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Abstract. Using the averaging theory of first and second order we study the
maximum number of limit cycles of the polynomial differential systems

ẋ = y, ẏ = −x − ε(p1(x)y + q1(x)y2) − ε2(p2(x)y + q2(x)y2).

which bifurcate from the periodic orbits of the linear center ẋ = y, ẏ = −x.

Here ε is a small parameter. If the degrees of the polynomials p1, p2, q1 and
q2 is n, then we prove that this maximum number is [n/2] using the averaging
theory of first order, where [·] denotes the integer part function; and this
maximum number is at most n using the averaging theory of second order.

1. Introduction and statement of the results

The second part of the 16th Hilbert’s problem asks for finding an upper bound
on the maximum number of limit cycles which can have the class of all planar
polynomial differential systems with a fixed degree. Since this problem up to now
is untractable Smale in [34] proposed to restrict it to the class of classical Liénard
differential systems of the form

(1) ẋ = y, ẏ = −x − f(x)y,

where f(x) is a polynomial, or equivalently of the form

ẋ = y − F (x), ẏ = −x, where F (x) =

∫
f(x) dx.

For these systems in 1977 Lins, de Melo and Pugh [19] stated the conjecture that if
f(x) has degree n ≥ 1 then system (1) has at most [n/2] limit cycles. They prove
this conjecture for n = 1, 2. The conjecture for n = 3 has been proved recently
by Chengzi Li and Llibre in [20]. For n ≥ 5 the conjecture is not true, see De
Maesschalck and Dumortier [7] and Dumortier, Panazzolo and Roussarie [8]. So it
remains to know if the conjecture is true or not for n = 4.

Many of the results on the limit cycles of polynomial differential systems have
been obtained by considering limit cycles which bifurcate from a single degenerate
singular point (i.e., from a Hopf bifurcation), that are called small amplitude limit
cycles, see for instance Lloyd [27]. There are partial results concerning the number
of small amplitude limit cycles for Liénard polynomial differential systems.

Other way also very used for obtaining results on the limit cycles of polynomial
differential systems is perturbing the linear center ẋ = y, ẏ = −x inside the class of
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polynomial differential systems, or inside the class of classical polynomial Liénard
differential systems, i.e.

ẋ = y, ẏ = −x − εf(x)y,

where ε is a small parameter. The limit cycles obtained in this way are sometime
called medium amplitude limit cycles. Of course, the number of small or medium
amplitude limit cycles gives a lower bound for the maximum number of limit cycles
that a polynomial differential system can have.

There are many results concerning the number of small and medium amplitude
limit cycles for the following generalized Liénard differential systems

ẋ = y, ẏ = −g(x) − f(x)y,

where f(x) and g(x) are polynomials, see for instance [2, 4–6, 9–13, 15–21, 24,
29–34, 37, 38].

The number of medium amplitude limit cycles bifurcating from the linear center
ẋ = y, ẏ = −x for the following three kind of generalized polynomial Liénard
differential systems

ẋ = y − g1(x) − f1(x)y, ẏ = −x − g2(x) − f2(x)y;

ẋ = y − g1(x), ẏ = −x − g2(x) − f2(x)y;

ẋ = y − f1(x)y, ẏ = −x − g2(x) − f2(x)y;

where studied in the papers [24], [1] and [25, 26], respectively. Moreover, the
number of medium amplitude limit cycles bifurcating from the center ẋ = y2p−1,
ẏ = −x2q−1 of the polynomial differential systems

ẋ = y2p−1, ẏ = −x2q−1 − f(x) y2n−1,

has been analyzed in [22].

The goal of this paper is to study the number of medium amplitude limit cycles
bifurcating from the linear center ẋ = y, ẏ = −x of the more generalized polynomial
Liénard differential systems

ẋ = y, ẏ = −x − p(x)y − q(x)y2.

