERRA MODELS 9

By Theorem 4, we know that every solution of system (5) is positive and bounded
in the foliation. We next prove that the positive equilibrium at ( r1

a1
, x+

2 ) is global

stable in the foliation. Otherwise we assume that system (5) has a non-trivial
periodic solution γ(t) with period T which is the first closed orbit near the positive
equilibrium ( r1

a1
, x+

2 ),

γ(t) = {(S, x2) : S = S(t) > 0, x2 = x2(t) > 0, 0 ≤ t ≤ T}.

Then by (5) we have

0 = ln
S(T )

S(0)
=

∫ T

0

dS(t)

S(t)
=

∫ T

0

(
r3 −

1

K
S(t) − b1(cx

a1
2 (t))

1
a2 − b2x2(t)

)
dt,

0 = ln
x2(T )

x2(0)
=

∫ T

0

dx2(t)

x2(t)
=

∫ T

0

(−r2 + a2S(t))dt,

(6)

where (S(t), x2(t)) is the non-trivial periodic solution γ(t) of system (5).

In the following we consider the stability of γ(t). We calculate the integral of
divergence of vector field (5) along the periodic solution γ(t).

∮

γ(t)

div(5)dt =

∫ T

0

(
r3 −

2

K
S(t) − b1(cx

a1
2 (t))

1
a2 − b2x2(t) + (−r2 + a2S(t))

)
dt

=

∫ T

0

− 1

K
S(t)dt < 0

by (6). Therefore, the periodic solution γ(t) is stable. On the other hand, the
unique equilibrium is local asymptotically stable on the foliation. This leads to a
contradiction. Thus, the non-trivial periodic solution γ(t) does not exist, which
implies that the positive equilibrium at ( r1

a1
, x+

2 ) is global stable in the foliation.

Hence statement (i) holds.

In the following we consider the case that r1

a1
= r2

a2
and r3K ≤ r1

a1
. From Propo-

sition 1, we know that system (1) has not any equilibria in IntR3
+. Hence, there do

not exist periodic solutions of system (1) on the invariant surface F (S, x1, x2) = c.

It is clear that the global dynamics of system (1) in IntR3
+ is equivalent to

that of system (5) on the invariant surface. And all solutions of system (5) in
IntR3

+ are bounded. On the boundary of the invariant surface F (S, x1, x2) = c,
system (5) has two equilibria at (0, 0) and (r3K, 0), respectively. The equilibrium
(r3K, 0) is a stable node and (0, 0) is a saddle with 1-dimensional stable manifold
{F (S, x1, x2) = c} ∩ {(S, x1, x2) : S = 0} and 1-dimensional unstable manifold
{(S, x1, x2) : x1 = 0, x2 = 0, 0 < S < r3K}. Hence, all solutions of system (5) with
positive initial conditions approach to equilibrium (r3K, 0) in forward time. This
proves statement (ii). �

Theorem 5 has shown the dynamics of system (1) in IntR3
+ if r1

a1
= r2

a2
. To obtain

the global dynamics of system (1) in R
3
+, we need to consider the dynamics of system

(1) on the three invariant coordinate planes. Note that system (1) restricted on
the invariant x1x2-plane has a unique equilibrium (0, 0) which is global stable for
all parameters. We only consider the dynamics of system (1) on the invariant
Sx1-plane and on the invariant Sx2-plane, respectively.
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On the invariant Sx1-plane, the restricted system of (1) is

dS(t)

dt
= S(t)

(
r3 −

1

K
S(t) − b1x1(t)

)
,

dx1(t)

dt
= x1(t) (−r1 + a1S(t)) .

(7)

And on the invariant Sx2-plane, the restricted system of (1) is

dS(t)

dt
= S(t)

(
r3 −

1

K
S(t) − b2x2(t)

)
,

dx2(t)

dt
= x2(t) (−r2 + a2S(t)) .

(8)

From the knowledge of the 2-dimensional Lotka–Volterra system, it follows easily
the next result.

Proposition 6. The following two statements hold.

