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Abstract. The period annuli of the planar vector field x′ = −yF (x, y), y′ = xF (x, y),
where the set {F (x, y) = 0} consists of k different isolated points, is defined by k + 1
concentric annuli. In this paper we perturb it with polynomials of degree n and we
study how many limit cycles bifurcate, up to a first order analysis, from all the period
annuli simultaneously in terms of k and n. Additionally, we prove that the associated
Abelian integral is piecewise rational and, when k = 1, the provided upper bound is
reached. Finally, the case k = 2 is also treated.

1. Introduction

Let H, f, g be polynomials in x, y such that γh ⊆ {H(x, y) = h} , with h ∈ (h0, h1),
are simple closed curves around the point (x0, y0) = γh0. Then the system





ẋ =
∂H(x, y)

∂y
+ εf(x, y),

ẏ = −∂H(x, y)

∂x
+ εg(x, y),

(1)

has a center at (x0, y0) when ε = 0. V. I. Arnold, see [1, 2], states the weak Hilbert
16th problem asking for the maximum number of isolated zeros of the Abelian integral,
associated to system (1),

I(h) =

∮

γh

(f(x, y)dy − g(x, y)dx) . (2)

For this case we have that I(h) is the first order approximation of the Poincaré map.
Then, each simple zero of I, h∗, corresponds to a limit cycle of (1) bifurcating from γh∗

for ε small enough, see [17, 18]. This function is also known as the Poincaré-Pontrjagin-
Melnikov function of system (1).
Usually, the centers studied up to now have only one period annulus or, when they

have more than one, the study is restricted to one of them. There are not so many
papers focused on the study of simultaneous bifurcation of limit cycles from centers
with different period annuli. Some of them are [5, 8] that deal with the simultaneity
in two different regions, or [7] where three separated period annuli appear. A study of
the bifurcation of limit cycles from different period annuli of polynomial Hamiltonian
systems to obtain lower bounds for the Hilbert number is done in [4] and, more recently,
in [14]. In this paper, we consider a center with nested period annuli. The main goals
are that we obtain an explicit expression for the Abelian integral and that we can study
the number of zeros in all regions simultaneously.
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More concretely, the aim of this paper is to study the number of limit cycles that
bifurcate, for ε small enough, from system{

ẋ = y K(x, y) + εP (x, y),
ẏ = −xK(x, y) + εQ(x, y),

(3)

where P and Q are arbitrary real polynomials of degree n and K(x, y) is an specific
kind of polynomial. There are several papers where different K(x, y) are considered.
In [12, 19, 20] the set {K(x, y) = 0} represents a straight line of simple or multiple
singular points. In [3, 11, 13], the problem when K(x, y) are some concrete quadratic
polynomials is considered. When the set {K(x, y) = 0} represents a collection of straight
lines parallel to one or two orthogonal directions is studied in [9]. Here K is defined
by a collection of k different points. We refer them as the singularities of system (3) or
the extra singularities in order to distinguish them from the origin. This work can be a
considered as a continuation of [10], where only the first period annulus is studied. In
[11], among other general conics, the case of one singularity is also done for both period
annuli, but only under cubic perturbations. Our aim is to obtain the maximum number
of limit cycles that bifurcate from the periodic orbits of all period annuli simultaneously,
for a fixed collection of singularities, up to a first order study.
Where K(x, y) does not vanish, after a time rescaling, system (3) is equivalent to





ẋ = y + ε
P (x, y)

K(x, y)
,

ẏ = −x+ ε
Q(x, y)

K(x, y)
.

(4)

The above system corresponds to a rational perturbation of the harmonic oscillator, and
the level curves of the unperturbed system are the circles γr={(x, y) ∈ R2 : x2+y2=r2} .
Then, as we have mentioned above, the number of perturbed limit cycles that equa-
tion (4) can have, up to a first order analysis, can also be bounded below by the number
of simple zeros of

I(r) =

∮

γr

P (x, y)dy −Q(x, y)dx

K(x, y)
. (5)

In fact, this is the problem that we consider along this paper: the study of the number
of simultaneous zeros of (5) for

K(x, y) =
k∏

j=1

(
(x− aj)

2 + (y − bj)
2
)

(6)

where (aj , bj) are k different points in R2. We consider only the generic situation where
these points are isolated and nonaligned with the origin. More concretely, they satisfy

0 < r̃1 < . . . < r̃k if r̃j =
√
a2j + b2j , j = 1, . . . , k. As the associated Abelian integral

is not well defined for each r, we restrict our results to the level curves, γr, completely
contained in

Rj =
{
(x, y) ∈ R2 : r̃2j = a2j + b2j < x2 + y2 < a2j+1 + b2j+1 = r̃2j+1

}
,

for j = 0, . . . , k − 1, considering (a0, b0) = (0, 0) and Rk = {(x, y) ∈ R2 : a2k + b2k <
x2+y2}. See Figure 1 for a particular configuration with three singularities. The above
regions are also indicated.
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Figure 1. Example of location of the singularities (aj, bj) and the regions
Rj for k = 3

For the general case, we prove the following result.

