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Abstract. We provide sufficient conditions for the existence of limit cycles
of non–smooth perturbed planar centers, when the set of discontinuity is an
algebraic variety. It is introduced a mechanism which allows us to deal with
such system, even in higher dimension. The main tool used in this paper is the
averaging method. Two applications are given in careful detail.

1. Introduction

The theory of discontinuous system has been developing at a very fast pace in
recent years and it has become certainly an important frontiers between Mathe-
matics, Physics, Engineering and other fields of science. The study of this kind of
system is motivated by various applications. For instance, we may cite some prob-
lems in control theory [3], nonlinear oscillations [1, 20], non–smooth mechanics
[6], economics[12, 16], biology [4], and others.

By the other hand, the knowledge of the existence or not of periodic solutions
is very important for understanding the dynamics of the differential systems.
One of the useful tools to detect such solutions is the averaging theory, which is a
classical and matured tool that provides means to study the behavior of nonlinear
smooth dynamical systems. We refer to the book of Sanders and Verhulst [21]
and to the book of Verhulst [22] for a general introduction of this subject.

Buica and Llibre [7] generalize the averaging theory for studying periodic solu-
tions of continuous differential systems using mainly the Brouwer degree. More re-
cently, Llibre, Novaes and Teixeira [18], extended the averaging theory for study-
ing periodic solutions of a class of discontinuous piecewise differential system, see
Theorem 2. In what follows, we introduce the class of piecewise discontinuous
system studied in [18].

Let D be an open subset of Rn. Let X, Y : R × D → Rn be two continuous
vector fields and h : R×D → R be a C1 function. We Assume that the functions
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h, X and Y are T–periodic in the variable t. The set of discontinuity h−1(0) is
denoted by M .

A Discontinuous Piecewise Differential System is defined as

(1) x′(t) = Z(t, x) =

{
X(t, x) if h(t, x) > 0,

Y (t, x) if h(t, x) < 0.

We denote Z = (X, Y ).

Let the sign function be defined in R \ {0} as

sign(u) =

{
1 if u > 0,

−1 if u < 0.

The piecewise discontinuous system (1) can be written, more conveniently, as

(2) x′(t) = Z(t, x) = Z1(t, x) + sign(h(t, x))Z2(t, x),

where

Z1(t, x) =
1

2
(X(t, x) + Y (t, x)) and Z2(t, x) =

1

2
(X(t, x)− Y (t, x)) .

In [18], conditions for the existence of periodic solutions when the set of discon-
tinuity M is a regular manifold are exhibited (see Theorem 2). However, many
applications deal with discontinuous system having the set of discontinuity as an
algebraic variety, see for instance the book of Andronov, Vitt, and Khaikin [1]
and the book of Barbashin [3]. In this paper, motivated by these problems, we
develop a technique that allows us to extend the averaging method for study-
ing the periodic solutions of a class of discontinuous piecewise differential system
when the set of discontinuity is an algebraic variety.

In few words, our main result deals with discontinuous perturbation of degen-
erate and non–degenerate planar centers, where the set of discontinuity M is an
algebraic variety. Moreover, conditions for the existence of periodic solutions of
such perturbed systems are presented.

We also provide two applications with careful details. The first one general-
izes the problem of an m–piecewise discontinuous Liénard polynomial differential
equation of degree n proposed by Llibre and Teixeira [19]; the second application
deals with a plane divided in a mesh, where each piece admits one of the two
vector fields. For these system, the existence of periodic solutions is studied.

The paper is organized as follows. In Section 2 we present the main theorem of
this paper and some other results. In Section 3 we present the averaging method
that we shall use in this paper. In Section 4 we present the proofs of the results
presented in Section 2. In Section 5 we present two applications.
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2. Statement of the Main Result

Let D be an open subset of R2. We consider the following planar discontinuous
differential system

(3)
x′(t) = X(x, y) + εF1(x, y),

y′(t) = Y (x, y) + εF2(x, y),

with

Fi(x, y) = Fi,1(x, y) + sign (h(x, y))Fi,2(x, y),

where X, Y, Fi,j : D → R2 for i, j = 1, 2 are continuous functions and h : R2 → R
is a a C1 function.

Usually, 0 is assumed to be a regular value of the function h which implies
that M = h−1(0) is a regular manifold, see for instance Theorem 2 of this paper.
Here, we assume that

(H1) the set of non–regular points in M = h−1(0) is bounded. In other words,
if

N = {(x, y) ∈ M : ∇h(x, y) = (0, 0)},
we can choose δ > 0 such that N ⊂ Bδ(0, 0). Here, Bδ(0, 0) ⊂ R2 is the
closed ball with radius δ centered at (0, 0).

The idea of the proof of our main result consist in defining conveniently change
of variables which drives some restriction of system (3) to a system whose the set
of discontinuity is a regular manifold. For this goal, taking D̃ = S1 × R+, and
δ ≥ 0 (chosen in H1), we define the function Ψδ : D̃ → R2 as

(4) Ψδ(θ, r) = ((r + δ) cos(θ), (r + δ) sin(θ)).

Clearly, this function is a diffeomorphism on its image Ψδ(D̃) = D\Bδ(0, 0).