(i) If r1

a1
= r2

a2
and r3K > r1

a1
, then system (7) and system (8) has three

equilibria at (0, 0), (r3K, 0) and ( r1

a1
, 1

b1
(r3− r1

Ka1
)), where (0, 0) and (r3K, 0)

are saddles, and ( r1

a1
, 1

b1
(r3 − r1

Ka1
)) is a stable node or focus, which attracts

all orbits of (7) and (8) in the interior of the Sx1-plane and of the Sx2-
plane, respectively;

(ii) If r1

a1
= r2

a2
and r3K ≤ r1

a1
, then system (7) and system (8) has two equilibria

at (0, 0) and (r3K, 0), where (0, 0) is saddle, and (r3K, 0) is a stable node,
which attracts all orbits of (7) and (8) in the interior of the Sx1-plane and
of the Sx2-plane, respectively;

Summarizing Theorem 5 and Proposition 6 we obtain:

Theorem 7. The following two statements hold.

(i) If r1

a1
= r2

a2
and r3K > r1

a1
, then system (1) has infinitely many positive

equilibria E+(S, x1, x2) filling up a segment L which attract all solutions
of system (1) with positive initial conditions, the endpoints of L attract
all solutions of system (1) with nonnegative initial conditions (S, x1, 0) or
(S, 0, x2), respectively, and the origin (0, 0, 0) attracts all solutions of system
(1) with nonnegative initial conditions (0, x1, x2). The phase portrait is
shown in Figure 2.

(ii) If r1

a1
= r2

a2
and r3K ≤ r1

a1
, then system (1) has only two equilibria (0, 0, 0)

and (r3K− r1

a1
, 0, 0), the equilibrium (r3K− r1

a1
, 0, 0) attracts all solutions of

system (1) except the orbits in the x1x2-plane, and the equilibrium (0, 0, 0)
attracts all solutions of system (1) in the x1x2-plane. The phase portrait is
sketched in Figure 3.

Theorem 7 makes sense biologically, which reveals that two competing predators
either coexist or co-extinct if they have the same ratio of death rate and propagation
rate. When the ratio of death rate and propagation rate of the predator is less than
the product of the birth rate and the carrying capacity of the prey, two competing
predators coexist at a positive equilibrium. However, if the ratio of death rate
and of the propagation rate of the predator is more large than the product of the
birth rate and the carrying capacity of the prey, then the two competing predators
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Figure 2. Global dynamics of system (1) when r1

a1
= r2

a2
and

r3K > r1

a1
.
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Figure 3. Global dynamics of system (1) when r1

a1
= r2

a2
and

r3K ≤ r1

a1
.

species eventually become extinct even though prey persists. This coincides with
our intuition but conflicts with the principle of competitive exclusion.



12 JAUME LLIBRE AND DONGMEI XIAO

In what follows we consider if there exists some values of parameters such that the
principle of competitive exclusion holds for system (1). We first give the dynamics
of system (1) in IntR3

+.

Theorem 8. If r1

a1
6= r2

a2
, then the principle of competitive exclusion may hold for

system (1). More precisely,

(i) if r1

a1
> r2

a2
, then all orbits of system (1) in Int(R+

3) are asymptotic to the
orbits on the Sx2-plane in forward time;

(ii) if r1

a1
< r2

a2
, then all orbits of system (1) in Int(R+

3) are asymptotic to the
orbits on the Sx1-plane in forward time.

Proof. Let the set D be the intersection of the Poincaré compactification ball B
and R

3
+, that is D = B ∩ R

3
+.

We choose a sufficient large compact set D1, D1 ⊂ D, such that D1 does not
include x2 = 0, and we choose a sufficient large compact set D2, D2 ⊂ D, such that
D2 does not include x1 = 0.

From Theorem 4 we know that D1 and D2 are positive invariant sets of system
(1), that is, any solutions (S(t), x1(t), x2(t)) of system (1) with the initial point
(S(t0), x1(t0), x2(t0)) in D1 or in D2 will stay in D1 or in D2, respectively, for all
t ≥ t0.

To prove statement (i) we consider the function

V1(S, x1, x2) = xa2
1 x−a1

2 .

Clearly, V1(S, x1, x2) is a continuous differential function in D1. And

dV1(S, x1, x2)

dt

∣∣∣∣
(1)

= a1a2

(
r2
a2

− r1
a1

)
V1(S, x1, x2) ≤ 0,

because r1

a1
> r2

a2
. Hence, the solutions (S(t), x1(t), x2(t)) of system (1) with the

initial point (S(t0), x1(t0), x2(t0)) in D1 satisfies

xa2
1 (t)x−a1

2 (t) = xa2
1 (t0)x

−a1
2 (t0)e

a1a2t
(

r2
a2

− r1
a1

)
.