Theorem 1. Let k and n be a pair of natural numbers. Given system (4) with K(x, y)
defined in (6) and P and Q polynomials of degree n, then the Abelian integral I(r),
defined in (5), is a piecewise rational function in r2. In fact, we can identify I with the
vector (I0, . . . , Ik) where Ij(r) = I(r) if γr ⊂ Rj for j = 0, . . . , k. So, moreover, the
number or zeros of Ij is lower than or equal to N = [max{n+ 1, (2k − 1)(k − 1)}/2] +
n + 1 + (2k − 1)(k − 1) for j = 1, . . . , k − 1 and lower than or equal to N − min{n +
1, (2k − 1)(k − 1)} for j = k. We have denoted by [·] the integer part function.

When we fix the value of k we improve the upper bounds.

Theorem 2. Under the conditions stated in Theorem 1, the number of simultaneous
zeros of system (3) for k = 1, up to a first order analysis, is at most n + [(n+ 1)/2] .
Additionally, given a pair (i, j) of natural numbers such that i ≤ n and j ≤ [(n + 1)/2],
there exist P, Q polynomials of degree n such that system (3) has at least i and j
bifurcated limit cycles in R0 and R1, respectively. We have denoted by [·] the integer
part function.

The above result generalizes a result of [11] for the case of two complex straight
lines intersecting in a real point. Although, we consider every value of n instead of a
perturbation in the cubic class.

Theorem 3. Under the assumptions of Theorem 1, the number of zeros of I0, I1 and
I2, for k = 2, is lower than or equal to n + 4, n + 5 and [(n+ 1)/2] + 4, respectively.
Hence the total number of zeros of I is bounded by 2n+ [(n+ 1)/2] + 13. In particular,
if a1/b1 = a2/b2, the number of zeros of I0, I1 and I2 is bounded by n + 1, n + 2 and
[(n+ 1)/2] + 1, respectively. We have denoted by [·] the integer part function.

This paper is organized as follows. In Section 2, we obtain the expression of the
Abelian integral, (5), and we prove the first part of Theorem 1. Section 3 provides the
upper bounds for the number of zeros of the Abelian integrals given in the second part
of Theorem 1. Section 4 deals with the case of a unique singularity, k = 1. In particular,
we compute an explicit expression for its Abelian integral. Finally, Section 5 is devoted
to study the case k = 2.
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2. Rationality of the Abelian integral

This section is devoted to prove the rationality of the Abelian integral, I(r), defined
in (5). Next technical lemma ensures that locating a singular point at (1, 0) is not
restrictive, for example the closest to the origin.

Lemma 4. System (3) is invariant under dilations and rotations with the center at the
origin.

Proof. Rotations and dilations are linear transformation of the space. So, they do
not change the form of system (3) nor the degree of the polynomials. Moreover, the
transformed system has also the inner structure of being a polynomial perturbation of a
linear center multiplied by a function like K(x, y) with the zeros located in other place
but with the same properties of the original one. �

Although there is not a unique way to express 1/K(x, y), for K given in (6), as a
sum of partial fractions, the following lemma gives us a possible decomposition for every
value of k.

Lemma 5. For all k,

1
k∏

j=1

Fj(r, cos t, sin t)

=

k∑

j=1

Aj(r
2, r cos t, r sin t)

D(r2)Fj(r, cos t, sin t)
,

where Fj(r, cos t, sin t) = r2−2ajr cos t−2bjr sin t+a
2
j + b

2
j , Aj and D, for j = 1, . . . , k,

are polynomials of degree (2k − 1)(k − 1) and 2k(k − 1), respectively.

Proof. We consider the conjugate of each term in the denominator of the expression of
the statement, i.e. the polynomial Gj(r, cos t, sin t) = r2−2ajr cos t+2bjr sin t+a

2
j + b

2
j

for j = 1, . . . , k. Thus

FjGj =4(a2j + b2j )r
2 cos2 t− 4aj(a

2
j + b2j + r2)r cos t

+ (r2 + a2j − 2rbj + b2j )(r
2 + a2j + 2rbj + b2j ).

This polynomial, seen as a one variable polynomial with respect to r cos t, has a negative
discriminant, −16(a2j + b2j − r2)2b2j < 0. Therefore, by the one variable Partial Fraction
Decomposition Theorem, there exist polynomials, Bj , with degree one such that for
each k, we have

( k∏

j=1

FjGj

)−1

=
k∑

j=1

Bj(r cos t)

FjGj
.