We use in this paper the Pullback notation for the change of variables. Given
a function H : Ψδ(D̃) → R and δ > 0, let Ψ∗

δH : D̃ → R2 be defined as

Ψ∗
δH(θ, r) = H ◦Ψδ(θ, r).

For simplicity, we denote δ∗H(θ, r) = Ψ∗
δH(θ, r).

Remark 1. Consider h(x, y) = (x2 − 1)(y2 − 1) and denote M = h−1(0). The
set M is represented by the bold lines in the Figure 1.

Proceeding with the change of variables, defined above, the set M̃ = (δ∗h)−1(0),
represented by the bold lines in the Figure 2, becomes a regular sub–manifold of
D̃ = S1 × R+.

The procedure can be replied for other kinds of system, even in higher dimen-
sion, by finding a conveniently change of variables.
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Figure 1. M = h−1(0) ⊂ D.
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Figure 2. M̃ = h̃−1(0) ⊂ D̃.

Now, we define the averaged function f : R+ → R as

(5)

f(r) =

∫ 2π

0

(
δ∗Y (θ, r)δ∗F1,1(θ, r)− δ∗X(θ, r)δ∗F2,1(θ, r)

(cos(θ)δ∗Y (θ, r)− sin(θ)δ∗X(θ, r))2
dθ

+sign (δ∗h(θ, r))
δ∗Y (θ, r)δ∗F1,2(θ, r)− δ∗X(θ, r)δ∗F2,2(θ, r)

(cos(θ)δ∗Y (θ, r)− sin(θ)δ∗X(θ, r))2

)
dθ.

We denote Σ0 = D\
(
M ∪ Bδ(0, 0)

)
and M = M\Bδ(0, 0). Note that M is

an embedded sub–manifold in D ⊂ R2. Moreover, assume in addition that:
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(H2) the functions X and Y satisfies

cos(θ)δ∗X(θ, r) + sin(θ)δ∗Y (θ, r) = 0;

(H3) 〈∇h(x, y), (−y, x)〉 6= 0 for all (x, y) ∈ M;

(H4) Fi,j, for i, j = 1, 2, and h are locally Lipschitz with respect to any (x, y) ∈
D;

(H5) for some a ∈ Σ0 with f(|a| − δ) = 0, there exist a neighborhood V of a
such that f(|z| − δ) 6= 0 for all z ∈ V \{a} and dB(f, |V | − δ, 0) 6= 0. Here,
|V | − δ = {|z| − δ; z ∈ V };

Observe that the Hypothesis H3 is equivalent to (−y, x) /∈ T(x,y)M.

The following proposition assures that the hypothesis H2 is not empty.

Proposition 1. Consider the functions

X(x, y) =
M∑

m=1

fm(x, y) and Y (x, y) =
M∑

m=1

gm(x, y),

where

fm(x, y) =
m∑

i=0

am,ix
m−iyi and gm(x, y) =

m∑

i=0

bm,ix
m−iyi.

Therefore, if am,0 = bm,m = 0 and bm,i = −am,i+1 for i = 0, 2, · · · ,m− 1 and for
m = 1, 2, · · · ,M , then hypothesis H2 holds for the function X and Y .

Hypothesis H2 implies that the unperturbed system (3), i.e. ε = 0, consist in
a degenerate or non–degenerate (linear) planar center. We emphasize here that
the unperturbed system does not cover all non–degenerate center.

Our main result, which provides conditions for the existence of periodic solu-
tions of the small perturbation of a degenerate or non–degenerate planar center
satisfying the hypothesis H2, is the following.

Theorem A. If H1 – H5 hold, then for |ε| > 0 sufficiently small, there exists a
periodic solution (x(t, ε), y(t, ε)) of system (3) such that |(x(t, ε), y(t, ε))| → |a|
as ε → 0, for every t ∈ R.

The following corollary deals with perturbation of non–degenerate (linear) pla-
nar centers.

Corollary B. We consider the linear planar center (X(x, y), Y (x, y)) = (y,−x).
The averaged function f : R+ → R is defined as

(6)
f(r) =

∫ 2π

0

δ∗F1,1(θ, r) cos(θ) + δ∗F2,1(θ, r) sin(θ)dθ

+

∫ 2π

0

sign (δ∗h(θ, r))
(
δ∗F1,2(θ, r) cos(θ) + δ∗F2,2(θ, r) sin(θ)

)
dθ.
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If H1, H3 – H5 hold, then for |ε| > 0 sufficiently small, there exists a periodic
solution (x(t, ε), y(t, ε)) of system (3) such that |(x(t, ε), y(t, ε))| → |a| as ε → 0,
for every t ∈ R.

3. Basic results on averaging theory
for piecewise continuous systems

In this section we present the basic result needed for proving the main results
of this paper.

Theorem 2. We consider the following discontinuous differential system

(7) x′(t) = εF (t, x) + ε2R(t, x, ε),

with

F (t, x) = F1(t, x) + sign(h(t, x))F2(t, x),

R(t, x, ε) = R1(t, x, ε) + sign(h(t, x))R2(t, x, ε),

where F1, F2 : R×D → Rn, R1, R2 : R×D× (−ε0, ε0) → Rn and h : R×D → R
are continuous functions, T–periodic in the variable t and D is an open subset
of Rn. We also suppose that h is a C1 function having 0 as a regular value.
Denote M = h−1(0), Ω = {0} × D * M , and Ω0 = Σ\M 6= ∅. Consider the
identification z ≡ (0, z) /∈ M .