Let

D10 =

{
(S, x1, x2) :

dV1(S, x1, x2)

dt

∣∣∣∣
(1)

= 0, (S, x1, x2) ∈ D1

}
.

Then
D10 = {(S, x1, x2) : x1 = 0},

which is an invariant set of system (1). By LaSalle Principle, we know that all
solutions of system (1) in D1 are asymptotic to the orbits on the Sx2-plane in
forward time, which leads to statement (i).

Using similar arguments we can obtain statement (ii) by choosing the function

V2(S, x1, x2) = x−a2
1 xa1

2

in D2. This ends the proof. �

When r1

a1
6= r2

a2
, almost all orbits of system (1) are asymptotic to some orbits

on the Sx1-plane or on the Sx2-plane in forward time. But we do not know what
kinds of orbits on the Sx1-plane or on the Sx2-plane are the asymptotic ones. To
characterize the principle of competitive exclusion holding for system (1), we have
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to show that one of two competing predators must be extinct and the other predator
must be survive. So we consider the dynamics of system (1) on the invariant Sx1-
plane and on the invariant Sx2-plane, respectively.

From Proposition 2 and the knowledge of the 2-dimensional Lotka–Volterra sys-
tem, we have

Proposition 9. If r1

a1
6= r2

a2
, then the following statements hold.

(i) If either r3K > r1

a1
> r2

a2
, or r3K > r2

a2
> r1

a1
, then system (7) (or (8)) has

three equilibria at (0, 0), (r3K, 0) and ( r1

a1
, 1

b1
(r3 − r1

Ka1
)) (or( r2

a2
, 1

b2
(r3 −

r2

Ka2
)), respectively), where (0, 0) and (r3K, 0) are saddles, and ( r1

a1
, 1

b1
(r3−

r1

Ka1
)) (( r2

a2
, 1

b2
(r3 − r2

Ka2
)), respectively) is a stable node or focus, which

attracts all orbits of (7) ((8), respectively) in the interior of the Sx1-plane
(Sx2-plane, respectively).

(ii) If r2

a2
< r3K ≤ r1

a1
, then system (7) has two equilibria at (0, 0) and (r3K, 0),

where (0, 0) is a saddle and (r3K, 0) is a stable node, which attracts all orbits
of (7) in the interior of the Sx1-plane. And system (8) has three equilibria
at (0, 0), (r3K, 0) and ( r2

a2
, 1

b2
(r3 − r2

Ka2
)), where (0, 0) and (r3K, 0) are

saddles, and ( r2

a2
, 1

b2
(r3 − r2

Ka2
)) is a stable node or focus, which attracts all

orbits of (8) in the interior of the Sx2-plane, respectively.

(iii) If r1

a1
< r3K ≤ r2

a2
, then system (8) has two equilibria at (0, 0) and (r3K, 0),

where (0, 0) is a saddle and (r3K, 0) is a stable node, which attracts all orbits
of (8) in the interior of the Sx2-plane. And system (7) has three equilibria
at (0, 0), (r3K, 0) and ( r1

a1
, 1

b1
(r3 − r1

Ka1
)), where (0, 0) and (r3K, 0) are

saddles, and ( r1

a1
, 1

b1
(r3 − r1

Ka1
)) is a stable node or focus, which attracts all

orbits of (7) in the interior of the Sx1-plane, respectively.

(iv) If either r3K ≤ r2

a2
< r1

a1
or r3K ≤ r1

a1
< r2

a2
, then system (7) and system

(8) has two equilibria at (0, 0) and (r3K, 0), where (0, 0) is a saddle, and
(r3K, 0) is a stable node, which attracts all orbits of (7) and (8) in the
interior of the Sx1-plane and of the Sx2-plane, respectively;

To summarize Theorem 8 and Proposition 9, we give the sufficient and necessary
conditions to guarantee that the principle of competitive exclusion holds for system
(1) as follows.

Theorem 10. The principle of competitive exclusion holds for system (1) if and
only if one of the following conditions holds.

(i) r3K > r1

a1
> r2

a2
. In this case the predator species x1(t) goes to extinction

and the predator species x2(t) survives.

(ii) r2

a2
< r3K ≤ r1

a1
. In this case the predator species x1(t) goes to extinction

and the predator species x2(t) survives.

(iii) r3K > r2

a2
> r1

a1
. In this case the predator species x2(t) goes to extinction

and the predator species x1(t) survives.

(iv) r1

a1
< r3K ≤ r2

a2
. In this case the predator species x2(t) goes to extinction

and the predator species x1(t) survives.