In fact Bj(r cos t) = ρj(r
2)r cos t + ξj(r

2), with ρj and ξj rational functions. The ex-
pressions of ρj and ξj can be found solving a linear system with 2k equations and 2k
variables. This system comes from the equation

1 =
k∑

i=1

( k∏

j=1
j 6=i

FjGj

)(
ρi(r

2)r cos t+ ξi(r
2)
)
.

We just study the degrees of the polynomials involved in the matrix of the above
system. Let us denote by ∆l a non-fixed polynomial of degree l with respect to r2.
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Consequently the system can be written as




0 · · · 0 ∆2k−2 · · · ∆2k−2

∆2k−2 · · · ∆2k−2 ∆2k−3 · · · ∆2k−3
...

. . .
...

...
. . .

...
∆1 · · · ∆1 ∆0 · · · ∆0

∆0 · · · ∆0 0 · · · 0







ρ1
...
ρk
ξ1
...
ξk




=




1
0
...
0


 . (7)

Therefore, by the Cramer’s rule, the solutions ρj and ξj, as products of one term from
each different row and column of the matrix of the linear system of equations (7), M ,
have the following rational form

ρj =
∆−k+ℓ

∆k−1+ℓ
=

∆2(k−1)2−1

∆2k(k−1)

, and ξj =
∆−(k−1)+ℓ

∆k−1+ℓ
=

∆2(k−1)2

∆2k(k−1)

,

where ℓ =
2(k−1)∑
l=1

l. In fact both expressions have the same denominator, the determinant

of M .
Now we can consider

1
k∏

j=1

Fj

=

k∏
l=1

Gl

k∏
j=1

FjGj

=
k∑

j=1

Bj(cos t)
k∏

l=1

Gl

FjGj

=
k∑

j=1

Bj(cos t)
k∏

l=1
l 6=j

Gl

Fj

.

Hence we just need to take Aj(r
2, r cos t, r sin t) as the numerator of Bj(cos t)

k∏
l=1
l 6=j

Gl and

D(r2) as the determinant of M , so D is a polynomial of degree 2k(k − 1).
Additionally, by the definition of Gl,

k∏

l=1
l 6=j

Gl = ∆0(r
2)∆k−1(r cos t, r sin t) + · · ·+∆k−2(r

2)∆1(r cos t, r sin t) + ∆k−1(r
2),

and it follows that

Aj =
(
∆2(k−1)2−1(r

2)r cos t+∆2(k−1)2(r
2)
) k∏

l=1
l 6=j

Gl = ∆(2k−1)(k−1)(r
2, r cos t, r sin t).

This completes the proof. �

In order to obtain a general expression of I(r) additionally to the previous results we
need the following one. It is a generalization of [10, Lemma 2.2]. Our proof is considered
as a corollary of that one, instead of an adapted one. The statement here is given in
terms of Chebyshev’s polynomials, see more information about them in [6].
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Lemma 6. For all l ∈ N, we have that

Icl (r) =

∫ 2π

0

cos(lt)

r2 + a2 + b2 − 2ar cos t− 2br sin t
dt

=





2π

(a2 + b2)l/2
Tl

(
a√

a2 + b2

)
rl

a2 + b2 − r2
0 ≤ r <

√
a2 + b2,

2π(a2 + b2)l/2 Tl

(
a√

a2 + b2

)
r−l

r2 − (a2 + b2)
r >

√
a2 + b2,

Isl (r) =

∫ 2π

0

sin(lt)

r2 + a2 + b2 − 2ar cos t− 2br sin t
dt

=





2π b

(a2 + b2)(l+1)/2
Ul−1

(
a√

a2 + b2

)
rl

a2 + b2 − r2
0 ≤ r <

√
a2 + b2,

2π b (a2 + b2)(l−1)/2 Ul−1

(
a√

a2 + b2

)
r−l

r2 − (a2 + b2)
r >

√
a2 + b2,

where Tl and Ul are the Chebyshev’s polynomials of first and second kind of degree l,
respectively.

Proof. We consider the change t = τ + θ taking the unique value of θ ∈ (0, 2π) such
that sin θ = b/

√
a2 + b2 and cos θ = a/

√
a2 + b2, so

Icl (r) =

∫ 2π

0

cos(l(τ + θ))

r2 + a2 + b2 − 2ar cos(τ + θ)− 2br sin(τ + θ)
dτ

=

∫ 2π

0

cos(lτ) cos(lθ)− sin(lτ) sin(lθ)

r2+a2 + b2−2r(a cos θ+b sin θ) cos τ−2r(b cos θ−a sin θ) sin τ dτ

=

∫ 2π

0

cos(lθ) cos(lτ)− sin(lθ) sin(lτ)

r2 + a2 + b2 − 2r
√
a2 + b2 cos τ

dτ.