The averaged function f : D → Rn is defined as

(8) f(x) =

∫ T

0

F (t, x)dt.

We assume the following conditions:

(i) F1, F2, R1, R2 and h are locally L–Lipschitz with respect to x;
(ii) for a ∈ Ω0 with f(a) = 0, there exist a neighbourhood V of a such that

f(z) 6= 0 for all z ∈ V \{a} and dB(f, V, 0) 6= 0.
(iii) ∂h/∂t 6= 0, for all p ∈ M .

Then, for |ε| > 0 sufficiently small, there exists a T–periodic solution x(·, ε) of
system (7) such that x(0, ε) → a as ε → 0.

For a proof of Theorem 2 see [18].
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4. Proofs of Proposition 1, Theorem A, and Corollary B

• Proof of Proposition 1. We denote S(θ, r) = cos(θ)δ∗X(θ, r) + sin(θ)δ∗Y (θ, r).
To prove the proposition we must show that S ≡ 0. So

S(θ, r) = cos(θ)δ∗X(θ, r) + sin(θ)δ∗Y (θ, r),

= cos(θ)δ∗

(
M∑

m=1

fm(θ, r)

)
+ sin(θ)δ∗

(
M∑

m=1

gm(θ, r)

)
,

=
M∑

m=1

(cos(θ)δ∗fm(θ, r) + sin(θ)δ∗gm(θ, r)) ,

=
M∑

m=1

σm(θ, r),

where

σm(θ, r) = cos(θ)δ∗fm(θ, r) + sin(θ)δ∗gm(θ, r)

for m = 1, 2, · · · ,M .

Now, if we assume that bm,m = am,0 = 0 and bm,i = −am,i+1, for i = 0, 2, · · · ,m−
1 and for m = 1, 2, · · · ,M , then σm ≡ 0. Indeed,

σm(θ, r) = cos(θ)δ∗fm(θ, r) + sin(θ)δ∗gm(θ, r),

= cos(θ)
m∑

i=0

am,i(r + δ)m−i cosm−i(θ)(r + δ)i sini(θ)

+ sin(θ)
m∑

i=0

bm,i(r + δ)m−i cosm−i(θ)(r + δ)i sini(θ),

= (r + δ)m

(
m∑

i=0

am,i cos
m−i+1(θ) sini(θ) +

m∑

i=0

bm,i cos
m−i(θ) sini+1(θ)

)
,

= (r + δ)m

(
m∑

i=1

am,i cos
m−i+1(θ) sini(θ) +

m−1∑

i=0

bm,i cos
m−i(θ) sini+1(θ)

)

+(r + δ)m
(
am,0 cos

m+1(θ) + bm,m sinm+1(θ)
)
,

= (r + δ)m

(
m−1∑

i=0

(am,i+1 + bm,i) cos
m−i(θ) sini+1(θ)

)
,

= 0.

Hence σm ≡ 0 for each m = 1, 2, · · · ,M . Therefore S ≡ 0. �
• Proof of Theorem A. We consider the system (1) restricted to Ψδ(D̃), i.e.

(9) (ẋ(t) , ẏ(t)) = Z(x, y) =
(
x+ εF 1(x, y),−y + εF 2(x, y)

) ∣∣∣
Ψ(D̃)

.
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Since Ψδ : D → Ψδ(D̃) is a diffeomorphism, thus the pullback δ∗Z(θ, r) : D̃ →
R2 is well defined and the differential system

(10)
(
θ̇(t), ṙ(t)

)
= δ∗Z(θ, r),

is equivalent to (9). Moreover,

(11)

θ̇(t) =
δ∗Y (θ, r) cos(θ)− δ∗X(θ, r) sin(θ)

r + δ

+ε
δ∗F2(θ, r) cos(θ)− δ∗F1(θ, r) sin(θ)

r + δ
,

ṙ(t) = ε (δ∗F1(θ, r) cos(θ) + δ∗F2(θ, r) sin(θ)) ,

since δ∗X(θ, r) cos(θ) + δ∗Y (r, θ) sin(θ) = 0.

We note that

(12)
ṙ(t)

θ̇(t)
= −(r + δ)

δ∗F1(θ, r) cos(θ) + δ∗F2(θ, r) sin(θ)

δ∗F2(θ, r) cos(θ)− δ∗F1(θ, r) sin(θ)

(
z(θ, r, ε)

1− z(θ, r, ε)

)
,

where

z(θ, r, ε) = ε
δ∗F1(θ, r) sin(θ)− δ∗F2(θ, r) cos(θ)

δ∗Y (θ, r) cos(θ)− δ∗X(θ, r) sin(θ)
.

Now, taking θ as the new independent variable of (11), we obtain the expression

of dr(θ)/dθ by expanding ṙ(t)/θ̇(t) in Taylor Series around ε = 0 as

(13)
dr

dθ
(θ) = ε

δ∗F1(θ, r) cos(θ)− δ∗F2(θ, r) sin(θ)

(δ∗Y (θ, r) cos(θ)− δ∗X(θ, r) sin(θ))2
+ ε2R(θ, r, ε).