The principle of competitive exclusion does not hold for system (1) if either r3K ≤
r2

a2
< r1

a1
, or r3K ≤ r1

a1
< r2

a2
. In this case both two competing predators go to
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extinction, and all orbits of system (1) are asymptotic to the equilibrium (r3K, 0, 0)
except the orbits on the x1x2-plane.

3. Global dynamics of system (1) with unlimited resource for prey

In the section we study system (1) with K = +∞ in R
3
+, i.e. the system

dS(t)

dt
= S(t) (r3 − b1x1(t) − b2x2(t)) ,

dx1(t)

dt
= x1(t) (−r1 + a1S(t)) ,

dx2(t)

dt
= x2(t) (−r2 + a2S(t)) .

(9)

In a similar way to section 2 we first give the existence and topological classification
of the finite equilibria and the equilibria at infinity for system (9), then we study
the global dynamics of this system.

3.1. The existence and topological classification of equilibria. It is clear

that system (9) has three equilibria the origin O(0, 0, 0), Ê1

(
r1

a1
, r3

b1
, 0

)
and Ê2

(
r2

a2
, 0, r3

b2

)

in R
3
+ for all the values of the parameters. Except these equilibria, system (9) may

have a positive equilibrium in R
3
+ for some values of parameters. Doing easy algebra

calculations we obtain the following result.

Proposition 11. System (9) has a positive equilibrium Ê+(S, x1, x2) in Int(R3
+) if

and only if r1

a1
= r2

a2
. And if system (9) has a positive equilibrium in Int(R3

+), then

system (9) has infinitely many positive equilibria Ê+(S, x1, x2) in Int(R3
+), which

fill up a segment L0 with endpoints Ê1 and Ê2, where

L0 =

{
(S, x1, x2) : S =

r1
a1

, b1x1 + b2x2 = r3, x1 ≥ 0, x2 ≥ 0

}
.

We now study the local phase portraits of the boundary equilibria and positive
equilibria. Since the Jacobian matrix J1(S, x1, x2) of system (9) at an equilibrium
(S, x1, x2) is

J1(S, x1, x2) =




r3 − b1x1 − b2x2 −b1S −b2S
a1x1 −r1 + a1S 0
a2x2 0 −r2 + a2S


 ,

we obtain the following local phase portraits for the equilibria after some compu-
tations and the applications of the standard results.

Proposition 12. The following statements hold.

(i) O(0, 0, 0) is a saddle with a 2–dimensional stable manifold and an 1–dimensional
unstable manifold for all parameters.

(ii) Ê1

(
r1

a1
, r3

b1
, 0

)
has the following local phase portraits depending on the values

of the parameters.
(ii.a) Ê1 is a non-hyperbolic equilibrium with an 1-dimensional stable man-

ifold and a 2-dimensional center manifold if r1

a1
< r2

a2
;

(ii.b) Ê1 is a zero-Hopf equilibrium with a 3-dimensional center manifold if
r1

a1
= r2

a2
;



GLOBAL DYNAMICS OF THREE DIMENSIONAL LOTKA–VOLTERRA MODELS 15

(ii.c) Ê1 is a non-hyperbolic equilibrium with an 1-dimensional unstable
manifold and a 2-dimensional center manifold if r1

a1
> r2

a2
.

(iii) Ê2

(
r2

a2
, 0, r3

b2

)
has the following local phase portraits depending on the values

of the parameters.
(iii.a) Ê2 is a non-hyperbolic equilibrium with an 1-dimensional unstable

manifold and a 2-dimensional center manifold if r1

a1
< r2

a2
;

(iii.b) Ê2 is a zero-Hopf equilibrium with a 3-dimensional center manifold if
r1

a1
= r2

a2
;

(iii.c) Ê2 is a non-hyperbolic equilibrium with an 1-dimensional stable man-
ifold and a 2-dimensional center manifold if r1

a1
> r2

a2
.

(iv) Each positive equilibrium Ê+ is a zero-Hopf equilibrium with 3-dimensional
center manifold.

It is clear that system (9) has three invariant planes S = 0, x1 = 0 and x2 = 0,
respectively. Our objective is to study the global dynamics of system (9) in R

3
+.

However, it is not clear whether or not all solutions of system (9) with positive
initial conditions are bounded in forward time. So we must study the equilibria
of system (9) at infinity. Using the Poincaré compactification of R

3
+ and similar

arguments to those of section 2, we obtain the following result

PSfrag replacements
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0

Figure 4. The phase portrait of system (9) near all equilibria at
infinity on S

2.

