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Planar quadratic differential systems occur in many areas of applied mathematics. Although
more than one thousand papers have been written on these systems, a complete understanding
of this family is still missing. Classical problems, and in particular, Hilbert’s 16th problem
[Hilbert, 1900, Hilbert, 1902], are still open for this family. Our aim is to make a global study
of the family QsnSN which is the closure within real quadratic differential systems of the family
QsnSN of all such systems which have two semi–elemental saddle–nodes, one finite and one
infinite formed by the collision of two infinite singular points. This family can be divided into
three different subfamilies, all of them with the finite saddle–node at the origin of the plane
with the eigenvectors on the axes and (A) with the infinite saddle–node in the horizontal axis,
(B) with the infinite saddle–node in the vertical axis and (C) with the infinite saddle–node in
the bisector of the first and third quadrants. These three subfamilies modulo the action of the
affine group and time homotheties are three–dimensional (the closure is four–dimensional) and
we give their bifurcation diagram with respect to a normal form. In this paper we provide the
complete study of the geometry of the first two families, (A) and (B). The bifurcation diagram
for the subfamily (A) yields 38 phase portraits for systems in QsnSN(A) (29 in QsnSN(A))
out of which only 3 have limit cycles and 13 possess graphics. The bifurcation diagram for the
subfamily (B) yields 25 phase portraits for systems in QsnSN(B) (16 in QsnSN(B)) out of
which 11 possess graphics. None of the 25 portraits has limit cycles. Case (C) will yield many
more phase portraits and will be written separately in a forthcoming new paper. Algebraic
invariants are used to construct the bifurcation set. The phase portraits are represented on the
Poincaré disk. The bifurcation set of QsnSN(A) is formed by algebraic surfaces and one surface
whose presence was detected numerically. All points in this surface correspond to connections
of separatrices. The bifurcation set of QsnSN(B) is formed only by algebraic surfaces.
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1. Introduction, brief review of the litera-
ture and statement of results

Here we call quadratic differential systems or simply
quadratic systems, differential systems of the form

ẋ = p(x, y),
ẏ = q(x, y),

(1)

where p and q are polynomials over R in x and y
such that the max(deg(p),deg(q)) = 2. To such
a system one can always associate the quadratic
vector field

X = p
∂

∂x
+ q

∂

∂y
, (2)

as well as the differential equation

qdx− pdy = 0. (3)

The class of all quadratic differential systems (or
quadratic vector fields) will be denoted by QS.

We can also write system (1) as

ẋ = p0 + p1(x, y) + p2(x, y) = p(x, y),
ẏ = q0 + q1(x, y) + q2(x, y) = q(x, y),

(4)

where pi and qi are homogeneous polynomials of
degree i in (x, y) with real coefficients with p22+q22 6=
0.

Even after hundreds of studies on the topology
of real planar quadratic vector fields, it is kind of
impossible to outline a complete characterization of
their phase portraits, and attempting to topologi-
cally classify them is a quite complex task. This
family of systems depends on twelve parameters,
but due to the action of the group G of real affine
transformations and time homotheties, the class ul-
timately depends on five parameters, but this is still
a large number.

This paper is aimed at studying the class
QsnSN which is the closure within real quadratic
real differential systems of the family QsnSN of
all such systems which possess a finite saddle–
node sn(2) and an infinite saddle–node of type
(0
2

)
SN obtained by the collision of an infinite sad-

dle with an infinite node. The finite saddle–node
is a semi–elemental point whose neighborhood is
formed by the union of two hyperbolic sectors and
one parabolic sector. By a semi–elemental point
we understand a point with zero determinant of
its Jacobian, but only one eigenvalue zero. These

points are known in classical literature as semi–
elementary, but we use the term semi–elemental
introduced in [Artés et al., 2012] as part of a set of
new definitions more deeply related to the geometry
of the singular points, their multiplicities and, es-
pecially, their Jacobian matrices. We observe that
there is another type of infinite saddle–node de-

noted by
(1
1

)
SN which is given by the collision of

a finite antisaddle (respectively, finite saddle) with
an infinite saddle (respectively, infinite node) and
which will appear in some of the phase portraits.

The condition of having a finite saddle–node of
all the systems in QsnSN implies that these sys-
tems may have up to two other finite points.

For a general framework of the study of the
class of all quadratic differential systems we re-
fer to the article of Roussarie and Schlomiuk
[Roussarie & Schlomiuk, 2002].

In this study we follow the pattern set out in
[Artés et al., 2006]. As much as possible we shall
try to avoid repeating technical sections which are
the same for both papers, referring to the paper
mentioned just above, for more complete informa-
tion.

This family can be divided into three different
subfamilies, all of them with the finite saddle–node
at the origin of the plane with the eigenvectors on
the axes and (A) with the infinite saddle–node in
the horizontal axis, (B) with the infinite saddle–
node in the vertical axis and (C) with the infinite
saddle–node in the bisector of the first and third
quadrants.

In this article we give a partition of the
classes QsnSN(A) and QsnSN(B). The first class
QsnSN(A) is partitioned into 85 parts: 23 three–
dimensional ones, 37 two–dimensional ones, 20 one–
dimensional ones and 5 points. This partition is
obtained by considering all the bifurcation surfaces
of singularities, one related to the presence of an-
other invariant straight rather than the one stated
in statement (a) of Theorem 1.1 and one related to
connections of separatrices, modulo “islands” (see
Sec. 8). The second class QsnSN(B) is partitioned
into 43 parts: 9 three–dimensional ones, 18 two–
dimensional ones, 12 one–dimensional ones and 4
points, which are all delimited by algebraic bifurca-
tion surfaces.

A graphic as defined in [Dumortier et al., 1994]
is formed by a finite sequence of singular points

2



The geometry of quadratic polynomial differential systems with a finite and an infinite saddle–node (A,B) 3

r1, r2, . . . , rn (with possible repetitions) and non–
trivial connecting orbits γi for i = 1, . . . , n such
that γi has ri as α–limit set and ri+1 as ω–limit
set for i < n and γn has rn as α–limit set and r1 as
ω–limit set. Also normal orientations nj of the non–
trivial orbits must be coherent in the sense that if
γj−1 has left–hand orientation then so does γj. A
polycycle is a graphic which has a Poincaré return
map.

A degenerate graphic is a graphic where it is
also allowed that one or several (even all) con-
necting orbits γi can be formed by an infinite
number of singular points. For more details, see
[Dumortier et al., 1994].

Theorem 1.1. There exist 38 topologically distinct
phase portraits for the quadratic vector fields having
a finite saddle–node sn(2) and an infinite saddle–

node of type
(0
2

)
SN located in the direction de-

fined by the eigenvector with null eigenvalue (class
QsnSN(A)). All these phase portraits are shown in
Figs. 1 and 2. Moreover, the following statements
hold:

(a) The manifold defined by the eigenvector with
null eigenvalue is always an invariant straight
line under the flow;

(b) There exist three phase portraits with limit cy-
cles, and they are in the regions V 5

11, V 7
14 and

1S11
2 ;

(c) There exist three phase portraits with non-
degenerate graphics, and they are in the regions
4S19

4 , 7S23
1 and 1.4L28

1 ;

(d) There exist ten phase portraits with degener-
ate graphics, and they are in the regions 9S24

1 ,
9S25

2 , 1.2L27
2 , 1.9L29

1 , 5.9L33
1 , 8.9L34

1 , P 35
1 , P 36

3 ,
P 37
4 and P 38

5 ;

(e) Any phase portrait of this family can bifurcate
from P 35

1 of Fig. 2;

(f) There exist 29 topologically distinct phase por-
traits in QsnSN(A).

Theorem 1.2. There exist 25 topologically distinct
phase portraits for the quadratic vector fields having
a finite saddle–node sn(2) and an infinite saddle–

node of type
(0
2

)
SN located in the direction defined

by the eigenvector with non–null eigenvalue (class
QsnSN(B)). All these phase portraits are shown
in Fig. 3. Moreover, the following statements hold:

(a) The manifold defined by the eigenvector with
non–null eigenvalue is always an invariant
straight line under the flow;

(b) There exist four phase portraits with non-
degenerate graphic, and they are in the regions
1S9

4 , 4S
10
1 , 1.4L16

2 and 1.5L17
1 ;

(c) There exist seven phase portraits with degener-
ate graphics, and they are in the regions 1.4L15

1 ,
1.9L18

1 , 4.9L19
1 , P 22

1 , P 23
2 , P 24

3 and P 25
5 ;

(d) There exists one phase portrait with a center,
and it is in the region 4S10

1 ;

(e) There exists one phase portrait with an inte-
grable saddle, and it is in the region 4S1

2 .

(f) Any phase portrait of this family can bifurcate
from P 22

1 of Fig. 3;

(g) There exist 16 topologically distinct phase por-
traits in QsnSN(B).

Corollary 1.3. The phase portrait P 36
3 from fam-

ily QsnSN(A) in Fig. 2 is equivalent to the phase
portrait P 23

2 from family QsnSN(B) in Fig. 3.
Furthermore, the phase portrait 1.2L27

2 from fam-
ily QsnSN(A) in Fig. 2 is equivalent to the phase
portrait 1.4L15

1 from family QsnSN(B) in Fig. 3.

For the class QsnSN(A), from its 29 topo-
logically different phase portraits, 9 occur in 3–
dimensional parts, 14 in 2–dimensional parts, 5
in 1–dimensional parts and 1 occur in a single 0–
dimensional part, and for the class QsnSN(B),
from its 16 topologically different phase portraits,
5 occur in 3–dimensional parts, 7 in 2–dimensional
parts, 3 in 1–dimensional parts and 1 occur in a
single 0–dimensional part.

In Figs. 1, 2 and 3 we have denoted all the
singular points with a small disk. We have plot-
ted with wide curves the separatrices and we have
added some orbits drawn on the picture with thin-
ner lines to avoid confusion in some required cases.

Remark 1.4. We label the phase portraits accord-
ing to the parts of the bifurcation diagram where
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they occur. These labels could be different for two
topologically equivalent phase portraits occurring
in distinct parts. Some of the phase portraits in 3–
dimensional parts also occur in some 2–dimensional
parts bordering these 3–dimensional parts. An ex-
ample occurs when a node turns into a focus. An
analogous situation happens for phase portraits in
2–dimensional (respectively, 1–dimensional) parts,
coinciding with a phase portrait on 1–dimensional
(respectively, 0–dimensional) part situated on the
border of it.