It is easy to see that hypothesis H3 implies that

δ∗Y (θ, r) cos(θ)− δ∗X(θ, r) sin(θ) 6= 0,

for (θ, r) ∈ D̃. So expression (13) is well defined for every (θ, r) ∈ D̃.

Moreover, given δ > 0 and r0 > 0, there exists ε(r0) > 0 sufficiently small such
that |z(θ, r, ε)| < 1 for all (θ, r) ∈ S1 × (0, r0] and ε ∈ (−ε0, ε0). Observe that
we can take r0 sufficiently big, such that all periodic solutions of the system (13)
have their amplitudes smaller than r0. Therefore, expanding the expression (12),
we may write

ε2R(θ, r, ε) = −(r + δ)
δ∗F1(θ, r) cos(θ) + δ∗F2(θ, r) sin(θ)

δ∗F2(θ, r) cos(θ)− δ∗F1(θ, r) sin(θ)

∞∑

n=2

z(θ, r, ε)n,

which implies the following claim:

Claim 1. The function R(θ, r, ε) satisfies the hypotheses of Theorem 2.
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To prove Claim 1 we have to find continuous functions

R1, R2 : S1 × (0, r0]× (−ε(r0), ε(r0)) → R2,

2π–periodic in the variable θ and locally Lipschitz with respect to r, such that

R(θ, r, ε) = R1(θ, r, ε) + sign (δ∗h(θ, r))R2(θ, r, ε).

We note that

(14) R(θ, r, ε) = −(r + δ) (δ∗F1 cos(θ) + δ∗F2 sin(θ))
∞∑

n=2

εn−2Gn(θ, r),

where

Gn(θ, r) =
(δ∗F2 cos(θ)− δ∗F1 sin(θ))

n−1

(δ∗Y cos(θ)− δ∗X sin(θ))n
.

For simplicity, we are omitting the point (θ, r).

Applying the Binomial Formula, expression (14) becomes

R(θ, r, ε) =
∞∑

n=2

n−1∑

k=0

εn−2Cn
k (r) cos

n−k θ sink θ
(δ∗F1)

k+1(δ∗F2)
n−k−1

(δ∗Y cos θ − δ∗X sin θ)n

+
∞∑

n=2

n−1∑

k=0

εn−2Cn
k (r) cos

n−k−1 θ sink+1 θ
(δ∗F1)

k(δ∗F2)
n−k

(δ∗Y cos θ − δ∗X sin θ)n
,

with

Cn
k (r) =

(−1)k+1

(r + δ)

(
n− 1

k

)
.

Again, applying the Binomial Formula in (δ∗Fi)
a, for i = 1, 2 and a ∈ N, we

obtain

(δ∗Fi)
a =

⌊a/2⌋∑

l=0

(
a

2l

)
(δ∗Fi,1)

a−2l(δ∗Fi,2)
2l

︸ ︷︷ ︸
Pa
i

+sign (δ∗h)

⌈a/2⌉−1∑

l=0

(
a

2l + 1

)
(δ∗Fi,1)

a−2l−1(δ∗Fi2)
2l+1

︸ ︷︷ ︸
Qa

i

.

Here, ⌊u⌋ denotes as usual the greatest integer less than or equal to u; and ⌈u⌉
denotes as usual the smallest integer greater than or equal to u.

Since

(δ∗F1)
a(δ∗F2)

b = P a
1 P

b
2 +Qa

1Q
b
2 + sign (δ∗h)

(
P a
1Q

b
2 + P b

2Q
a
1

)
,
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it follows that R(θ, r, ε) = R1(θ, r, ε) + sign (δ∗h(θ, r))R2(θ, r, ε), where

R1(θ, r, ε) =
∞∑

n=2

n−1∑

k=0

εn−2Cn
k (r) cos

n−k(θ) sink(θ)
P 1
k+1P

2
n−k−1 +Q1

k+1Q
2
n−k−1

(δ∗Y cos θ − δ∗X sin θ)n

+
∞∑

n=2

n−1∑

k=0

εn−2Cn
k (r) cos

n−k−1(θ) sink+1(θ)
P 1
kP

2
n−k +Q1

kQ
2
n−k

(δ∗Y cos θ − δ∗X sin θ)n
,

and

R2(θ, r, ε) =
∞∑

n=2

n−1∑

k=0

εn−2Cn
k (r) cos

n−k(θ) sink(θ)
P 1
k+1Q

2
n−k−1 + P 2

n−k−1Q
1
k+1

(δ∗Y cos θ − δ∗X sin θ)n

+
∞∑

n=2

n−1∑

k=0

εn−2Cn
k (r) cos

n−k−1(θ) sink+1(θ)
P 1
kQ

2
n−k + P 2

n−kQ
1
k

(δ∗Y cos θ − δ∗X sin θ)n
.

Moreover, it is easy to see that the function R1 and R2 are locally Lipschitz in
the variable r.