Proposition 13. The following two statements hold.

(i) System (9) restricted to the compactification of the octant R
3
+ has an iso-

lated equilibrium Ôi at infinity which is the endpoint of the invariant positive

S–axis, and has a line filled of equilibria ÊI at infinity which is the end of
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the invariant plane S = 0 intersection with the compactification of the oc-
tant R

3
+. This line of equilibria fills the quarter of the maximal circle at

infinity with the endpoints of the invariant positive x1–axis and x2–axis.

(ii) Furthermore, Ôi is degenerate with two dimensional unstable manifolds and
one dimensional center manifold living in the invariant S-axis, and each
degenerate equilibria ÊI has 1–dimensional stable manifold living at infinity
and two 1-dimensional unstable ones living in the invariant plane S = 0,
which is the central manifold of the point ÊI . Moreover, the behavior of the
flow near these two 1–dimensional manifolds in the finite positive octant
is like a hyperbolic sector. The phase portrait of these equilibria on S

2 is
shown in Figure 4.

According to Proposition 13 we get the next result.

Theorem 14. All orbits of system (9) with positive initial conditions are positive
and bounded.

3.2. Global dynamics of system (9). From Proposition 11, we know that system
(9) has positive equilibria if and only if r1

a1
= r2

a2
. Thus, we discuss the global

dynamics of system (9) depending on the relation between of r1

a1
and r2

a2
.

Theorem 15. The following statements hold for the solutions of system (9) with
positive initial values.

(i) If r1

a1
> r2

a2
, then all orbits of system (9) in Int(R+

3) are asymptotic to some
orbits on the Sx2-plane in forward time, and all orbits on the Sx2-plane

are closed orbits except the equilibrium Ê2

(
r2

a2
, 0, r3

b2

)
. The phase portrait

of system (9) in Int(R+
3) is shown in Figure 5.

(ii) If r1

a1
= r2

a2
, then system (9) in IntR3

+ has two independent first integrals

F (S, x1, x2) = c1 and G(S, x1, x2) = c2, which completely determines the
dynamics of system (9) in IntR3

+, where F (S, x1, x2) = xa2
1 x−a1

2 ,

G(S, x1, x2) =
b1
a1

x1 +
b2
a2

x2 + S − r3
a1

ln x1 −
r1
a1

ln S,

and c1 and c2 are arbitrary constants. Furthermore, all orbits of system (9)

are closed orbits except Ê+. The phase portrait of system (9) in Int(R+
3)

is shown in Figure 6.

(iii) If r1

a1
< r2

a2
, then all orbits of system (9) in Int(R+

3) are asymptotic to the
orbits on the Sx1-plane in forward time, and all orbits on the Sx1-plane

are closed orbits except the equilibrium Ê1

(
r1

a1
, r3

b1
, 0

)
. The phase portrait

of system (9) in Int(R+
3) is shown in Figure 7.

Proof. Using arguments similar to the ones of the proof of Theorem 8, the fact that

Ê2

(
r2

a2
, 0, r3

b2

)
is a center on the Sx2-plane, and Ê1

(
r1

a1
, r3

b1
, 0

)
is a center on the

Sx1-plane, we can obtain statements (i) and (iii). Hence, we only need to prove
statement (ii).

Since the function F (S, x1, x2) satisfies

dF (S, x1, x2)

dt

∣∣∣∣
(9)

= a1a2

(
r1
a1

− r2
a2

)
F (S, x1, x2),
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Figure 5. Global dynamics of system (9) when r1
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Figure 6. Global dynamics of system (9) when r1

a1
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.

dF (S,x1,x2)
dt

∣∣∣
(9)

≡ 0 in Int(R+
3) if and only if r1

a1
= r2

a2
. Hence, F (S, x1, x2) = c1 is

a first integral of system (9) by definition of the first integral, where c1 is any a
constant.

And the function G(S, x1, x2) satisfies

dG(S, x1, x2)

dt

∣∣∣∣
(9)

= b2

(
r1
a1

− r2
a2

)
x2,
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dG(S,x1,x2)
dt

∣∣∣
(9)

≡ 0 in Int(R+
3) if and only if r1

a1
= r2

a2
. Hence, G(S, x1, x2) = c2 is

the other first integral of system (9) by definition of the first integral, where c2 is
any a constant.