The work is organized as follows. In Sec. 2 we
describe the normal form for the families of systems
having a finite saddle–node and an infinite saddle–

node of type
(0
2

)
SN in both horizontal and vertical

axes.

For the study of real planar polynomial vector
fields two compactifications can be used. In Sec. 3
we describe very briefly the Poincaré compactifica-
tion on the 2–dimensional sphere.

In Sec. 4 we list some very basic properties of
general quadratic systems needed in this study.

In Sec. 5 we mention some algebraic
and geometric concepts that were introduced in
[Schlomiuk et al., 2001, Llibre et al., 2004] involv-
ing intersection numbers, zero–cycles, divisors, T–
comitant and invariant polynomials for quadratic
systems as used by the Sibirskii school. We re-
fer the reader directly to [Artés et al., 2006] where
these concepts are widely explained.

We construct in Secs. 6 and 7 the algebraic
bifurcation surfaces of singularities for the classes
QsnSN(A) and QsnSN(B), respectively.

In Sec. 8 we comment about the possible exis-
tence of “islands” in the bifurcation diagram.

In Sec. 9 we introduce a global invariant de-
noted by I, which classifies completely, up to topo-
logical equivalence, the phase portraits we have ob-
tained for the systems in the classes QsnSN(A) and
QsnSN(B). Theorems 9.11 and 9.12 show clearly
that they are uniquely determined (up to topologi-
cal equivalence) by the values of the invariant I.

Remark 1.5. It is worth mentioning that a third
subclassQsnSN(C) ofQsnSN must be considered.
This subclass consists of planar quadratic systems
with a finite saddle–node sn(2) also situated at the
origin (as we do in this work) and an infinite saddle–

node of type
(
0
2

)
SN in the bisector of the first and

third quadrants and it is currently being studied.

In [Artés et al., 1998] the authors classi-
fied all the structurally stable quadratic pla-
nar systems modulo limit cycles, also known as
the codimension–zero quadratic systems (roughly
speaking, those systems whose all singularities, fi-
nite and infinite, are simple, with no separatrix
connection, and where any nest of limit cycles is
identified with the focus inside of them, with the
stability of the last limit cycle) by proving the
existence of 44 topologically different phase por-
traits for these systems. The natural continua-
tion in this idea is the classification of the struc-
turally unstable quadratic systems of codimension–
one, i.e. those systems which have one and only
one of the following simplest structurally unstable
objects: a saddle–node of multiplicity two (finite or
infinite), a separatrix from one saddle point to an-
other, and a separatrix forming a homoclinic loop
with its divergence non–zero. This study is al-
ready in progress [Artés & Llibre, 2013], all topo-
logical possibilities have already been found, some
of them have already been proved impossible and
many representatives have been located, but there
remain some cases without a candidate. One way
to obtain codimension–one phase portraits is con-
sidering perturbations of known phase portraits of
quadratic systems of higher degree of degeneracy.
These perturbations would decrease the codimen-
sion of the system and we may find a representa-
tive for a topological equivalence class in the family
of the codimension–one systems and add it to the
existing classification.

In order to contribute to this classification,
we studied some families of quadratic systems of
higher degree of degeneracy, e.g. systems with a
weak focus of second order, see [Artés et al., 2006],
and with a finite semi–elemental triple node, see
[Artés et al., 2013]. In this last paper, the authors
show that, after a quadratic perturbation in the
phase portrait V11, the semi–elemental triple node
is split into a node and a saddle–node and the new
phase portrait is topologically equivalent to one of
the topologically possible phase portraits of codi-
mension one, expected to exist.
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V 1
1 V 2

3 V 3
6 V 4

9

V 5
11 V 6

12 V 7
14 V 8

15

V 9
16 1S10

1 1S11
2 1S12

4

1S13
5 3S14

1 3S15
2 3S16

3

3S17
4

4S18
1 4S19

1 5S20
1

5S21
2 5S22

3
7S23

1 9S24
1

Fig. 1. Phase portraits for quadratic vector fields with a finite saddle–node sn(2) and an infinite saddle–node of type(
0
2

)
SN in the horizontal axis.
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9S25
2 9S26

3 1.2L27
2

1.4L28
1

1.9L29
1 2.3L30

1 3.4L31
1

3.5L32
1

5.9L33
1 8.9L34

1 P 35
1 P 36

3

P 37
4 P 38

5

Fig. 2. Continuation of Fig. 1.
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V 1
1 V 2

2 V 3
3 V 4

6 V 5
7

1S6
1 1S7

2 1S8
3 1S9

4 4S10
1

5S11
1 5S12

3 9S13
1 9S14

2 1.4L15
1

1.4L16
2 1.5L17

1
1.9L18

1 4.9L19
1 5.9L20

1

5.9L21
2

P 22
1 P 23

2 P 24
3

P 25
4

Fig. 3. Phase portraits for quadratic vector fields with a finite saddle–node sn(2) and an infinite saddle–node of type(
0
2

)
SN in the vertical axis.
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The present study is part of this attempt of
classifying all the codimension–one quadratic sys-
tems. We propose the study of a whole family
of quadratic systems having two semi–elemental
saddle–nodes, one finite and one infinite formed by
the collision of two infinite singular points. Both
subfamilies reported here will not bifurcate to any
of the codimension–one systems still missing, but in
the subfamily QsnSN(C) will appear some new ex-
amples due to the highly rich bifurcation diagram,
richer than anything we encountered before.

2. Quadratic vector fields with a finite
saddle–node sn(2) and an infinite saddle–

node of type
(0
2

)
SN

A singular point r of a planar vector field X in R2

is semi–elemental if the determinant of the matrix
of its linear part, DX(r), is zero, but its trace is
different from zero.

The following result characterizes the local
phase portrait at a semi–elemental singular point.

Proposition 2.1. [Andronov et al., 1973,
Dumortier et al., 2006] Let r = (0, 0) be an
isolated singular point of the vector field X given
by

ẋ = M(x, y),
ẏ = y +N(x, y),

(5)

where M and N are analytic in a neighborhood
of the origin starting with at least degree 2 in the
variables x and y. Let y = f(x) be the solu-
tion of the equation y + N(x, y) = 0 in a neigh-
borhood of the point r = (0, 0), and suppose that
the function g(x) = M(x, f(x)) has the expression
g(x) = axα + o(xα), where α ≥ 2 and a 6= 0. So,
when α is odd, then r = (0, 0) is either an unsta-
ble multiple node, or a multiple saddle, depending
if a > 0, or a < 0, respectively. In the case of the
multiple saddle, the separatrices are tangent to the
x–axis. If α is even, r = (0, 0) is a multiple saddle–
node, i.e. the singular point is formed by the union
of two hyperbolic sectors with one parabolic sector.
The stable separatrix is tangent to the positive (re-
spectively, negative) x–axis at r = (0, 0) according
to a < 0 (respectively, a > 0). The two unstable
separatrices are tangent to the y–axis at r = (0, 0).

In the particular case where M and N are real

quadratic polynomials in the variables x and y, a
quadratic system with a semi–elemental singular
point at the origin can always be written into the
form

ẋ = gx2 + 2hxy + ky2,
ẏ = y + ℓx2 + 2mxy + ny2.

(6)

By Proposition 2.1, if g 6= 0, then we have a
double saddle–node sn(2), using the notation intro-
duced in [Artés et al., 2012].

In the normal form above, we consider the co-
efficient of the terms xy in both equations factored
by 2 in order to make easier the calculations of the
algebraic invariants we shall compute later.

We note that in the normal form (6) we already
have a semi–elemental point at the origin and its
eigenvectors are (1, 0) and (0, 1) which condition the
possible positions of the infinite singular points.

We suppose that there exists a
(
0
2

)
SN at some

point at infinity. If this point is different from either
[1 : 0 : 0] of the local chart U1, or [0 : 1 : 0] of the
local chart U2, after a reparametrization of the type
(x, y) → (x, αy), α ∈ R, this point can be replaced
at [1 : 1 : 0] of the local chart U1, that is, at the
bisector of the first and third quadrants. However,

if
(0
2

)
SN is at [1 : 0 : 0] or [0 : 1 : 0], we cannot

apply this change of coordinates and it requires an
independent study for each one of the cases, which
are not equivalent due to the position of the infinite
saddle–node with respect to the eigenvectors of the
finite saddle–node. See Sec. 3 for the notation.

2.1. The normal form for the subclass
QsnSN(A)

The following result states the normal form for sys-
tems in QsnSN(A).

Proposition 2.2. Every system with a finite
semi–elemental double saddle–node sn(2) and an in-

finite saddle–node of type
(0
2

)
SN located in the direc-

tion defined by the eigenvector with null eigenvalue
can be brought via affine transformations and time
rescaling to the following normal form

ẋ = gx2 + 2hxy + ky2,
ẏ = y + gxy + ny2,

(7)

where g, h, k and n are real parameters and g 6= 0.
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Proof. We start with system (6). This system al-
ready has a finite semi–elemental double saddle–
node at the origin (then g 6= 0) with its eigenvec-
tors in the direction of the axes. The first step is

to place the point
(
0
2

)
SN at the origin of the local

chart U1 with coordinates (w, z). For that, we must
guarantee that the origin is a singularity of the flow
in U1,

ẇ = ℓ+ (−g + 2m)w + (−2h+ n)w2 − kw3 + wz,
ż = (−g − 2hw − kw2)z.

Then, we set ℓ = 0 and, by analyzing the Jacobian
of the former expression, we set m = g/2 in order
to have the eigenvalue associated to the eigenvector
on z = 0 being null and obtain the normal form
(7).

In order to consider the closure of the family
QsnSN(A), it is necessary to study the case when
g = 0, which will be discussed later.

Remark 2.3. We note that {y = 0} is an invariant
straight line under the flow of (7).