Now, rewriting the system 13, by making explicit the sign function, we obtain

(15)
dr

dθ
(θ) = ε

(
G1(θ, r) + sign (δ∗h(θ, r))G2(θ, r)

)
+ ε2R(θ, r, ε),

where

G1(θ, r) =
δ∗Y (θ, r)δ∗F1,1(θ, r)− δ∗X(θ, r)δ∗F2,1(θ, r) sin(θ)

(δ∗Y (θ, r) cos(θ)− δ∗X(θ, r) sin(θ))2
,

and

G2(θ, r) =
δ∗Y (θ, r)δ∗F1,2(θ, r)− δ∗X(θ, r)δ∗F2,2(θ, r) sin(θ)

(δ∗Y (θ, r) cos(θ)− δ∗X(θ, r) sin(θ))2
.

In order, to apply Theorem 2 in the system (15) we shall verify hypothesis (iii).
For this, we prove the following claim:

Claim 2. If M̃ = (δ∗h)−1(0), then (∂(δ∗h)/∂θ)(θ, r) 6= 0 for all (θ, r) ∈ M̃.

Observe that M̃ = {(θ, r) ∈ D̃ : Ψδ(θ, r) ∈ M}. We take (θ, r) ∈ M̃, and
denote (x̃, ỹ) = Ψδ(θ, r) ∈ M. So

∂

∂θ
δ∗h(θ, r) =

∂

∂θ
(h ◦Ψδ)(θ, r),

= 〈∇h(Ψδ(θ, r)), (−(r + δ) sin(θ), (r + δ) cos(θ))〉,
= 〈∇h(x̃, ỹ), (−ỹ, x̃)〉 6= 0.

Therefore, by Claims 1 and 2, the hypotheses (i) and (iii) of Theorem 2 hold for
the system (15). Clearly, the hypothesis H2 of Theorem A implies the hypothesis
(ii) of Theorem 2. Hence, applying Theorem 2, we conclude that for |ε| > 0
sufficiently small, there exists a 2π–periodic solution θ 7→ r(θ, ε) of system (13)
such that r(0, ε) → |a| as ε → 0. Which implies that for |ε| > 0 sufficiently
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small, there exists a periodic solution (x(t, ε), y(t, ε)) of system (1) such that
|(x(t, ε), y(t, ε))| → |a| as ε → 0 for every t ∈ R. �

• Proof of Corollary B. Corollary B is an immediate consequence of Proposition
1 and Theorem A. �

5. Applications

5.1. Application 1. In [19], Llibre and Teixeira have introduced the following
m–piecewise discontinuous Liénard polynomial differential equation of degree n:

(16)
ẋ = y + sgn(gm(x, y))Fn(x),

ẏ = −x,

where F (x) = c0 + c1x+ . . .+ cnx
n and the zero set of the function sgn(gm(x, y))

with m = 2, 4, 6, . . . is the product of m/2 straight lines passing through the
origin of coordinates dividing the plane in sectors of angle 2π/m.

Here, we shall study an generalization of this problem.

Given α = (α1, α2, · · · , αm) ∈ Tm (m–Torus), with m = 2, 4, 6, . . ., such that
0 ≤ α1 < α2 < · · · < αm ≤ 2π, we consider a function hα : R2 → R2 such that

(17) δ∗hα(θ, r) = (θ − α1)(θ − α2) · · · (θ − αm).

Thus the set of discontinuity M = hα
−1(0) is represented, partially, by the bold

lines in the Figure 3.

x

y

α1
α2

αm

δ

M

Figure 3. M = hα
−1(0) ⊂ R2.
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We stress that only the behavior of the set M outside the ball Bδ(0, 0) is
considered. Formally,

M =
m⋃

i=1

Li,

where Li ∩ (Bδ(0, 0))
c is the segment starting at the point (δ cos(αi), δ sin(αi)),

which is supported by the line starting at the point (0, 0) and passing through
(δ cos(αi), δ sin(αi)), for i = 1, 2, . . . ,m.

We call by an α–piecewise discontinuous Liénard polynomial differential equa-
tion of degree n the following system

(18)
ẋ = y + sgn(hα(x, y))Fn(x),

ẏ = −x.

Now, consider the condition

(C) Li is a straight line starting at the point (0, 0) and passing through
(δ cos(αi), δ sin(αi)), for i = 1, 2, . . . ,m.

Assuming condition C, we define H(m,n) as the lower upper bound for the
maximum number of limit cycles of the system (18) for any α = (α1, α2, · · · , αm) ∈
Tm (m–Torus), with m = 2, 4, 6, . . ., such that 0 ≤ α1 < α2 < · · · < αm ≤ 2π.

Such kind of problem is fairly known in the literature and its origin is based
in the 16th Hilbert’s problem [13], see for instance: Écalle [10]; Ilyashenko [14];
Ilyashenko and Panov [15]; Lins, de Melo and Pugh [17]; Dumortier, Panazzolo
and Roussarie [9]; and De Maesschalck and Dumortier [8].

We present, in the following theorem, a lower bound for H(m,n).

Theorem 3. The inequality H(m,n) ≥ n hold for m = 2, 4, 6, · · · and n ∈ N.

Here, we shall give in detail a proof of Theorem 3 for m = 2 and n ∈ N. The
proof of Theorem 3 for all m = 2, 4, 6, . . . will follow similary.