(8)

The change of variable r = ρ
√
a2 + b2 transforms equation (8) to the form given on

the hypothesis of [10, Lemma 2.2]. Therefore,

Icl (r) =
cos(lθ)

a2 + b2

∫ 2π

0

cos(lτ)

ρ2 + 1− 2ρ cos τ
dτ +

sin(lθ)

a2 + b2

∫ 2π

0

sin(lτ)

ρ2 + 1− 2ρ cos τ
dτ

=





2π
cos(lθ)

a2 + b2
ρl

1− ρ2
0 ≤ ρ < 1,

2π
cos(lθ)

a2 + b2
1

(ρ2 − 1)ρl
ρ > 1.

Now, if we undo the change in r, we have that

Icl (r) =





2π
cos(lθ)

a2 + b2 − r2
rl

√
a2 + b2

l
0 ≤ r <

√
a2 + b2,

2π
cos(lθ)

r2 − (a2 + b2)

√
a2 + b2

l

rl
r >

√
a2 + b2.
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By the definition of θ and the properties of the Chebyshev’s polynomials Tl, see [16],
we obtain

cos(lθ) = Tl(cos θ) = Tl

(
a√

a2 + b2

)
.

This gives us the expression of the statement of the lemma.
The proof finishes doing analogous computations for

Isl (r) =





2π
sin(lθ)

a2 + b2 − r2
rl

√
a2 + b2

l
0 ≤ r <

√
a2 + b2,

2π
sin(lθ)

r2 − (a2 + b2)

√
a2 + b2

l

rl
r >

√
a2 + b2

and

sin(lθ) = sin θUl−1(cos θ) =
b√

a2 + b2
Ul−1

(
a√

a2 + b2

)
.

�
Now we have the tools to prove the first part of Theorem 1, that is the rationality of

(5).

Proposition 7. Let k and n be a pair of natural numbers. Given system (4) with

K(x, y) =
k∏

j=1

((x− aj)
2 + (y − bj)

2) and P and Q been polynomials of degree n. Then

the Abelian integral I(r), defined in (5), is a piecewise rational function in r2. Moreover,
the expression of I(r) depends on the position of γr with respect to the period annuli
Rj, so we can identify I with the vector (I0, . . . , Ik) where Ij(r) = I(r) if γr ⊂ Rj for
j = 0, . . . , k.

Proof. After changing to polar coordinates and using the usual trigonometric identities,
the expression of I(r) at (5) writes as

I(r) =

∫ 2π

0

Q(r cos t, r sin t)r sin t+ P (r cos t, r sin t)r cos t
k∏

j=1

(
r2 − 2raj cos t− 2rbj sin t + a2j + b2j

) dt

=
n+1∑

m=1

rm
∫ 2π

0

m∑
l=0

(αlm cos(lt) + βlm sin(lt))

k∏
j=1

(r2 − 2raj cos t− 2rbj sin t+ a2j + b2j )

dt,

(9)

where αlm and βlm are independent real coefficients such that if l and m are not of the
same parity then αl m = βl m = 0. Finally, ordering and gathering coefficients,

I(r) =

n+1∑

l=0

rlRl(r
2)

∫ 2π

0

cos(lt)
k∏

j=1

(r2 − 2raj cos t− 2rbj sin t + a2j + b2j)

dt

+

n+1∑

l=1

rlSl(r
2)

∫ 2π

0

sin(lt)
k∏

j=1

(r2 − 2raj cos t− 2rbj sin t+ a2j + b2j )

dt,

(10)

where Rl(r
2) and Sl(r

2) are polynomials of degree at most [(n+ 1− l)/2] with arbitrary
coefficients for all l = 0, . . . , n+ 1.
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Lemma 5 allows us to break up the rational functions in the integrand of (10) as a
sum of more simple functions and Lemma 6 gives us an expression for the integral of
each term. As every of that expressions are rational piecewise functions of r2, we can
assure that the sum of them is also a rational piecewise function of r2. �

3. Upper bounds for the number of zeros of the Abelian integral

Proposition 7 provides a vectorial notation for the Abelian integral (5), then we
extend it to our problem. Hence, we consider the following definitions.

Definition 8. Fixed a natural number k, a vector Z = (z0, . . . , zk) ∈ Nk+1 is called
a configuration of simultaneous zeros of I = (I0, . . . , Ik) if there exists a collection of
points (ai, bi) for i = 1, . . . , k such that Ij(r) has exactly zj zeros contained in (r̃j , r̃j+1)
for every j = 0, . . . , k where r̃k+1 = ∞.