Systems (7) depend on the parameter λ =
(g, h, k, n) ∈ R4. We consider systems (7) which
are nonlinear, i.e. λ = (g, h, k, n) 6= 0. In this
case, system (7) can be rescaled (x 7→ x/g) and
the parameter space is actually the real projective
plane RP3, and not R4. The 3–dimensional projec-
tive space RP3 can be viewed as the quotient space
S3 /∼ of S3 by the equivalence relation: (g, h, k, n)
is equivalent to itself or to (−g,−h,−k,−n). So,
our parameter is [λ] = [g : h : k : n] ∈ RP3 = S3 /∼.
Rescaling the time, it suffices to consider the points
[g : h : k : n] in this quotient with h ≥ 0. Due
to the symmetry (x, y, t) 7→ (−x,−y, t) we have
(g, h, k, n) 7→ (−g,−h,−k,−n). Indeed, after ap-
plying the symmetry (x, y, t) 7→ (−x,−y, t) we ob-
tain the system

ẋ = −gx2 − 2hxy − ky2,

ẏ = y − gxy − ny2.

This implies that it is sufficient to consider only
g ≥ 0. Since g2 + h2 + k2 + n2 = 1, then g =√

1− (h2 + k2 + n2), where 0 ≤ h2 + k2 + n2 ≤ 1.
We can therefore view the parameter space as

a half–ball B = {(h, k, n) ∈ R3; h2 + k2 + n2 ≤
1, h ≥ 0} with base h = 0 and where on the equator

h

h = 0

g = 0

Fig. 4. The parameter space.

two opposite points are identified. When h = 0,
we identify the point [g : 0 : k : n] ∈ RP3 with
[g : k : n] ∈ RP2. So, the base of the half–ball B
(h = 0) can be identified with RP2, which can be
viewed as a disk with two opposite points on the
circumference (the equator) identified (see Fig. 4).

For g 6= 0, we get the affine chart:

RP3 \ {g = 0} ↔ R3

[g : h : k : n] 7→ (
h

g
,
k

g
,
n

g
) = (h, k, n)

[1 : h : k : n] 7→ (h, k, n).

The plane g = 0 in RP3 corresponds to the
equation h2+k2+n2 = 1 (the full sphere S2) and the
line g = h = 0 in RP3 corresponds to the equation
k2 + n2 = 1 (the equator h = 0 of S2). However,
because of symmetry, we only need half sphere and
half equator, respectively.

We now consider planes in R3 of the form
h = h0, where h0 is a constant. The projective
completion of such a plane in RP3 has the equation
h− h0g = 0. So we see how the slices h = h0 need
to be completed in the ball (see Fig. 5). We note
that when g = 0 necessarily we must have h = 0 on
such a slice, and thus the completion of the image
of the plane h = h0, when visualized in S3, must
include the equator.

The specific equations of the correspondence of
the points in the plane h = h0 of R3 (h0 a constant)
onto points in the interior of S2 (B = {(h, k, n) ∈
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Fig. 5. Correspondence between planes and ellipsoides.

R3; h2 + k2 + n2 < 1}) follows from the bijection:

R3 ↔ B

(h, k, n) ↔
(
h

c
,
k

c
,
n

c

)

with c =

√
h
2
+ k

2
+ n2 + 1. That is, for each

plane h = constant in R3 , there corresponds an
ellipsoid h2(1 + h0)

2/h20 + k2 + n2 = 1 (see Fig. 5).
The set defined by g = 0 and h = 1 corresponds

to the open half sphere, while g = 0 = h is the
equator of the ball.

In what follows we would have to make a sim-
ilar study of the geometry of the different surfaces
(singularities, intersections, suprema) involved in
the bifurcation diagram as it has been done in
[Artés et al., 2006] or [Artés et al., 2013]. The con-
clusion of such a study is that this bifurcation dia-
gram has only one singular slice, h = 0, plus a sym-
metry h 7→ −h, so that the only needed slices to be
studied are h = 0 (singular) and h = 1 (generic).
However, there is a much shorter and easier way to
detect the same phenomenon and this comes from
the next result.

Proposition 2.4. By a rescaling in the variables,
we may assume h = 0 or h = 1 in the normal form
(7).

Proof. If h 6= 0, we consider the rescaling in the
variables given by (x, y) 7→ (x, y/h) and obtain

ẋ = gx2 + 2xy + k
h2 y

2,
ẏ = y + gxy + n

hy
2.

By recalling the coefficients k/h2 7→ k and n/h 7→
n, we obtain system (7) with h = 1. Moreover, we
must also consider the case when h = 0.

2.2. The normal form for the subclass
QsnSN(B)

The following result gives the normal form for sys-
tems in QsnSN(B).

Proposition 2.5. Every system with a finite
semi–elemental double saddle–node sn(2) and an in-

finite saddle–node of type
(0
2

)
SN located in the direc-

tion defined by the eigenvector with non-null eigen-
value can be brought via affine transformations and
time rescaling to the following normal form

ẋ = gx2 + 2hxy,
ẏ = y + ℓx2 + 2mxy + 2hy2,

(8)

where g, h, ℓ and m are real parameters and g 6= 0.

Proof. Analogously to Proposition 2.2, we start
with system (6), but now we want to place the point(0
2

)
SN at the origin of the local chart U2. By fol-

lowing the same steps, we set k = 0, n = 2h and we
obtain the form (8).

For this family, we also study the case when
g = 0 in order to consider the closure of the set
QsnSN(B).

Remark 2.6. We note that {x = 0} is an invariant
straight line under the flow of (8).

We construct the parameter space for systems
(8) in the same way it was constructed for systems
(7), but now with respect to the parameter [λ] =
[g : h : ℓ : m] ∈ RP3.

Analogously to the previous family, the bifur-
cation diagram for this family in R3 shows only one
singular slice, h = 0, and a symmetry h 7→ −h.
Then, only one generic slice needs to be taken into
consideration, and we choose h = 1, and this also
can be proved in a much easier way with a trans-
formation similar to the previous case as it can be
seen in the next result.

Proposition 2.7. By a rescaling in the variables,
we may assume h = 0 or h = 1 in the normal form
(8).

Proof. If h 6= 0, we consider the rescaling in the
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variables given by (x, y) 7→ (x, y/h) and obtain

ẋ = gx2 + 2xy,
ẏ = y + ℓhx2 + 2mxy + 2y2.

By recalling the coefficient ℓh 7→ ℓ, we obtain sys-
tem (8) with h = 1. Moreover, we must also con-
sider the case when h = 0.

3. The Poincaré compactification and the
complex (real) foliation with singulari-
ties on CP2 (RP2)

A real planar polynomial vector field ξ can be com-
pactified on the sphere as follows. Consider the
x, y plane as being the plane Z = 1 in the space
R3 with coordinates X, Y , Z. The central pro-
jection of the vector field ξ on the sphere of ra-
dius one yields a diffeomorphic vector field on the
upper hemisphere and also another vector field on
the lower hemisphere. There exists (for a proof see
[Gonzales, 1969]) an analytic vector field cp(ξ) on
the whole sphere such that its restriction on the
upper hemisphere has the same phase curves as the
one constructed above from the polynomial vector
field. The projection of the closed northern hemi-
sphere H+ of S2 on Z = 0 under (X,Y,Z) →
(X,Y ) is called the Poincaré disk. A singular point
q of cp(ξ) is called an infinite (respectively, finite)
singular point if q ∈ S1, the equator (respectively,
q ∈ S2 \S1). By the Poincaré compactification of
a polynomial vector field we mean the vector field
cp(ξ) restricted to the upper hemisphere completed
with the equator.

Ideas in the remaining part of this section
go back to Darboux’s work [Darboux, 1878]. Let
p(x, y) and q(x, y) be polynomials with real coeffi-
cients. For the vector field

p
∂

∂x
+ q

∂

∂y
, (9)

or equivalently for the differential system

ẋ = p(x, y), ẏ = q(x, y), (10)

we consider the associated differential 1–form
ω1 = q(x, y)dx−p(x, y)dy, and the differential equa-
tion

ω1 = 0 . (11)

Clearly, equation (11) defines a foliation with sin-
gularities on C2. The affine plane C2 is com-
pactified on the complex projective space CP2 =

(C3 \ {0})/ ∼, where (X,Y,Z) ∼ (X ′, Y ′, Z ′) if and
only if (X,Y,Z) = λ(X ′, Y ′, Z ′) for some complex
λ 6= 0. The equivalence class of (X,Y,Z) will be
denoted by [X : Y : Z].

The foliation with singularities defined by equa-
tion (11) on C2 can be extended to a foliation with
singularities on CP2 and the 1–form ω1 can be ex-
tended to a meromorphic 1–form ω on CP2 which
yields an equation ω = 0, i.e.

A(X,Y,Z)dX+B(X,Y,Z)dY +C(X,Y,Z)dZ = 0,
(12)

whose coefficients A, B, C are homogeneous poly-
nomials of the same degree and satisfy the relation:

A(X,Y,Z)X +B(X,Y,Z)Y + C(X,Y,Z)Z = 0,
(13)

Indeed, consider the map i : C3 \ {Z = 0} → C2,
given by i(X,Y,Z) = (X/Z, Y/Z) = (x, y) and sup-
pose that max{deg(p),deg(q)} = m > 0. Since
x = X/Z and y = Y/Z we have:

dx = (ZdX −XdZ)/Z2, dy = (ZdY − Y dZ)/Z2,

the pull–back form i∗(ω1) has poles at Z = 0 and
yields the equation

i∗(ω1) =q(X/Z, Y/Z)(ZdX −XdZ)/Z2

− p(X/Z, Y/Z)(ZdY − Y dZ)/Z2 = 0.

Then, the 1–form ω = Zm+2i∗(ω1) in C3 \ {Z 6= 0}
has homogeneous polynomial coefficients of degree
m + 1, and for Z = 0 the equations ω = 0 and
i∗(ω1) = 0 have the same solutions. Therefore, the
differential equation ω = 0 can be written as (12),
where

A(X,Y,Z) =ZQ(X,Y,Z) = Zm+1q(X/Z, Y/Z),

B(X,Y,Z) =− ZP (X,Y,Z) = −Zm+1p(X/Z, Y/Z),

C(X,Y,Z) =Y P (X,Y,Z)−XQ(X,Y,Z).
(14)

Clearly A, B and C are homogeneous polyno-
mials of degree m+ 1 satisfying (13).