Clearly, taking α2 = α1 + π the system (18) becomes a 2–piecewise discontin-
uous Liénard polynomial differential equation, for what, Llibre and Teixeira [19]
has proved that ⌊n/2⌋ is a lower bound for the maximum number of limit cycles
of this system when α1 = π/2. In the following proposition, we assure that this
result holds for every α1 ∈ (0, π).

Proposition 4. Assume that α2 = α1+π and α1 ∈ (0, π). Then ⌊n/2⌋ is a lower
bound for the maximum number of limit cycles of the differential system (18).

When the symmetry α2 = α1 + π is broken, many others limit cycles can
appear, as we can see in the following proposition.

Proposition 5. We take α = (α1, α2) and assume that one of the following
hypotheses holds:
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(a) (i) sin(α1) cos(α1) ≥ 0, (ii) sin(α2) cos(α2) ≤ 0, and α2 − α1 < pi. More-
over, one of inequalities (i) or (ii) is strictly;

(b) (j) sin(α1) cos(α1) ≤ 0, (jj) sin(α2) cos(α2) ≥ 0, and α2 − α1 > pi. More-
over, one of inequalities (j) or (jj) is strictly.

Then n is a lower bound for the maximum number of limit cycles of the differential
system (18).

Note that: all points (α1, α2) ∈ T2 such that (α1, α2) ∈ (0, π/2) × (π/2, π) or
(α1, α2) ∈ (π, 3π/2)×(3π/2, 2π) satisfy hypothesis (a), moreover both inequalities
(i) and (ii) are strictly; all points (α1, α2) ∈ T2 such that (α1, α2) ∈ (π/2, π) ×
(α1 + π, 2π) satisfy hypothesis (b), moreover both inequalities (j) and (jj) are
strictly.

Clearly, Proposition 5 implies the inequality H(2, n) ≥ n. Thus, once proved
Proposition 5, the Theorem 3 is valid for m = 2.

To prove Propositions 4 and 5, and Theorem 3 we recall the Descartes Theorem
about the number of zeros of a real polynomial (see [5]).

Descartes Theorem Consider the real polynomial p(x) = ai1x
i1 + ai2x

i2 + · · ·+
airx

ir with 0 ≤ i1 < i2 < · · · < ir and aij 6= 0 real constants for j ∈ {1, 2, · · · , r}.
When aijaij+1

< 0, we say that aij and aij+1
have a variation of sign. If the

number of variations of signs is m, then p(x) has at most m positive real roots.
Moreover, it is always possible to choose the coefficients of p(x) in such a way
that p(x) has exactly r − 1 positive real roots.

Firstly, we prove the Proposition 5, since its proof will be used to prove Propo-
sition 4 and Theorem 3.

• Proof of Proposition 5. To prove that N is a lower bound for the maximum
number of limit cycles of the system (18) we shall find a polynomial function
Fn(x) of degree n such that the differential system (18) has N limit cycles. Thus,
taking Fn(x) = εPn(x), with Pn(x) = a0 + a1x + a2x

2 + · · · + anx
n, the system

(18) becomes

(19)
ẋ = y + εsgn(hα(x, y))Pn(x),

ẏ = −x.

In order to prove the proposition we have to identify in the system (18) the
elements of Corollary B, thus

F1,1(x, y) = F2,1(x, y) = F2,2(x, y) = 0,

and

F1,2(x, y) = Pn(x),
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Computing the averaged function (6), for the system (19), we have that

f(r) =

∫ 2π

0

δ∗F1,1(θ, r) cos(θ) + δ∗F2,1(θ, r) sin(θ)dθ

+

∫ 2π

0

sign (δ∗h(θ, r))
(
δ∗F1,2(θ, r) cos(θ) + δ∗F2,2(θ, r) sin(θ)

)
dθ,

=

∫ 2π

0

cos(θ)Pn ((r + δ) cos(θ)) sign((θ − α1)(θ − α2))dθ,

=
n∑

l=0

al(r + δ)l
∫ 2π

0

cosl+1(θ)sign((θ − α1)(θ − α2))dθ,

=
n∑

l=0

al(r + δ)l
(∫ α1

0

cosl+1(θ)dθ −
∫ α2

α1

cosl+1(θ)dθ +

∫ 2π

α2

cosl+1(θ)dθ

)
,

=
n∑

l=0

al bl (r + δ)l,

with

bl =

∫ α1

0

cosl+1(θ)dθ −
∫ α2

α1

cosl+1(θ)dθ +

∫ 2π

α2

cosl+1(θ)dθ.

So, for l = 0, 1, it is easy to see that

b0 = 2 sin(α1)− 2 sin(α2),

b1 = α1 − α2 + π + cos(α1) sin(α1)− cos(α2) sin(α2).