Since the set of configurations of zeros of I is contained in Nk+1, we can induce an
structure on it. Consequently, we can define a partial order relation (known as the
product order) and a norm (the norm of the sum) on the set of configurations.

Definition 9. Given Z = (z0, . . . , zk) and W = (w1, . . . , wk) two configurations of
simultaneous zeros of I, we say that Z ≤ W if zj ≤ wj for every j = 0, . . . , k. Moreover,
we define the norm of Z as |Z| = z0 + . . .+ zk.

From this partial order on the set of configurations and the rationality of I, Theorem 1,
the next result is obtained.

Corollary 10. The maximum of the configurations of simultaneous zeros of I, ZM ,
exists.

Additionally, as the set of configurations of I is bounded, it should be finite. This
fact gives the existence of maximal configurations. A configuration Z is called maximal
if there not exist any other configuration of simultaneous zeros of I greater than Z.
We remark that maximal configurations of I are, in general, not unique. See a detailed
study, among others, of this fact for k = 2 and n = 1 in [15].
Although the expressions of the corresponding Ij are unique, the bounds on its degrees

that can be achieve depend on the Partial Fraction Decomposition of 1/K(x, y), that
is not unique. For fixed values of k the above result can be improved. In next section
we present better explicit values of upper bounds for k = 1.

Proposition 11. Under the hypotheses of Theorem 1, we have

ZM ≤ (N, . . . , N,N −min{n+ 1, (2k − 1)(k − 1)}) ,

where N =

[
max{n+ 1, (2k − 1)(k − 1)}

2

]
+ n+ 1 + (2k − 1)(k − 1). So,

|ZM | ≤ kn+ (k + 3)

[
max{n+ 1, (2k − 1)(k − 1)}

2

]
+ k(2k2 − 3k + 2).

Where [·] denotes the integer part function.

Proof. From the proof of Proposition 7, the numerator of I(r) can be studied from the
numerator of the integrand of (10), that is

R0(r
2) +

n+1∑

l=1

rl
(
Rl(r

2) cos(lt) + Sl(r
2) sin(lt)

)
.
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The numerators that appear applying Lemma 5 are

Aj(r
2, r cos t, r sin t) =

κ∑

i=0

κ∑

m=i

αi,m(r
2)rm cosi t sinm−i t

for every j = 1, . . . , k, where κ = (2k − 1)(k − 1) and αi,m are polynomials of degree
κ−m.
We can write cos(lt) cosi t sinm−i t as a real combination of the functions

cos((l +m)t), cos((l +m− 2)t), cos((l +m− 4)t), . . . if m− i is even, and

sin((l +m)t), sin((l +m− 2)t), sin((l +m− 4)t), . . . if m− i is odd,

for every i = 1, . . . , κ and m = i, . . . , κ. Likewise, function sin(lt) cosi t sinm−i t writes
as a real combination of

sin((l +m)t), sin((l +m− 2)t), sin((l +m− 4)t), . . . if m− i is even, and

cos((l +m)t), cos((l +m− 2)t), cos((l +m− 4)t), . . . if m− i is odd,

for every i = 1, . . . , κ and m = i, . . . , κ.
Therefore the numerator of the integrand for each term in the Abelian integral can

be written as

R̃0(r
2) +

n+1+κ∑

λ=1

rλ
(
R̃λ(r

2) cos(λt) + S̃λ(r
2) sin(λt)

)
. (11)

Here R̃λ(r
2) and S̃λ(r

2) are polynomials of degree

max

{[
n+ 1− l

2

]
+ κ−m :

l = max{0, λ− κ}, . . . , n+ 1
m = max{0, λ− (n+ 1)}, . . . , κ

}

for every λ = 0, . . . , n+ 1 + κ and [·] denotes the integer part function. That is

deg R̃λ = deg S̃λ =





[(n+ 1)/2] + κ if λ ≤ min {n+ 1, κ} ,
[(n+ 1)/2] + κ− λ+ n+ 1 if n+ 1 < λ ≤ κ,

[(n+ 1 + κ− λ)/2] + κ if κ < λ ≤ n+ 1,

[(n+ 1 + κ− λ)/2] + κ− λ+ n+ 1 if max {n+ 1, κ} ≤ λ.