It can be checked that the two functions, F (S, x1, x2) and G(S, x1, x2), are func-
tionally independent. Thus, system (9) has two independent first integrals, which
implies that system (9) is completely integrable, and all orbits of system (9) in
IntR3

+ are the intersection curves of the invariant surface F (S, x1, x2) = c1 and the
invariant surface G(S, x1, x2) = c2 in IntR3

+.

Let

F (S, x1, x2) = c1, c1 > 0.

Then the invariant surfaces, F (S, x1, x2) = c1, of system (9) foliate the interior of
the first octant (i.e. IntR3

+). On each leaf F (S, x1, x2) = c1, system (9) has a unique

positive equilibrium Ê+( r1

a1
, x1, x2) satisfying x1 = (c1x

a1
2 )

1
a2 and b1x1 + b2x2 = r3.

We will demonstrate analytically that each leaf is filled with periodic orbits of
system (9) and unique the positive equilibrium Ê+ in IntR3

+.

Note that the flow of system (9) is invariant on each foliation F (S, x1, x2) = c1
with c1 > 0. Thus, the global dynamics of system (9) in IntR3

+ is equivalent to that
of system (9) restricted on each foliation F (S, x1, x2) = c1 for any a c1 > 0.

We now consider the restricted system

dS(t)

dt
= S(t)

(
r3 − b1(c1x

a1
2 (t))

1
a2 − b2x2(t)

)
,

dx2(t)

dt
= x2(t) (−r2 + a2S(t)) .

(10)
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From the above analysis, we know that system (10) has a unique positive equi-
librium at ( r2

a2
, x+

2 ), where x+
2 is the unique positive solution of

b1(c1x
a1
2 )

1
a2 + b2x2 = r3.

By computing the Jacobian matrix of system (10) at ( r2

a2
, x+

2 ), we have that the

equilibrium is a linear center of system (10). And system (10) has a first integral

b1
a1

(c1x
a1
2 )

1
a2 +

b2
a2

x2 + S − r3
a1a2

ln(c1x
a1
2 ) − r1

a1
ln S = c, c > 0.

Therefore the equilibrium ( r2

a2
, x+

2 ) is a center of system (10) and all the orbits of

system (10) are closed orbits except this equilibrium on the foliation. Because c1
is any positive constant, we obtain that all orbits of system (9) are closed orbits

except Ê+. Hence, the proof is finished. �

Remark 16. When r1

a1
= r2

a2
Theorem 15 shows that system (9) is completely

integrable in IntR3
+. But it is not a bi-Hamiltonian system (see [21]).

The global dynamics of system (9) demonstrate that the principle of competitive
exclusion holds for system (9) if and only if r1

a1
6= r2

a2
. And the three species (two

predators and a prey) will coexist in the form of periodic oscillation if r1

a1
= r2

a2
.

4. Discussion

In this paper we completely analysis the global dynamics of the simplest two
predators and a prey Lotka-Volterra model and find that the carrying capacity
of the prey K and the ratio of the yield rate and the death rate for predators ri

ai
,

i = 1, 2 play important roles in the global dynamics of this model. This implies some
interesting biology results. If the resource for prey is limited (i.e. K is bounded),
then there are only three possibilities for two predators species and one prey species:
either the principle of competitive exclusion holds, or the coexistence of three species
in a stable steady state or the extinction of two predator species and the existence of
prey. On the other hand, if the resource for prey is unlimited (i.e. K is unbounded),
then there are only two possibilities for two predators species and one prey species:
either the principle of competitive exclusion holds, or the coexistence of three species
in periodic oscillations. These results lead to a new insight into the mechanism of
natural selection and provide a new approach to the problem of biological pest
control. Usually biological pest control requires the introduction of a harmless or
less harmful predator decreasing the pest predator population to an acceptable
level or completely annihilated the pest predator population, which implies the
introduced predator species must have a higher survival capacity than the pest
predator has in our imagination. Our results show that the intuition is true if the
resource for prey is unlimited, and the intuition is not always true if the resource
for prey is limited because the two predator species can eventually become extinct
and only prey species survives (see statement (ii) of Theorem 7). Hence, this makes
sense biologically in pest control.

It is worth to mention that the analysis method in this paper can be applied to m
predators and n prey Lotka-Volterra model though our analysis uses the simplest
two predators and a prey Lotka-Volterra model. The global dynamics of the m
predator and n prey Lotka-Volterra model leaves to be revealed in future.
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