In particular, for our quadratic systems (7), A,
B and C take the following forms

A(X,Y,Z) =Y Z(gX + nY + Z)

B(X,Y,Z) =− (gX2 + 2hXY + kY 2)Z,

C(X,Y,Z) =Y (2hXY − nXY + kY 2 −XZ).
(15)
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and for our quadratic systems (8), A, B and C take
the following forms

A(X,Y,Z) =Z(ℓX2 + 2mXY + 2hY 2 + Y Z),

B(X,Y,Z) =−X(gX + 2hY )Z,

C(X,Y,Z) =X(−ℓX2 + gXY − 2mXY − Y Z).
(16)

We note that the straight line Z = 0 is always
an algebraic invariant curve of this foliation and
that its singular points are the solutions of the sys-
tem: A(X,Y,Z) = B(X,Y,Z) = C(X,Y,Z) = 0.
We note also that C(X,Y,Z) does not depend on
h.

To study the foliation with singularities defined
by the differential equation (12) subject to (13)
with A, B, C satisfying the above conditions in the
neighborhood of the line Z = 0, we consider the
two charts of CP2: (u, z) = (Y/X,Z/X), X 6= 0,
and (v,w) = (X/Y,Z/Y ), Y 6= 0, covering this
line. We note that in the intersection of the charts
(x, y) = (X/Z, Y/Z) and (u, z) (respectively, (v,w))
we have the change of coordinates x = 1/z, y = u/z
(respectively, x = v/w, y = 1/w). Except for the
point [0 : 1 : 0] or the point [1 : 0 : 0], the foliation
defined by equations (12),(13) with A, B, C as in
(14) yields in the neighborhood of the line Z = 0
the foliations associated with the systems

u̇ =uP (1, u, z) −Q(1, u, z) = C(1, u, z),

ż =zP (1, u, z),
(17)

or

v̇ =vQ(v, 1, w) − P (v, 1, w) = −C(v, 1, w),

ẇ =wP (v, 1, w).
(18)

In a similar way we can associate a real foliation
with singularities on RP2 to a real planar polyno-
mial vector field.

4. A few basic properties of quadratic sys-
tems relevant for this study

We list below results which play a role in the
study of the global phase portraits of the real pla-
nar quadratic systems (1) having a semi–elemental
saddle–node.

The following results hold for any quadratic
system:

(i) A straight line either has at most two (finite)
contact points with a quadratic system (which
include the singular points), or it is formed by
trajectories of the system; see Lemma 11.1 of
[Ye et al., 1986]. We recall that by definition
a contact point of a straight line L is a point of
L where the vector field has the same direction
as L, or it is zero.

(ii) If a straight line passing through two real fi-
nite singular points r1 and r2 of a quadratic
system is not formed by trajectories, then it is
divided by these two singular points in three
segments ∞r1, r1r2 and r2∞ such that the
trajectories cross ∞r1 and r2∞ in one direc-
tion, and they cross r1r2 in the opposite di-
rection; see Lemma 11.4 of [Ye et al., 1986].

(iii) If a quadratic system has a limit cycle, then
it surrounds a unique singular point, and this
point is a focus; see [Coppel, 1966].

(iv) A quadratic system with an invariant straight
line has at most one limit cycle; see
[Coll & Llibre, 1988].

(v) A quadratic system with more than one in-
variant straight line has no limit cycle; see
[Bautin, 1954].

Proposition 4.1. The border of any simply con-
nected closed bidimensional set which is invariant
under the flow of a vector field must either

1) surround a singular point of index greater than
or equal to +1, or

2) contain a singular point having an elliptic sector
situated in the region delimited by the border, or

3) contain or surround an infinite number of sin-
gular points.

Proof. See the proof in [Artés et al., 1998].

5. Some algebraic and geometric concepts

In this article we use the concept of intersection
number for curves (see [Fulton, 1969]). For a quick
summary see Sec. 5 of [Artés et al., 2006].

We shall also use the concepts of zero–
cycle and divisor (see [Hartshorne, 1977])
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as specified for quadratic vector fields in
[Schlomiuk et al., 2001]. For a quick sum-
mary see Sec. 6 of [Artés et al., 2006]. See also
[Llibre et al., 2004].

We shall also use the concepts of invariant poly-
nomials as used by the Sibirskii school for differen-
tial equations. For a quick summary see Sec. 7 of
[Artés et al., 2006].

In the next two sections we describe the alge-
braic invariants and T–comitants which are relevant
in the study of families (7), see Sec. 6, and (8), see
Sec. 7.

6. The bifurcation diagram of the systems
in QsnSN(A)

6.1. Bifurcation surfaces due to the
changes in the nature of singularities

For systems (7) we will always have the origin as a
finite singular point, a double saddle–node.

From Sec. 7 of [Artés et al., 2008] we get the
formulas which give the bifurcation surfaces of sin-
gularities in R12, produced by changes that may oc-
cur in the local nature of finite singularities. From
[Schlomiuk et al., 2005] we get equivalent formulas
for the infinite singular points. These bifurcation
surfaces are all algebraic and they are the follow-
ing:

Bifurcation surfaces in RP3 due to multiplic-
ities of singularities

(S1) This is the bifurcation surface due to mul-
tiplicity of infinite singularities as detected by
the coefficients of the divisor DR(P,Q;Z) =∑

W∈{Z=0}∩CP2 IW (P,Q)W , (here IW (P,Q) de-
notes the intersection multiplicity of P = 0 with
Q = 0 at the point W situated on the line at infin-
ity, i.e. Z = 0) whenever deg((DR(P,Q;Z))) > 0.
This occurs when at least one finite singular point
collides with at least one infinite point. More
precisely this happens whenever the homogenous
polynomials of degree two, p2 and q2, in p and
q have a common root. In other words whenever
µ = Resx(p2, q2)/y

4 = 0. This is a quartic whose
equation is

µ = g2(gk − 2hn + n2) = 0.

(S3)
1 Since this family already has a saddle–

node at the origin, the invariant D, as defined in
[Artés et al., 2006], is always zero. The next T–
comitant polynomial related to finite singularities
is T as proved in [Artés et al., 2008]. If this T–
comitant polynomial vanishes, it may mean either
the existence of another finite semi–elemental point,
or the origin being a point of higher multiplicity, or
the system being degenerate. The equation of this
surface is

T = g4(h2 − gk) = 0.

(S5) Since this family already has a saddle–
node at infinity, the invariant η, as defined in
[Artés et al., 2006], is always zero. In this sense,
we have to consider a bifurcation related to the
existence of either the double infinite singularity(0
2

)
SN plus a simple one, or a triple one. This phe-

nomenon is ruled by the T–comitant M̃ as proved
in [Schlomiuk et al., 2005, Artés et al., 2012]. The
equation of this surface is

M̃ = 2h− n = 0.

The surface of C∞ bifurcation points due to
a strong saddle or a strong focus changing
the sign of their traces (weak saddle or weak
focus)

(S2) This is the bifurcation surface due to weak
finite singularities, which occurs when the trace of
a finite singular point is zero. The equation of this
surface is given by

T4 = g2(−4h2 + 4gk + n2) = 0,

where T4 is defined in [Vulpe, 2011]. This T4 is an
invariant polynomial.

This bifurcation can produce a topological
change if the weak point is a focus or just a C∞

change if it is a saddle, except when this bifurcation
coincides with a loop bifurcation associated with
the same saddle, in which case, the change may
also be topological.

The surface of C∞ bifurcation due to a node
becoming a focus

1The numbers attached to these bifurcations surfaces do
not appear here in increasing order. We just kept the same
enumeration used in [Artés et al., 2006] to maintain coher-
ence even though some of the numbers in that enumeration
do not occur here.
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(S6) This surface will contain the points of the pa-
rameter space where a finite node of the system
turns into a focus. This surface is a C∞ but not
a topological bifurcation surface. In fact, when
we only cross the surface (S6) in the bifurcation
diagram, the topological phase portraits do not
change. However, this surface is relevant for iso-
lating the regions where a limit cycle surrounding
an antisaddle cannot exist. Using the results of
[Artés et al., 2008], the equation of this surface is
given by W4 = 0, where

W4 =g4(−48h4 + 32gh2k + 16g2k2 + 64h3n

− 64ghkn − 24h2n2 + 24gkn2 + n4).

Bifurcation surface in RP3 due to the pres-
ence of another invariant straight line apart
from {y = 0}
(S4) This surface will contain the points of the pa-
rameter space where another invariant straight line
appears apart from {y = 0}. This surface is split
in some regions. Depending on these regions, the
straight line may contain connections of separatri-
ces from different saddles or not. So, in some cases,
it may imply a topological bifurcation and, in oth-
ers, just a C∞ bifurcation. The equation of this
surface is given by

Het = h = 0.

These, except (S4), are all the bifurcation sur-
faces of singularities of systems (7) in the parame-
ter space and they are all algebraic. We shall dis-
cover another bifurcation surface not necessarily al-
gebraic and on which the systems have global con-
nection of separatrices different from that given by
(S4). The equation of this bifurcation surface can
only be determined approximately by means of nu-
merical tools. Using arguments of continuity in the
phase portraits we can prove the existence of this
not necessarily algebraic component in the region
where it appears, and we can check it numerically.
We shall name it the surface (S7).

We shall foliate the three–dimensional bifurca-
tion diagram in RP3 by the planes h = 0 and h = 1,
given by Proposition 2.4, plus the open half sphere
g = 0 and we shall give pictures of the resulting
bifurcation diagram on these planar sections on a
disk or in an affine chart of R2.

The following two results study the geometrical
behavior of the surfaces, that is, their singularities
and their intersection points, or the points where
two bifurcation surfaces are tangent.

In what follows we work in the chart of RP3

corresponding to g 6= 0, and we take g = 1. To
do the study, we shall use Figs. 7 and 8 which
are drawn on planes h = h0 of R3, h0 ∈ {0, 1},
having coordinates (h0, k, n). In these planes the
coordinates are (n, k) where the horizontal line is
the n–axis.

As the final bifurcation diagram is quite com-
plex, it is useful to introduce colors which will be
used to talk about the bifurcation points:

(a) the curve obtained from the surface (S1) is
drawn in blue (a finite singular point collides
with an infinite one);

(b) the curve obtained from the surface (S2) is
drawn in yellow (when the trace of a singular
point becomes zero);

(c) the curve obtained from the surface (S3) is
drawn in green (two finite singular points col-
lide);

(d) the curve obtained from the surface (S4) is
drawn in purple (presence of an invariant
straight line). We draw it as a continuous curve
if it implies a topological change or as a dashed
curve if not.