Then, using (11), the degree of the numerator of the Abelian integral, Î(r), depends on
the region where r is considered. That is

deg Î(r) =




deg Îj(r) = max

λ=0,...,n+1+κ
{deg R̃λ + λ}, if r2 < a2j+1 + b2j+1, j = 0, . . . , k − 1,

deg Ik(r) = max
λ=0,...,n+1+κ

{deg R̃λ} if r2 > a2k + b2k,

where Îj(r) denotes the numerator of Ij(r) for j = 0, . . . , k. Hence,

deg Îj(r) = 2max

{[
n+ 1

2

]
+ κ+min{n+ 1, κ},

[
n + 1

2

]
+ κ,

[κ
2

]
+ κ + n+ 1,

[
max{n+ 1, κ}

2

]
+ κ + n+ 1

}
= 2

([
max{n+ 1, κ}

2

]
+ κ+ n + 1

)

for j = 0, . . . , k − 1 and

deg Îk(r) = 2max

{[
n + 1

2

]
+ κ,

[
max{n+ 1, κ}

2

]
+max{n+ 1, κ}

}

=2

([
max{n + 1, κ}

2

]
+max{n+ 1, κ}

)
.
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Finally, the total number of zeros, except the origin, is bounded by the sum of all the
degrees. So, the bound is given by

|ZM| ≤ k (n+ 1 + κ) + (k + 1) [max{n + 1, κ}/2] + max{n + 1, κ} − 1

≤ kn + (k + 3) [max{n+ 1, κ}/2] + k(2k2 − 3k + 2).

�
The proof of the second part of Theorem 1 follows directly from the latter result.

4. Simultaneity of zeros for one singularity

The aim of this section is to improve the general bound for the number of zeros of I
provided by Theorem 1 when we have only one extra singularity, that is the case k = 1.

Proposition 12. Let (a, b) be the singularity of system (3) with k = 1. Then the Abelian
integral I(r), defined in (5), is the piecewise rational function

I(r) =





r2Φ(r2)

a2 + b2 − r2
if 0 < r <

√
a2 + b2,

Ψ(r2)

a2 + b2 − r2
if

√
a2 + b2 < r,

(12)

where Φ and Ψ are polynomials of degree less than or equal to n and [(n+ 1)/2], respec-
tively. So,

∣∣ZM
∣∣ ≤ n + [(n+ 1)/2], where [·] denotes the integer part function.

Proof. After a rescaling and a rotation, see Lemma 4, the singularity can be located at
(1, 0).
Fixed P and Q in (3) we have

I(r) =

∫ 2π

0

Q(r cos t, r sin t)r sin t+ P (r cos t, r sin t)r cos t

r2 + 1− 2r cos t
dt.

Following the procedure in the proof of Proposition 7, I(r) can be written as

I(r) =

n+1∑

l=0

rlRl(r
2)

∫ 2π

0

cos(lt)

r2 + 1− 2r cos t
dt+

n+1∑

l=1

rlSl(r
2)

∫ 2π

0

sin(lt)

r2 + 1− 2r cos t
dt.

By Lemma 6, the terms corresponding to the second summation vanish because b = 0.
Then, we only need to consider the first one taking into account the relative position of
the point (1, 0) and the circle γr. When 0 < r < 1 we have

I(r) = I0(r) = 2π
1

1− r2

n+1∑

l=0

r2lRl(r
2) = 2π

r2

1− r2
Φ̂(r2),

where

Φ̂(s) =

n+1∑

l=0

sl−1Rl(s) =

n∑

i=0

φis
i. (13)

And, when 1 < r,

I(r) = I1(r) = 2π
1

r2 − 1

n+1∑

l=0

Rl(r
2) = 2π

1

1− r2
Ψ̂(r2),

where

Ψ̂(s) = −
n+1∑

l=0

Rl(s) =

[(n+1)/2]∑

j=0

ψjs
j . (14)
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Moreover, the coefficients {φi} and {ψj} are linear combinations of the coefficients
{αl,m} given by (9) in the proof of Proposition 7.
The proof finishes recovering the original radius, before the rescaling considered at the

beginning. Consequently, the functions Φ and Ψ of the statement are also polynomials

of the same degree than Φ̂ and Ψ̂, respectively. �

Proposition 13. Let n be a natural number, k = 1 and (a, b) = (1, 0). Given every pair
i and j such that i ≤ n and j ≤ [(n + 1)/2] and given x1, . . . , xi ∈ (0, 1), xi+1 . . . , xn /∈
(0, 1), y1, . . . , yj ∈ (1,∞) and yj+1, . . . , y[(n+1)/2] /∈ (1,∞), then there exist P and Q of
degree n such that I(r), defined in (5), has exactly i zeros in (0, 1) located in {xk} and
j zeros in (1,∞) located in {yl}.