Now, using the identity, for l > 0,

∫
cosl+1(θ)dθ =

cosl(θ) sin(θ)

l + 1
+

l

l + 1

∫
cosl−1(θ)dθ,
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we conclude that, for l > 1,

bl =

∫ α1

0

cosl+1(θ)dθ −
∫ α2

α1

cosl+1(θ)dθ +

∫ 2π

α2

cosl+1(θ)dθ,

=
cosl(α1) sin(α1)

l + 1
+

l

l + 1

∫ α1

0

cosl−1(θ)dθ

−cosl(α2) sin(α2)

l + 1
+

cosl(α1) sin(α1)

l
− l

l + 1

∫ α2

α1

cosl−1(θ)dθ

−cosl(α2) sin(α2)

l + 1
+

l

l + 1

∫ 2π

α2

cosl−1(θ)dθ,

=
2

l + 1
(cosl(α1) sin(α1)− cosl(α2) sin(α2))

+
l

l + 1

(∫ α1

0

cosl−1(θ)dθ −
∫ α2

α1

cosl−1(θ)dθ +

∫ 2π

α2

cosl−1(θ)dθ

)
,

=
2

l + 1
(cosl(α1) sin(α1)− cosl(α2) sin(α2)) +

l

l + 1
bl−2.

Proceeding by induction under l, we have that, for l ≥ 0,

b2l =
2 sin(α1)

2l + 1

l∑

j=0

D1(l, j) cos
2j(α1)−

2 sin(α2)

2l + 1

l∑

j=0

D1(l, j) cos
2j(α2),

and

b2l+1 =
sin(α1)

l + 1

l∑

j=0

D2(l, j) cos
2j+1(α1)−

sin(α2)

l + 1

l∑

j=0

D2(l, j) cos
2j+1(α2)

+2
(2l + 1)!!

(2l + 2)!!
(α1 − α2 + π) ,

where

(20) D1(p, q) =
(2p)!!(2q − 1)!!

(2q)!!(2p− 1)!!
and D2(p, q) =

(2p+ 1)!!(2q)!!

(2q + 1)!!(2p)!!
,

for p, q ∈ Z. Here, n!!, for n ∈ N, denotes as usual the Double Factorial:

(2n+ 1)!! = 1 · 3 · 5 · · · · (2n+ 1),

(2n)!! = 2 · 4 · 6 · · · · (2n).

Following Arfken [2], these are related to the regular factorial function by

(21) (2n)!! = 2nn! and (2n+ 1)!! =
(2n+ 1)!

2nn!
.

It is also defined (−1)!! = 1, a special case that does not follow from equation
(21).
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Each hypothesis, (a) and (b), implies that bl 6= 0 for l = 0, 1, 2, . . . , n. By
Descartes Theorem and choosing the coefficients al conveniently the polynomial
g(r) = f(r − δ) has n positive roots rk for k = 1, 2, . . . , n. Therefore f ′(rk) 6= 0
for k = 1, 2, . . . , n, since the polynomial has degree n. Now, we choose δ > 0
such that the circles of radius rk, for k = 1, 2, . . . , n, are contained in Σ0. Hence,
by Corollary B, for |ε| > 0 sufficiently small the differential equation (19) will
have n limit cycles near the circles of radius rk for k = 1, 2, . . . , n. Hence, the
proposition is proved. �

• Proof of Proposition 4. Since α2 = α1 + π and α1 ∈ (0, π), we have that
cos(α2) = − cos(α1) and sin(α2) = − sin(α1) with sin(α) 6= 0. Therefore

b2l =
4 sin(α1)

2l + 1

l∑

j=0

D1(l, j) cos
2j(α1) 6= 0,

and b2l+1 = 0 for all l = 0, 1, · · · , ⌈n/2⌉ − 1.
By Descartes Theorem and choosing the coefficients al conveniently the polyno-

mial g(r) = f(r−δ) has ⌊n/2⌋ positive roots rk for k = 1, 2, . . . , ⌊n/2⌋. Clearly the
other roots of that polynomial of degree 2⌊n/2⌋ are −rk for l = 0, 1, 2, . . . , ⌊n/2⌋.
Therefore f ′(rk) 6= 0 for k = 1, 2, . . . , ⌊n/2⌋. Now, choose δ > 0 such that the cir-
cles of radius rk, for k = 1, 2, . . . , ⌊n/2⌋, are contained in Σ0. Hence, by Corollary
B, for |ε| > 0 sufficiently small the differential equation (19) will have ⌊n/2⌋ limit
cycles near the circles of radius rk for k = 1, 2, . . . , ⌊n/2⌋. Hence, the proposition
is proved. �

• Proof of Theorem 3. We take α = (α1, α2, · · · , αm) ∈ Tm (m–Torus), with m =
2, 4, 6, . . ., such that 0 < α1 < α2 < · · · < αm < 2π, and denote α0 = 0 and
αm+1 = 2π. For Fn(x) = εPn(x), with Pn(x) = a0 + a1x+ a2x

2 + · · ·+ anx
n, the

system (18) becomes

(22)
ẋ = y + εsgn(hα(x, y))Pn(x),

ẏ = −x.

Computing the averaged function (6), for the system (22), we have that

f(r) =
n∑

l=0

al bl (r + δ)l,

with

bl =
m∑

i=0

(−1)i
∫ αi+1

αi

cosl+1(θ)dθ.



ON NON–SMOOTH PERTURBATIONS OF PLANAR CENTERS 17

So, for l = 0, 1, it is easy to see that

b0 = 2

m/2∑

i=1

(sin(α2i−1)− sin(α2i)) ,

and

b1 =

m/2∑

i=1

(sin(α2i−1) cos(α2i−1)− sin(α2i) cos(α2i)) + π +

m/2∑

i=1

(α2i−1 − α2i) .