(e) the curve obtained from the surface (S5) is
drawn in red (three infinite singular points col-
lide);

(f) the curve obtained from the surface (S6) is
drawn in black (an antisaddle is on the edge of
turning from a node to a focus or vice versa);
and

(g) the curve obtained from the surface (S7) is also
drawn in purple (same as for (S4)) since both
surfaces deal with connections of separatrices
mostly.

Lemma 6.1. For g 6= 0 and h = 0, no surface, ex-
cept (S6), has any singularity and all of the surfaces
coincide at [1 : 0 : 0 : 0].
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Proof. By setting g = 1 and restricting the equa-
tions of the surfaces to h = 0 we obtain: µ = k+n2,
T4 = 4k + n2, T = −k, M̃ = −n, W4 = 16k2 +
24kn2 + n4 and Het ≡ 0. It is easy too see that µ,
T4, T, M̃ and Het have no singularities as they are
either a line, or a parabola, or null. Surface (S6) is
a quartic whose only singularity is at [1 : 0 : 0 : 0]
(this is the union of two parabolas having a com-
mon contact point). Besides, if we solve the system
of equations formed by these expressions, we obtain
[1 : 0 : 0 : 0] as the unique solution.

Remark 6.2. Everywhere we mention “a contact
point” we mean an intersection point between two
curves with the same tangency of even order. Ev-
erywhere we mention “an intersection point” we
mean a transversal intersection point (with different
tangencies).

Lemma 6.3. For g 6= 0 and h = 1, no surface,
except (S6), has any singularity. Moreover,

1) the point [1 : 1 : 1 : 0] is a contact point among
(S2), (S3) and (S6);

2) the point [1 : 1 : 1 : 1] is a contact point between
(S1) and (S3);

3) the point [1 : 1 : 1 : 2] is an intersection point
between (S3) and (S5);

4) the point [1 : 1 : 48/49 : 6/7] is an intersection
point between (S1) and (S6);

5) the point [1 : 1 : 8/9 : 2/3] is an intersection
point between (S2) and (S6);

6) the point [1 : 1 : 0 : −6] is an intersection point
between (S4) and (S6);

7) the point [1 : 1 : 0 : −2] is an intersection point
between (S2) and (S4);

8) the point [1 : 1 : 0 : 0] is an intersection point
between (S1) and (S4);

9) the point [1 : 1 : 0 : 2] is an intersection point
among all the surfaces, except (S3). Besides,
surface (S6) is singular at this point, surface
(S4) has a contact point with one of the compo-
nents of (S6) and (S1) has a contact point with
the other component of (S6).

Proof. Analogously to the previous lemma, by re-
stricting the equations of the surfaces to g = h = 1
and solving the system of equation formed by pairs
of the restricted expressions, we obtain the re-
sult.

Remark 6.4. Even though we are working in RP3,
we have seen that the study can be reduced to the
geometry of the curves obtained by intersecting the
surfaces with this slice.

According to Proposition 2.4, we shall study
the bifurcation diagram having as reference the val-
ues h = 0 and h = 1 (see Figs. 7 and 8) and also
the value h = ∞, which corresponds to g = 0. We
perform the bifurcation diagram of all singularities
for h = ∞ (g = 0) by putting g = 0 and in the re-
maining three variables (h, k, n), yielding the point
[h : k : n] ∈ RP2, we take the chart h 6= 0 in which
we may assume h = 1.

For these values of the parameters, system (7)
becomes

ẋ = 2xy + ky2,
ẏ = y + ny2,

(19)

and the expressions of the bifurcation surfaces for
(19) are given by

µ = T4 = T = W4 = Het = 0

and M̃ = 2− n.
(20)

Remark 6.5. We note that {y = 0} is a straight
line formed by an infinite number of singularities
for system (19). Then, the phase portraits of such
a system must be studied by removing the common
factor of the two equations defining it and studying
the linear system that remains. The invariant poly-
nomials for linear systems equivalent to the ones for
quadratic systems that we use in this paper have
not been defined, but they are trivial to use for a
concrete normal form like (19).

The bifurcation curves of singularities (20) are
shown in Fig. 6. We point out that, although we
have drawn in blue the vertical axis k in Fig. 6,
it does not represent surface (S1) since it is null
by equations (20), but it has the same geometrical
meaning as this surface, i.e. a finite singular has
gone to infinity.

We now describe the labels used for each part.
The subsets of dimensions 3, 2, 1 and 0 of the parti-
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n

k

Fig. 6. Slice of the parameter space for (7) when h = ∞.

n

k

Fig. 7. Slice of the parameter space for (7) when h = 0.

n

k

1s2

1s3

2s2

2s3

2s4

6s2

4s2 4s3 4s4

v4
v5

v10

v14

v1

2.3ℓ1

1.4ℓ1

v3

3s1

Fig. 8. Slice of the parameter space for (7) when h = 1.

tion of the parameter space will be denoted respec-
tively by V , S, L and P for Volume, Surface, Line
and Point, respectively. The surfaces are named
using a number which corresponds to each bifurca-
tion surface which is placed on the left side of the
letter S. To describe the portion of the surface we
place an index. The curves that are intersection
of surfaces are named by using their corresponding
numbers on the left side of the letter L, separated
by a point. To describe the segment of the curve we
place an index. Volumes and Points are simply in-
dexed (since three or more surfaces may be involved
in such an intersection). Furthermore, we also add
a super–index which will be different for every topo-
logically distinct phase portrait. We shall use this
super–index when related to phase portraits, but we
may skip it while studying the bifurcation diagram.

We consider an example: the surface (S1) splits
into 6 different two–dimensional parts labeled from
1S1 to 1S6, plus some one–dimensional arcs labeled
as 1.iLj (where i denotes the other surface inter-
sected by (S1) and j is a number), and some zero–
dimensional parts. In order to simplify the labels
in Figs. 11 to 13 we see V1 which stands for the
TEX notation V1. Analogously, 1S1 (respectively,
1.2L1) stands for 1S1 (respectively, 1.2L1). And
the same happens with other pictures.

Remark 6.6. We point out that the slice h = ∞
is a bifurcation surface in the parameter space and
receives the label 9S. We have denoted the curved
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segments in which the equator splits as 8.9Lj .

As an exact drawing of the curves produced by
intersecting the surfaces with slices gives us very
small regions which are difficult to distinguish,
and points of tangency are almost impossible
to recognize, we have produced topologically
equivalent pictures where regions are enlarged
and tangencies are easy to observe. The reader
may find the exact pictures in the web page
http://mat.uab.es/∼artes/articles/qvfsn2SN02/
qvfsn2SN02.html.

Remark 6.7. We consider g 6= 0. It is worth men-
tioning that if we compare the case of the slices
h = 0 and h = 1 (here we may take any other
h > 0), we see that a region looking like a “cross”
appears on the slice h = 1 between (S3) (n = 1)
and (S4) (n = 0) and also between (S5) (k = 2)
and k = 0. This “cross” exists on every slice given
by h > 0 and, as we take h → 0, the region inside
the “cross” including the borders tends to the two
axes. Furthermore, the rectangle in the middle of
the cross tends to [1 : 0 : 0 : 0].

We recall that the black surface (S6) (or W4)
means the turning of a finite antisaddle from a node
to a focus. Then, according to the general results
about quadratic systems, we could have limit cycles
around such point.

Remark 6.8. Wherever two parts of equal dimen-
sion d are separated only by a part of dimension
d − 1 of the black bifurcation surface (S6), their
respective phase portraits are topologically equiva-
lent since the only difference between them is that
a finite antisaddle has turned into a focus without
change of stability and without appearance of limit
cycles. We denote such parts with different labels,
but we do not give specific phase portraits in pic-
tures attached to Theorems 1.1 and 1.2 for the parts
with the focus. We only give portraits for the parts
with nodes, except in the case of existence of a limit
cycle or a graphic where the singular point inside
them is portrayed as a focus. Neither do we give
specific invariant description in Sec. 9 distinguish-
ing between these nodes and foci.

6.2. Bifurcation surfaces due to connec-
tions

We now describe for each set of the partition on
g 6= 0 and h = 1 the local behavior of the flow
around all the singular points. Given a concrete
value of parameters of each one of the sets in this
slice we compute the global phase portrait with the
numerical program P4 [Dumortier et al., 2006]. It
is worth mentioning that many (but not all) of the
phase portraits in this paper can be obtained not
only numerically but also by means of perturbations
of the systems of codimension one higher.

In this slice we have a partition in 2–
dimensional regions bordered by curved polygons,
some of them bounded, others bordered by infinity.
Provisionally, we use low–case letters to describe
the sets found algebraically so as not to interfere
with the final partition described with capital let-
ters. For each 2–dimensional region we obtain a
phase portrait which is coherent with those of all
their borders, except in one region. Consider the
set v1 in Fig. 8. In it we have only a saddle–
node as finite singularity. When reaching the set
2.3ℓ1, we are on surfaces (S2), (S3) and (S6) at the
same time; this implies the presence of one more
finite singularity (in fact, it is a cusp point) which
is on the edge of splitting itself and give birth to
finite saddle and antisaddle. Now, we consider the
segments 2s2 and 2s3. By the Main Theorem of
[Vulpe, 2011], the corresponding phase portraits of
these sets have a first–order weak saddle and a first–
order weak focus, respectively. So, on 2s3 we have
a Hopf bifurcation. This means that either in v5
or v10 we must have a limit cycle. In fact this oc-
curs in v5. Indeed, as we have a weak saddle on
2s2 and we have not detected a loop-type bifur-
cation surface intersecting this subset, neither its
presence is forced to keep the coherence, its corre-
sponding phase portrait is topologically equivalent
to the portraits of v4 and v5. Since in v5 we have
a phase portrait topologically equivalent to the one
on 2s2 (without limit cycles) and a phase portrait
with limit cycles, this region must be split into two
other ones separated by a new surface (S7) having
at least one element 7S1 such that one region has
limit cycle and the other does not, and the border
7S1 must correspond to a connection between sepa-
ratrices. After numerical computations we checked
that the region v5 splits into V5 without limit cycles
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v14

Fig. 9. The local behavior around each of the finite and
infinite singularities of any representant of v14. The red
arrow shows the sense of the flow along the y-axis and
the blue points are the focus and the node with same
stability.

and V11 with one limit cycle, both of which can be
seen in Fig. 13.