Proof. When n = 0, Φ and Ψ are constants. Hence there are no isolated zeros and the
statement is proved.
For the other cases, n ≥ 1, we can choose P and Q, from the proof of Proposition 7,

such that the values of {αl,m} are arbitrary. Then the proof follows showing that the
polynomials Φ(s) and Ψ(s), from (13) and (14), have exactly the configuration of zeros
given in the statement. The main problem is that the values of {φi} and {ψj} are not
independent. This is due to the fact that, from expressions (13) and (14),

Φ(1) + Ψ(1) = 0. (15)

We use this relation to determine the coefficient of the leading term of Ψ, so

ψ[(n+1)/2] = −
n∑

i=0

φi −
[(n+1)/2]−1∑

j=0

ψj .

First we show, when n is even, that the coefficients {αl,m} can be given in terms
of {φi} and {ψj}. The case when n is odd follows similarly. The system of equations
given by the expressions of {φi} and {ψj} with respect to {αl,m}, (9), is solvable if we
take out one equation. In fact, if we eliminate the equation relative to the expression
of ψ[(n+1)/2], the solution {αl,m} can be written as

αl,m =





m/2−1∑
i=0

(φi + φn−i) +
m/2−1∑
j=0

ψj if l = 0, m = 2, 4, . . . , n,

−φn − ψ0 if l = 1, m = 1,

−
(m+1)/2−2∑

i=0

φi −
(m+1)/2−1∑

i=0

φn−i−
(m+1)/2−1∑

j=0

ψj if l = 1, m = 3, 5, . . . , n− 1,

φn/2+(l−1)/2 if l = 1, 3, . . . , n+ 1, m = n+ 1

0 in other cases.

(16)
Secondly, we compute the values {φi} and {ψj} for a fixed location of the corre-

sponding zeros, taking into account (15). Given xi 6= 1, i = 1, . . . , n and yj 6= 1,

j = 1, . . . , [(n+ 1)/2], there exists a unique collection of numbers, φ̃i for i = 0, . . . , n−1

and ψ̃j for j = 0, . . . , [(n + 1)/2]− 1, such that

sn +

n−1∑

i=0

φ̃is
i =

n−1∏

i=0

(s− xi) := Φ̃(s)
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and

s[(n+1)/2] +

[(n+1)/2]−1∑

j=0

ψ̃js
j =

[(n+1)/2]−1∏

j=0

(s− yj) := Ψ̃(s)

with Φ̃(1) 6= 0 and Ψ̃(1) 6= 0. Then choosing φn = 1 and ψ[(n+1)/2] = −Φ̃(1)/Ψ̃(1) we

can define Φ(s) = φnΦ̃(s) and Ψ(s) = ψnΨ̃(s). These two functions satisfy the condition
(15) and the solution (16) provides the existence of a perturbation where the functions
Φ(s) and Ψ(s) defined in (12) are done. The arbitrariness choosing the zeros, xi and yj,
finishes the proof. �

Finally, we conclude this section proving Theorem 2.

Proof of Theorem 2. Propositions 12 and 13 and Lemma 4 allow us to choose the per-
turbation in (3) that has an associated Abelian integral with a fixed configuration of
simple zeros. So, see [18], there exist perturbations with at least every configuration of
limit cycles less than or equal to (n, [(n+ 1)/2]) . �

5. The case of two singularities

This section deals with the case k = 2, for which Theorem 3 gets a better upper
bound of the maximum configuration. Before to prove it, we introduce some technical
results. First of all, Lemma 14 transform (3) into another one which simplifies the
computations. Then, Lemma 15 gives a better rational decomposition than Lemma 5.
And Proposition 16 provides an explicit expression for I(r). Therefore, in the proof of
Theorem 3, we study the degree of the numerator of each piece of I(r). At the end of
this section we compute these degrees for the first values of n.

Lemma 14. Assuming the hypotheses of Theorem 1 with k = 2. If (a1, b1), (a2, b2) and
the origin are not collinear, equivalently a1/b1 6= a2/b2, then there exists a change of
variables that restricts the study of (3) to the case a1 = a2 = a > 0. Moreover, the
value a2j + b2j for j = 1, 2 remains unchanged.

Proof. Let us consider, in the plane (x, y), the rotation with respect to the origin of
angle θ = arctan ((a1 − a2)/(b1 − b2)) . As it is a linear transformation, it does not
modify the structure of the system, nor the degree of the perturbation (P,Q). Then,

the singularities are moved to (ã1, b̃1) and (ã2, b̃2) with

ã1 = ã2 = ã = sign(b1 − b2)
−b1a2 + a1b2√

(a1 − a2)2 + (b1 − b2)2
.

If ã is negative then we take a rotation of angle θ + π instead of θ. �

The following result provides a new partial fraction decomposition for k = 2, different
from the given in Lemma 5, such that the numerator of each addend has degree one. It
requires that a1 = a2 > 0, but this is not so restrictive using the latter lemma.