Proceeding analogously to the proof of Proposition 4, we obtain

bl =
2

l + 1

m/2∑

i=1

(
sin(α2i−1) cos

l(α2i−1)− sin(α2i) cos
l(α2i)

)
+

l

l + 1
bl−2.

By induction under l, we have that, for l = 0, 1, . . . , ⌊n/2⌋,

b2l =
2

2l + 1

m/2∑

i=1

l∑

j=0

D1(l, j) sin(α2i−1) cos
2j(α2i−1)

− 2

2l + 1

m/2∑

i=1

l∑

j=0

D1(l, j) sin(α2i) cos
2j(α2i),

and, for l = 0, 1, . . . , ⌈n/2⌉ − 1,

b2l+1 =
2

2l + 1

m/2∑

i=1

l∑

j=0

D2(l, j) sin(α2i−1) cos
2j+1(α2i−1)

− 2

2l + 1

m/2∑

i=1

l∑

j=0

D2(l, j) sin(α2i) cos
2j+1(α2i)

2
(2l + 1)!!

(2l + 2)!!


π +

m/2∑

i=1

(α2i−1 − α2i)


 ,

where D1 and D2 are defined in (20).
Now, we take the sequence (βi)i∈N ⊂ [π/4, π/2) such that

βi =
π

2
− π

4i
.

Thus, for every s > 1, we have that

1 >
cos(βi+1)

cos(βi)
>

(
cos(βi+1)

cos(βi)

)s

> 0.

Moreover, for every i ∈ N, it follows that

sin
( π
2i

)
> sin

(
π

2(i+ 1)

)
> 0.
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Therefore

cos(βi)

cos(αi+1)

sin(βi)

sin(βi+1)
=

sin
( π
2i

)

sin

(
π

2(i+ 1)

) > 1.

Hence, for i ∈ N
sin(βi)

sin(βi+1)
>

cos(βi+1)

cos(βi)
.

So, for s > 1,
sin(β2i−1)

sin(β2i)
>

cos(β2i)

cos(α2i−1)
>

(
cos(β2i)

cos(β2i−1)

)s

,

which implies that

sin(β2i−1) cos
s(β2i−1) > sin(β2i) cos

s(α2i).

Choosing αi = βi, for i = 1, 2, . . . ,m, and s = 2j, for j = 0, 1, . . . , l, we have
that b2l > 0, for l = 0, 1, . . . , ⌊n/2⌋. Now, choosing s = 2j + 1, for j = 0, 1, . . . , l,
we have that

m/2∑

i=1

(α2i−1 − α2i) <
∞∑

i=1

(β2i−1 − β2i) = − ln(2)

4
π.

So,

2
(2l + 1)!!

(2l + 2)!!


π +

m/2∑

i=1

(α2i−1 − α2i)


 > 0.

Therefor b2l+1 > 0, for l = 0, 1, · · · , ⌈n/2⌉ − 1.
Since bl 6= 0 for l = 0, 1, . . . , n, by Descartes Theorem and choosing the coef-

ficients al conveniently the polynomial g(r) = f(r − δ) has n positive roots rk
for k = 1, 2, . . . , n. Therefore f ′(rk) 6= 0 for k = 1, 2, . . . , n, since the polyno-
mial has degree n. Now, we choose δ > 0 such that the circles of radius rk, for
k = 1, 2, . . . , n, are contained in Σ0. Hence, by Corollary B, for |ε| > 0 suffi-
ciently small the differential equation (22) will have n limit cycles near the circles
of radius rk for k = 1, 2, . . . , n. Hence, the Theorem 3 is proved.

�

5.2. Application 2. Consider the function h(x, y) = (x2 − 1)(y2 − 1). Thus the
set of discontinuity M = h−1(0) is represented by the bold lines in the Figure 1.

Now, consider the equation

(23) x′′(t) = −x′ + ε y sign(h(x, x′)).

Proposition 6. For |ε| > 0 sufficiently small there exist a periodic solution x(t, ε)

of the system (23) such that |(x(0, ε), x′(0, ε)| →
√
4 + 2

√
2 as ε → 0.
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• Proof. Firstly, we have to identify the elements of Corollary B in the system
(23). Thus

F 1
1 (x, y) = F 1

2 (x, y) = F 2
1 (x, y) = 0 and F 2

2 (x, y) = y.

The averaged function of the system (23) is given by

f(|a|+
√
2) =

(
2
√
2 + |a|

)(
π + 8arccsc

(
2
√
2 + |a|

))
,

which has |a| =
√
4 + 2

√
2 as a solution. Moreover

df

dr
(r)
∣∣∣
r=
√

4+2
√
2−

√
2
= 8(

√
2− 1) 6= 0.

Thus hypothesis H5 of Corollary B holds. Clearly, hypothesis H1 – H4 also hold.
Hence, by Corollary B, the proof has been concluded. �
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[8] P. De Maesschalck and F. Dumortier, Classical Liénard equation of degree n ≥ 6

can have
[
n−1
2

]
+ 2 limit cycles, preprint, 2010.

[9] F. Dumortier, D. Panazzolo and R. Roussarie, More limit cycles than expected in
Liénard equations, Proc. Amer. Math. Soc. 135 (2007), 1895–1904.
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