The next result assures us the existence of limit
cycle in any representative of the subset v14 and it
is needed to complete the study of 7S1.

Lemma 6.9. In v14 there is always one limit cycle.

Proof. We see that the subset v14 is characterized
by µ < 0, T4 < 0, W4 < 0, M̃ > 0, T > 0, k > 0
and n > 0. Any representative of v14 has the finite
saddle–node at the origin with its eigenvectors on
the axes and two more finite singularities, a focus
and a node (the focus is due to W4 < 0). We claim
that these two other singularities are placed in sym-
metrical quadrants with respect to the origin (see
Fig. 9). In fact, by computing the exact expression
of each singular point (x1, y1) and (x2, y2) and mul-
tiplying their x–coordinates and y-coordinates we
obtain k/µ and 1/µ, respectively, which are always
negative since k > 0 and µ < 0 in v14. Besides, each
one of them is placed in an even quadrant since the
product of the coordinates of each antisaddles is
never null and any representative gives a negative
product. Moreover, both antisaddles have the same
stability since the product of their traces is given by
µ/T4 which is always positive in v14.

The infinite singularities of systems in v14 are

the saddle–node
(0
2

)
SN (recall the normal form (7))

and a saddle. In fact, the expression of the sin-
gular points in the local chart U1 are (0, 0) and
((−2h+ n)/k, 0). We note that the determinant of

the Jacobian matrix of the flow in U1 at the second
singularity is given by

−(2h− n)2
(
2hn− k − n2

)

k2
=

M̃2µ

k2
,

which is negative since µ < 0 in v14. Besides, this
pair of saddles are in the second and the fourth
quadrant because its first coordinate (−2h+n)/k =

−M̃/k is negative since M̃ > 0 and k > 0 in v14.

We also note that the flow along the y-axis is
such that ẋ > 0.

Since we have a pair of saddle points in the
even quadrants, each one of the finite antisaddles
is in an even quadrant, no orbit can enter into the
second quadrant and no orbit may leave the fourth
one and, in addition, these antisaddles, a focus and
a node, have the same stability, any phase portrait
in v14 must have at least one limit cycle in any of
the even quadrants. Moreover, the limit cycle is
in the second quadrant, because the focus is there
since a saddle–node is born in that quadrant at 3s1,
splits in two points when entering v3 (both remain
in the same quadrant since x1x2 = k/µ < 0 and
y1y2 = 1/µ < 0), the node turns into focus at 6s2
and the saddle moves to infinity on 1s2 appearing as
a node at the fourth quadrant when entering v14.
Furthermore, by the statement (iv) of Sec. 4, it
follows the uniqueness of the limit cycle in v14.

Now, the following result states that the seg-
ment which splits the subset v5 into the regions V5

and V11 has its endpoints well–determined. We can
visualize the image of this surface in the plane h = 1
in Fig. 13.

Proposition 6.10. The endpoints of the part of
the curve 7S1 are 2.3ℓ1, intersection of surfaces
(S2) and (S3), and 1.4ℓ1, intersection of surfaces
(S1) and (S4).

Proof. We write r1 = [1 : 1 : 0 : 2] and r2 = [1 :
1 : 1 : 0] for 2.3ℓ1 and 1.4ℓ1, respectively. If the
starting point were any point of the segments 2s2
or 2s3, we would have the following incoherences:
firstly, if the starting point of 7S1 were on 2s2, a
portion of this subset must refer to a Hopf bifurca-
tion since we have a limit cycle in V11; and secondly,
if this starting point were on 2s3, a portion of this
subset must not refer to a Hopf bifurcation which
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contradicts the fact that on 2s3 we have a first–
order weak focus. Finally, the ending point must
be r2 because, if it were located on 4s3, we would
have a segment between this point and 1.4ℓ1 along
surface (S4) with two invariant straight lines and
one limit cycle, which contradicts the statement (v)
of Sec. 4, and if it were on 1s2, we would have a
segment between this point and 1.4ℓ1 along surface
(S1) without limit cycle which is not compatible
with Lemma 6.9 since µ = 0 does not produce a
graphic.

In Fig. 10 we show the sequence of phase por-
traits along the subsets pointed out in Fig. 8.

We cannot be totally sure that this is the
unique additional bifurcation curve in this slice.
There could exist others which are closed curves
which are small enough to escape our numerical re-
search, but the one located is enough to maintain
the coherence of the bifurcation diagram. We re-
call that this kind of studies are always done mod-
ulo “islands”. For all other two–dimensional parts
of the partition of this slice whenever we join two
points which are close to two different borders of
the part, the two phase portraits are topologically
equivalent. So we do not encounter more situations
than the one mentioned above.

In Figs. 11 to 13 we show the bifurcation dia-
grams for family (7). Since there are two relevant
values of h to be taken into consideration (accord-
ing to Proposition 2.4) plus the infinity, the pic-
tures show all the algebraic bifurcation curves and
all the non-algebraic bifurcation ones needed for the
coherence of the diagram, which lead to a complete
bifurcation diagram for family (7) modulo islands.
In Sec. 9 the reader can look for the topological
equivalences among the phase portraits appearing
in the various parts and the selected notation for
their representatives in Figs. 1 and 2. In Fig. 13,
we have colored in light yellow the regions with one
limit cycle.

7. The bifurcation diagram of the systems
in QsnSN(B)

Before we describe all the bifurcation surfaces for
QsnSN(B), we prove the following result which
gives conditions on the parameters for the presence
of either a finite star node n∗ (whenever any two dis-
tinct non–trivial integral curves arrive at the node

with distinct slopes), or a finite dicritical node nd (a
node with identical eigenvalues but Jacobian non–
diagonal).

Lemma 7.1. Systems (8) always have a n∗, if m =
0 and h 6= 0, or a nd, otherwise.

Proof. We note that the singular point (0,−1/2h)
has its Jacobian matrix given by

(
−1 0

−m/h −1

)
.

7.1. Bifurcation surfaces due to the
changes in the nature of singularities

The needed invariant and T–comitant polynomials
needed here are the same as in the previous system
except surfaces (S4) and (S6); so we shall only give
the geometrical meaning and their equations plus
a deeper discussion on surface (S6). For further
information about them, see Sec. 6.

Bifurcation surfaces in RP3 due to multiplic-
ities of singularities

(S1) This is the bifurcation surface due to the multi-
plicity of infinite singularities. This occurs when at
least one finite singular point collides with at least
one infinite point. The equation of this surface is

µ = 4h2(g2 + 2hℓ− 2gm) = 0.

(S3) This is the bifurcation surface is due to either
the existence of another finite semi–elemental point,
or the origin being a higher multiplicity point, or
the system being degenerate. The equation of this
surface is given by

T = −g2h2 = 0.

It only has substantial importance when we con-
sider the planes g = 0 or h = 0.

(S5) This is the bifurcation surface due to the col-
lision of infinite singularities, i.e. when all three in-
finite singular points collide. The equation of this
surface is

M̃ = (g − 2m)2 = 0.
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V 1
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1
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3

V 4
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V 7
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Fig. 10. Sequence of phase portraits in slice g = h = 1 from v1 to 1.8ℓ1. We start from v1. When crossing 2.3ℓ1, we
may choose at least seven “destinations”: 6s2, v4, 2s2, v5, 2s3, v10 and 6s3. In each one of these subsets, but v5, we
obtain only one phase portrait. In v5 we find (at least) three different ones, which means that this subset must be
split into (at least) three different regions whose phase portraits are V 2

5 , 7S
23
1 and V 5

11. And then we shall follow the
arrows to reach the subset 1.4ℓ1 whose corresponding phase portrait is 1.4L28

1 .
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Fig. 11. Complete bifurcation diagram of QsnSN(A) for slice h = ∞.
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Fig. 12. Complete bifurcation diagram of QsnSN(A) for slice h = 0.
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Fig. 13. Complete bifurcation diagram of QsnSN(A) for slice h = 1.
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The surface of C∞ bifurcation due to a strong
saddle or a strong focus changing the sign of
their traces (weak saddle or weak focus)

(S2) This is the bifurcation surface due to weak
finite singularities, which occurs when their trace is
zero. The equation of this surface is given by

T4 = −16h3ℓ = 0.

The surface of C∞ bifurcation due to a node
becoming a focus

(S6) Since W4 is identically zero for all the bifurca-
tion space, the invariant that captures if a second
point may be on the edge of changing from node to
focus is W3. The equation of this surface is given
by

W3 = 64h4(g4 + 2g2hℓ+ h2ℓ2 − 2g3m) = 0.

These are all the bifurcation surfaces of singu-
larities of the systems (8) in the parameter space
and they are all algebraic. We do not expect to
discover any other bifurcation surface (neither non-
algebraic nor algebraic one) due to the fact that in
all the transitions we make among the parts of the
bifurcation diagram of this family we find coher-
ence in the phase portraits when “traveling” from
one part to the other.

Analogously to the previous class, we shall fo-
liate the three–dimensional bifurcation diagram in
RP3 by the planes h = 0 and h = 1, given by Propo-
sition 2.7, plus the open half sphere g = 0 and we
shall give pictures of the resulting bifurcation dia-
gram on these planar sections on a disk or in an
affine chart of R2.

The following three results study the geometri-
cal behavior of the surfaces, that is, their singulari-
ties and the simultaneous intersection points among
them, or the points where two bifurcation surfaces
are tangent, and the presence of a different invari-
ant straight line in the particular case when ℓ = 0.

In what follows we work in the chart of RP3

corresponding to g 6= 0, and we take g = 1. To
do the study, we shall use Figs. 15 and 16 which
are drawn on planes h = h0 of R3, h0 ∈ {0, 1},
having coordinates (h0, ℓ,m). In these planes the
coordinates are (ℓ,m) where the horizontal line is
the ℓ–axis.

We shall use the same set of colors for the bi-
furcation surfaces as in the previous case.

Lemma 7.2. All the bifurcation surfaces intersect
on h = 0, with g 6= 0.

Proof. The equations of surfaces (S1), (S2), (S3)
and (S6) are identically zero when restricted to the
plane h = 0, and the equation of (S5) is the straight
line 2m − 1 = 0, for all g 6= 0, h ≥ 0 and m, ℓ ∈
R.