Lemma 15. Under the hypotheses of Theorem 1 for k = 2, a1 = a2 = a > 0 and
b1 6= b2, we have that:

1
2∏

j=1

Fj(r, cos t, r sin t)

= A(r2) +
2∑

j=1

Bj(r
2)(r cos t + 1) + Cj(r

2)r sin t

Fj(r, cos t, r sin t)
, (17)
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where

A(r2) =
r4 + 2(a2 − b1b2)r

2 + (a2 + b21)(a
2 + b22)− 4a2

D1(r2)D2(r2)E(r2)
,

B1(r
2) =

4ar2 + 2a(a2 + b21)(b1 − b2)

(b1 − b2)D1(r2)E(r2)
,

B2(r
2) =

−4ar2 + 2(a2 + b22)(b1 − b2)

(b1 − b2)D2(r2)E(r2)
,

C1(r
2) =

−2(a2 − b21)r
2 + 2(a2 + b21)(a

2 + 2a+ b1b2)

(b1 − b2)D1(r2)E(r2)
,

C2(r
2) =

2(a2 − b22)r
2 + 2(a2 + b22)(a

2 + 2a+ b1b2)

(b1 − b2)D2(r2)E(r2)
,

Dj(r
2) = r2 + a2 + 2a+ b2j ,

E(r2) = r4 − 2 (a2 + b1b2)r
2 + (a2 + b21)(a

2 + b22),

Fj(r, cos t, r sin t) = r2 − 2ar cos t − 2bjr sin t + a2 + b2j ,

for j = 1, 2.

Proof. The values of A, Bj , Cj, Dj and E, for j = 1, 2, follow by straightforward
computations solving the system obtained matching the coefficients of the trigonometric
functions of the numerator in both sides of equation (17). �
Proposition 16. Let A,Dj , E be the functions defined in Lemma 15. Under the same
hypotheses, the Abelian integral I(r) writes as

I(r) = 2πA(r2)R0(r
2) + 2π

2∑

j=1

n+2∑

l=0

φj,l(r
2)rl(1+(−1)δj )

(−1)δj (a2 + b2j − r2)
, (18)

where δj =

{
0 if r2 < a2 + b2j ,

1 if r2 > a2 + b2j ,
for j = 1, 2. Moreover, taking s = r2, R0(s) is a

polynomial of degree [(n + 1)/2] and the φj,l(s) are rational functions depending on
a, b1, b2 and n. The numerator of each φj,l, for j = 1, 2 and l = 0, . . . , n+2, has degree
lower than or equal to 2+[(n− l)/2] and the denominator is the polynomial Dj(s)E(s),
which has degree 3.

Proof. The proof follows as the proof of Proposition 7, applying Lemma 15 instead of
Lemma 5. �
Proof of Theorem 3. Under the notation introduced in Section 3, the statement is proved
if we see that

ZM(n, 2) ≤





(
n + 4, n+ 5,

[
n + 1

2

]
+ 4

)
if a1/b1 6= a2/b2,

(
n + 1, n+ 2,

[
n + 1

2

]
+ 1

)
if a1/b1 = a2/b2.

We distinguish two cases: when the singularities (aj , bj) are collinear with the origin
and when they are not. For the non collinear case, Lemma 14 and Proposition 16 provide
explicit expressions for I on each period annulus. The collinear case, a1/b1 = a2/b2,
follows similarly but using the decomposition introduced in [10].
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Finally, a careful study on the degree of the numerator of each Ij, as the one developed
in the proof of Proposition 11, gives the upper bounds of the number of zeros described
in the statement. �
Although the different decompositions given in Lemmas 5 and 15, the expression

of I(r) is unique. For concrete values of n and k, straightforward computations show
that, the bounds provided by Theorem 3 are larger than the explicit degrees. Table 1
summarizes the values of the maximum configuration, ZM , for k = 2 and n ≤ 6. These
computations have been done using the algebraic manipulator MAPLE. In fact the
degree of I0, I1 and I2 decreases in 2, 4 and 2 units, respectively. These differences are
due to some simplifications that appear during the explicit computations. Therefore,
this phenomenon is still an open question. The computations involved in obtaining
these values are not difficult but the memory requirements are too high to provide more
values.

n ZM=(Z0, Z1, Z2) |ZM | Z̃
0 (1,1,1) 3 13
1 (3,2,3) 8 16
2 (4,3,3) 10 18
3 (5,4,4) 13 21
4 (6,5,4) 15 23
5 (7,6,5) 18 26
6 (8,7,5) 20 28

Table 1. Degree of the numerators of I in each region. Z̃ shows the
value given by Theorem 3
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