Lemma 7.3. For h = 1 (with g 6= 0), the surfaces
have no singularities. Moreover,

1) the point [1 : 1 : −2 : 1/2] is an intersection
point between (S5) and (S6);

2) the point [1 : 1 : 0 : 1/2] is an intersection point
among (S1), (S2), (S5) and (S6). Besides, the
intersection between (S1) and (S6) is in fact a
contact point.

Proof. For g = h = 1, surface (S1) is the straight
line 1 + 2ℓ− 2m = 0, which intersects surface (S5),
which is a double straight line with equation −1 +
2m = 0, at the point [1 : 1 : 0 : 1/2]; surface
(S6) is the parabola 1 + 2ℓ + ℓ2 − 2m = 0 passing
through the point [1 : 1 : 0 : 1/2] with a 2–order
contact with surface (S1); moreover, surface (S6)
has another intersection point with surface (S5) at
[1 : 1 : −2 : 1/2]; surface (S2) is the straight line
ℓ = 0, which intersects surfaces (S1), (S5) and (S6)
at the point [1 : 1 : 0 : 1/2].

Lemma 7.4. If ℓ = 0, the straight line {y = 0} is
invariant under the flow of (8).

Proof. It is easy to check the result by substituting
ℓ = 0 in (8).

According to Proposition 2.7, we shall study
the bifurcation diagram having as reference the val-
ues h = 0 and h = 1 (see Figs. 15 and 16) and also
the value h = ∞, which corresponds to g = 0. We
perform the bifurcation diagram of all singularities
for h = ∞ (g = 0) by putting g = 0 and in the re-
maining three variables (h, ℓ,m), yielding the point
[h : ℓ : m] ∈ RP2, we take the chart h 6= 0 in which
we may assume h = 1.

For these values of the parameters, system (8)
becomes

ẋ = 2xy,
ẏ = y + ℓx2 + 2mxy,

(21)
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ℓ

m

Fig. 14. Slice of parameter space for (8) when h = ∞.

and the expressions of the bifurcation surfaces for
(21) are given by

µ = 8ℓ, T4 = −16ℓ, T = 0,

M̃ = 4m2 and W3 = 64ℓ2.
(22)

Remark 7.5. We note that {y = 0} is a straight
line of singularities for system (21) when ℓ = 0.
To study the phase portraits of system (21), we
proceed as stated in Remark 6.5.

The bifurcation curves of singularities (22) are
shown in Fig. 14.

Here we also give topologically equiv-
alent figures to the exact drawings of
the bifurcation curves. The reader may
find the exact pictures in the web page
http://mat.uab.es/∼artes/articles/qvfsn2SN02/
qvfsn2SN02.html.

We recall that the black surface (S6) (or W3)
means the turning of a finite antisaddle from a node
to a focus. Then, according to the general results
about quadratic systems, we could have limit cycles
around such focus for any set of parameters having
W3 < 0.

In Figs. 17 to 19 we show the bifurcation dia-
grams for family (8). Since there are two relevant
values of h to be taken into consideration (accord-
ing to Proposition 2.7) plus the infinity, the pictures

ℓ

m

Fig. 15. Slice of parameter space for (8) when h = 0.

ℓ

m

Fig. 16. Slice of parameter space for (8) when h = 1.
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1.9L1

P3

P4

ℓ

m

Fig. 17. Complete bifurcation diagram of QsnSN(B)
for slice h = ∞.

show all the algebraic bifurcation curves obtained
by the invariant polynomials. We observe that non-
algebraic bifurcation curves were not needed for the
coherence of the diagram. All of these leads to a
complete bifurcation diagram for family (8) mod-
ulo islands. In Sec. 9 the reader can look for the
topological equivalences among the phase portraits
appearing in the various parts and the selected no-
tation for their representatives in Fig. 3.

8. Other relevant facts about the bifurca-
tion diagrams

The bifurcation diagrams we have obtained for the
families QsnSN(A) and QsnSN(B) are completely
coherent, i.e. in each family, by taking any two
points in the parameter space and joining them by
a continuous curve, along this curve the changes in
phase portraits that occur when crossing the dif-
ferent bifurcation surfaces we mention can be com-
pletely explained.

Nevertheless, we cannot be sure that these bi-
furcation diagrams are the complete bifurcation di-
agrams for QsnSN(A) and QsnSN(B) due to the
possibility of “islands” inside the parts bordered by
unmentioned bifurcation surfaces. In case they ex-
ist, these “islands” would not mean any modifica-

1S5

1.5L2
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1S4

1S31S6

1.5L3

1.8L1

1.8L2
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m

Fig. 18. Complete bifurcation diagram of QsnSN(B)
for slice h = 0.
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Fig. 19. Complete bifurcation diagram of QsnSN(B)
for slice h = 1.



26 J.C. Artés, A.C. Rezende and R.D.S. Oliveira

tion of the nature of the singular points. So, on the
border of these “islands” we could only have bifur-
cations due to saddle connections or multiple limit
cycles.

In case there were more bifurcation surfaces,
we should still be able to join two representatives
of any two parts of the 85 parts of QsnSN(A) or
the 43 parts of QsnSN(B) found until now with
a continuous curve either without crossing such bi-
furcation surface or, in case the curve crosses it, it
must do it an even number of times without tan-
gencies, otherwise one must take into account the
multiplicity of the tangency, so the total number
must be even. This is why we call these potential
bifurcation surfaces “islands”.

However, in none of the two families we have
found a different phase portrait which could fit
in such an island. The existence of the invariant
straight line avoids the existence of a double limit
cycle which is the natural candidate for an island
(recall the item (iv) of Sec. 4), and also the limited
number of separatrices (compared to a generic case)
limits greatly the possibilities for phase portraits.

9. Completion of the proofs of Theorems
1.1 and 1.2

In the bifurcation diagram we may have topo-
logically equivalent phase portraits belonging to
distinct parts of the parameter space. As here
we have finitely many distinct parts of the pa-
rameter space, to help us identify or to dis-
tinguish phase portraits, we need to introduce
some invariants and we actually choose integer–
valued invariants. All of them were already used
in [Llibre et al., 2004, Artés et al., 2006]. These
integer–valued invariants, and sometimes symbol–
valued invariants, yield a classification which is eas-
ier to grasp.

Definition 9.1. We denote by I1(S) the number of
the isolated real finite singular points. This invari-
ant is also denoted by NR,f (S) [Artés et al., 2006].

Definition 9.2. We denote by I2(S) the sum
of the indices of the real finite singular points.
This invariant is also denoted by deg(DIf (S))
[Artés et al., 2006].

Definition 9.3. We denote by I3(S) the number of

the real infinite singular points. This number can
be ∞ in some cases. This invariant is also denoted
by NR,∞(S) [Artés et al., 2006].

Definition 9.4. We denote by I4(S) the sequence
of digits (each one ranging from 0 to 4) such that
each digit describes the total number of global or
local separatrices (different from the line of infinity)
ending (or starting) at an infinite singular point.
The number of digits in the sequences is 2 or 4
according to the number of infinite singular points.
We can start the sequence at anyone of the infinite
singular points but all sequences must be listed in
a same specific order either clockwise or counter–
clockwise along the line of infinity.

In our case we have used the clockwise sense
beginning from the saddle–node at the origin of the
local chart U1 in the pictures shown in Figs. 1 and
2, and the origin of the local chart U2 in the pictures
shown in Fig. 3.

Definition 9.5. We denote by I5(S) a digit which
gives the number of limit cycles.

As we have noted previously in Remark 6.8, we
do not distinguish between phase portraits whose
only difference is that in one we have a finite node
and in the other a focus. Both phase portraits are
topologically equivalent and they can only be dis-
tinguished within the C1 class. In case we may want
to distinguish between them, a new invariant may
easily be introduced.

Definition 9.6. We denote by I6(S) the digit 0
or 1 to distinguish the phase portrait which has
connection of separatrices outside the straight line
{y = 0}; we use the digit 0 for not having it and 1
for having it.

Definition 9.7. We denote by I7(S) the sequence
of digits (each one ranging from 0 to 3) such that
each digit describes the total number of global or
local separatrices ending (or starting) at a finite
antisaddle.

The next three invariants are needed to classify
the degenerate phase portraits.

Definition 9.8. We denote by I8(S) the index of
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the isolated infinite singular point when there ex-
ists another infinite singular which is located in the
extreme of a curve of singularities.

Definition 9.9. We denote by I9(S) a digit which
gives the number of lines with an infinite number
of singularities.

Definition 9.10. We denote by I10(S) a symbol
to represent the configuration of the curves of sin-
gularities. The symbols are: “><” to represent a
hyperbola, “∪” to represent a parabola and “×” to
represent two crossing lines.

Theorem 9.11. Consider the subfamily
QsnSN(A) which is the closure of all quadratic
systems with a finite saddle–node sn(2) and an

infinite saddle–node of type
(
0
2

)
SN located in

the direction defined by the eigenvector with null
eigenvalue. Consider now all the phase portraits
that we have obtained for this family. The values of
the affine invariant I = (I1, I2, I3, I4, I5, I6, I8, I9)
given in the following diagram yield a partition of
these phase portraits of the family QsnSN(A).

Furthermore, for each value of I in this dia-
gram there corresponds a single phase portrait; i.e.
S and S′ are such that I(S) = I(S′), if and only if
S and S′ are topologically equivalent.

Theorem 9.12. Consider the subfamily
QsnSN(B) which is the closure of all quadratic
systems with a finite saddle–node sn(2) and an

infinite saddle–node of type
(
0
2

)
SN located in the

direction defined by the eigenvector with non–null
eigenvalue. Consider now all the phase portraits
that we have obtained for this family. The values
of the affine invariant I = (I1, I2, I3, I4, I7, I8, I10)
given in the following diagram yield a partition of
these phase portraits of the family QsnSN(B).

Furthermore, for each value of I in this dia-
gram there corresponds a single phase portrait; i.e.
S and S′ are such that I(S) = I(S′), if and only if
S and S′ are topologically equivalent.

The bifurcation diagram for QsnSN(A) has 85
parts which produce 38 topologically different phase
portraits as described in Tables 1 and 2. The re-
maining 47 parts do not produce any new phase
portrait which was not included in the 38 previous

ones. The difference is basically the presence of a
strong focus instead of a node and vice versa.

Similarly, the bifurcation diagram for
QsnSN(B) has 43 parts which produce 25
topologically different phase portraits as described
in Tables 4 and 5. The remaining 18 parts do
not produce any new phase portrait which was
not included in the 25 previous ones. The phase
portraits are basically different to each other under
some algebro–geometric features related to the
position of the orbits.

The phase portraits having neither limit cy-
cle nor graphic have been denoted surrounded by
parenthesis, for example (V 1

1 ) (in Tables 1 and 4);
the phase portraits having one limit cycle have been
denoted surrounded by brackets, for example [V 5

11]
(in Table 1); the phase portraits having at least
one graphic have been denoted surrounded by {},
for example {7S23

1 } (in Table 1).

Proof. The above two results follow from the results
in the previous sections and a careful analysis of
the bifurcation diagrams given in Secs. 6 and 7, in
Figs. 11, 12, 13, 17, 18 and 19, the definition of
the invariants Ij and their explicit values for the
corresponding phase portraits.

We first make some observations regarding the
equivalence relations used in this paper: the affine
and time rescaling, C1 and topological equivalences.

The coarsest one among these three is the topo-
logical equivalence and the finest is the affine equiv-
alence. We can have two systems which are topo-
logically equivalent but not C1–equivalent. For ex-
ample, we could have a system with a finite anti-
saddle which is a structurally stable node and in
another system with a focus, the two systems being
topologically equivalent but belonging to distinct
C1–equivalence classes, separated by the surface S6

on which the node turns into a focus.

In Table 3 (Table 6, respectively) we listed in
the first column 38 parts (25 parts, respectively)
with all the distinct phase portraits of Figs. 1 and
2 (Fig. 3, respectively). Corresponding to each part
listed in column 1 we have in its horizontal block, all
parts whose phase portraits are topologically equiv-
alent to the phase portrait appearing in column 1
of the same horizontal block.

In the second column we have put all the parts
whose systems yield topologically equivalent phase
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portraits to those in the first column, but which
may have some algebro–geometric features related
to the position of the orbits.

In the third (respectively, fourth, and fifth) col-
umn we list all parts whose phase portraits have
another antisaddle which is a focus (respectively, a
node which is at a bifurcation point producing foci
close to the node in perturbations, a node–focus to
shorten, and a finite weak singular point). In the
sixth column of Table 1 we list all phase portraits
which have a triple infinite singularity with multi-
plicity

(2
1

)
.

Whenever phase portraits appear on a horizon-
tal block in a specific column, the listing is done
according to the decreasing dimension of the parts
where they appear, always placing the lower dimen-
sions on lower lines.

9.1. Proof of the main theorem

The bifurcation diagram described in Sec. 6, plus
Tables 1 and 2 of the geometrical invariants distin-
guishing the 38 phase portraits, plus Table 3 giving
the equivalences with the remaining phase portraits
lead to the proof of the main statement of Theorem
1.1. Analogously, we have the proof of Theorem
1.2, but considering the description in Sec. 7 and
Tables 4, 5 and 6.

To prove statements (d) and (e) of Theorem
1.2 we recall the Main Theorem of [Vulpe, 2011]
and verify that:

(i) Any representative of 4S10
1 is such that g 6= 0

(we may assume g = 1), h > 0, ℓ = 0 and m >
1/2. Then, we have: T4 = 0, T3 = 8h2(2m −
1) 6= 0, T3F = −8h4(2m−1)3 < 0, F1 = F2 =
F3F4 = 0, which imply that it has a center c;

(ii) Any representative of 4S1
2 is such that g 6= 0

(we may assume g = 1), h > 0, ℓ = 0 and
m < 1/2. Then, we have: T4 = 0, T3 =
8h2(2m − 1) 6= 0, T3F = 8h4(1 − 2m)3 > 0,
F1 = F2 = F3F4 = 0, which imply that it has
an integrable saddle $.

We observe that the phase portraits 9S25
2 and

9S26
3 from family QsnSN(A) are not equivalent to

the phase portrait 4.9L19
1 from family QsnSN(B)

because the isolated infinite singular point has in-
dex 0 in the last phase portrait while its index is

−1 and +1 in the first two phase portraits, respec-
tively. Moreover, 9S25

2 and 9S26
3 are not equivalent

since they are different by the invariant I8.
However, the phase portrait P 36

3 from family
QsnSN(A) is equivalent to the phase portrait P 23

2

from family QsnSN(B) since there are no invari-
ant that distinguishes them. The same argument
applies to prove that the phase portrait 1.2L27

2

from family QsnSN(A) is equivalent to the phase
portrait 1.4L15

1 from family QsnSN(B), and this
proves Corollary 1.3.
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Table 1: Geometric classification for the subfamily QsnSN(A): the non–degenerate parts.

I1 =





3 & I2 =





2 & I3 =





2 & I4 =





2111 & I5 =

{
1 [V 7

14],
0 (V 6

12),

1111 & I6 =

{
1 {4S19

4 },
0 (V 8

15),
1 (5S22

3 ),

0 & I3 =





2 & I4 =





4111 & I5 =

{
1 [V 5

11],
0 (V 4

9 ),

2111 & I6 =

{
1 (4S18

1 ),
0 (V 3

6 ),
3112 (V 2

3 ),
2120 (V 9

16),
3111 {7S23

1 },
1 (5S21

2 ),

2 & I2 =





1 & I3 =





∞ {1.2L27
2 },

2 & I4 =





2111 & I5 =

{
1 [1S11

2 ],
0 (1S12

4 ),

1111 & I6 =

{
1 {1.4L28

1 },
0 (1S10

1 ),
2110 (1S13

5 ),

0 & I3 =





2 & I4 =





2111 & I6 =

{
1 (3.4L31

1 ),
0 (3S17

4 ),
3112 (3S14

1 ),
4111 (3S15

2 ),
2120 (3S16

3 ),
3111 (2.3L30

1 ),
1 (3.5L32

1 ),

1 & I3 =





∞ {P 35
1 },

2 (V 1
1 ),

1 (5S20
1 ).

Table 2: Geometric classification for the subfamily QsnSN(A): the degenerate parts.

I1 =





1 & I2 =





1 & I3 =





∞ {P 36
3 },

2 & I8 =

{
−1 {9S25

2 },
1 (9S26

3 ),
1 {5.9L33

1 },
−1 {9S24

1 },

0 & I3 =





2 & I8 =





1 & I9 =

{
2 {P 37

4 },
1 {8.9L34

1 },
0 {1.9L29

1 },
1 {P 38

5 }.
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Table 3: Topological equivalences for the subfamily QsnSN(A).
Presented Identical Finite Finite Finite Triple
phase under antisaddle antisaddle weak infinite
portrait perturbations focus node–focus point point

V 1
1

V 1
2

1.3L1
1

V 2
3

V 2
4 , V

2
5

6S2
2 2S2

2

V 3
6

V 3
18a, V

3
18b V 3

7 , V
3
8 , V

3
19, V

3
20

4S3
5 6S3

1 , 6S
3
7 2S3

1 , 2S
3
5

V 4
9

V 4
10

6S4
3 2S4

3

V 5
11

V 6
12

V 6
13

6S6
4 2S6

4

V 7
14

V 8
15

V 8
21 V 8

17, V
8
22

6S8
5 , 6S

8
6

V 9
16

1S10
1 1S10

6

1S11
2

1S12
4

1S12
3

1.6L12
1 1.2L12

1

1S13
5

3S14
1

3S15
2

3S16
3

3S17
4

4S18
1

4S18
2 , 4S18

3

4.6L18
1 2.4L18

1

4S19
4

5S20
1

5S21
2

5S22
3

7S23
1

9S24
1

9S24
4

4.9L24
1

9S25
2

9S25
5

4.9L25
2

9S26
3

9S26
6

4.9L26
3

1.2L27
2

1.4L28
1

1.9L29
1

1.9L29
2

P 29
2

2.3L30
1

3.4L31
1 3.4L31

2

3.5L32
1

5.9L33
1 5.9L33

2

8.9L34
1 8.9L34

2

P 35
1

P 36
3

P 37
4

P 38
5
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Table 4: Geometric classification for the subfamily QsnSN(B): the non–degenerate parts.

I1 =





3 & I2 =





2 & I3 =





2 & I4 =





1111 & I7 =





32 (V 4
6 ),

31 (V 5
7 ),

20 {4S10
1 },

1121 (V 3
3 ),

1 (5S11
1 ),

0 & I3 =





2 & I4 =

{
2120 (V 2

2 ),
1121 {V 1

1 },
1 (5S12

3 ),

2 & I2 =





2 & I3 =

{
2 (9S13

1 ),
1 (5.9L20

1 ),

1 & I3 =





∞ {1.4L15
1 },

2 & I4 =

{
1120 (1S7

2),
1111 (1S6

1),

0 & I3 =

{
2 (9S14

2 ),
1 (5.9L21

2 ),

1 & I3 =





∞ {P 22
1 },

2 & I4 =





2121 {1S9
4},

1111 {1.4L16
2 },

1011 (1S8
3),

1 {1.5L17
1 }.

Table 5: Geometric classification for the subfamily QsnSN(B): the degenerate parts.

I1 =





1 & I3 =

{
∞ {P 23

2 },
2 {4.9L19

1 },

0 & I10 =





>< {1.9L18
1 },

∪ {P 24
3 },

× {P 25
4 },
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Table 6: Topological equivalences for the subfamily QsnSN(B).
Presented Identical Finite Finite Finite
phase under antisaddle antisaddle weak
portrait perturbations focus node–focus point

V 1
1

V 1
9

4S1
2

V 2
2

V 3
3

V 3
4

6S3
3

V 4
6

V 4
5

6S4
1

V 5
7

V 5
8

6S5
2

1S6
1

1S7
2

1S8
3

1S8
6

1.4L8
3

1S9
4 1S9

5

4S10
1

5S11
1

5S11
2

5.6L11
1

5S12
3

9S13
1 9S13

3

9S14
2 9S14

4

1.4L15
1

1.4L16
2

1.5L17
1 1.5L17

2

1.9L18
1 1.5L14

3

4.9L19
1 4.9L19

2

5.9L20
1

5.9L21
2

P 22
1

P 23
2

P 24
3

P 25
4
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