More precisely, we consider the planar polynomial differential systems

(2) ẋ = y, ẏ = −x − ε(p1(x)y + q1(x)y2) − ε2(p2(x)y + q2(x)y2),

where pj(x) =
n∑

i=0

aijx
i, and qj(x) =

n∑

i=0

bijx
i, for j = 1, 2. Note that such polyno-

mial differential systems have degree n + 2, because the right hand parts of them
are polynomials of degree n + 2.

A summary of the averaging theory of first and second order for computing limit
cycles is given in section 2. Our two main results are the following ones.

Theorem 1. Using the averaging theory of first order the polynomial differential

system (2) of degree n+2 has at most
[n
2

]
limit cycles bifurcating from the periodic

solutions of the linear center ẋ = y, ẏ = −x. Moreover, this upper bound is reached.

Theorem 1 is proved in section 3.
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Theorem 2. Using the averaging theory of second order the polynomial differential
system (2) of degree n + 2 has at most n limit cycles bifurcating from the periodic
solutions of the linear center ẋ = y, ẏ = −x.

Theorem 2 is proved in section 4.

Note that for the moment we do not know if the upper bound n for the number of
limit cycles of the polynomial differential system (2) of degree n+2, which bifurcate
from the periodic solutions of the linear center ẋ = y, ẏ = −x, using the averaging
method of second order is reached. We conjecture that it is reached, see Remark
13 where the conjecture is proved for n = 1, 2, 3, 4.

2. The averaging theory of first and second order

The averaging theory for studying specifically limit cycles up to second order in
ε was developed in [3, 21]. We summarized it here up to second order. The theory
up to first order is very classical and can be found for instance in [35].

Consider the differential system

(3) ẋ = εF1(t, x) + ε2F2(t, x) + ε3R(t, x, ε),

where F1, F2 : R × D → R, R : R × D × (−εf , εf ) → R are continuous functions,
T -periodic in the first variable, and D is an open subset of R. Assume that the
following conditions hold.

(i) F1(t, ·) ⊂ C2(D), F2(t, ·) ⊂ C1(D) for all t ∈ R, F1, F2, R are locally
Lipschitz with respect to x, and R is twice differentiable with respect to ε.

We define Fk0 : D → R for k = 1, 2 as

F10(z) =
1

T

∫ T

0

F1(s, z) ds,

F20(z) =
1

T

∫ T

0

[
DzF1(s, z)

(∫ s

0

F1(t, z) dt

)
+ F2(s, z)

]
ds,

(ii) For V ⊂ D an open and bounded set and for each ε ∈ (−εf , εf )\{0}, there
exists a ∈ V such that F10(a) + εF20(a) = 0 and dB(F10 + εF20, V, a) ̸= 0.

Then for |ε| > 0 sufficiently small there exists a T -periodic solution x(·, ε) of the
system (3) such that x(0, ε) → a when ε → 0.

The expression dB(F10 + εF20, V, a) ̸= 0 means that the Brouwer degree of the
function F10 + εF20 : V → R at the fixed point a is not zero. A sufficient condition
in order that this inequality is true is that the Jacobian of the function F10 + εF20

at a be non–zero.

If F10 is not identically zero, then the zeros of F10 + εF20 are mainly the zeros of
F10 for ε sufficiently small. In this case the previous result provides the averaging
theory of first order.

If F10 is identically zero and F20 is not identically zero, then the zeros of F10+εF20

are the zeros of F20. In this case the previous result provides the averaging theory
of second order.
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3. Proof of Theorem 1

If we do in (2) the change of variables x = r cos θ, y = r sin θ (that is, we use the
polar coordinates) we can write system (2) as

ṙ = −r sin2 θ
(
ε(p1 + q1r sin θ) + ε2(p2 + q2r sin θ)

)
,

θ̇ = −1 − cos θ sin θ
(
ε(p1 + q1r sin θ) + ε2(p2 + q2r sin θ)

)
,

where pj = pj(r cos θ) and qj = qj(r cos θ). Therefore we have that

(4)
dr

dθ
=

ṙ

θ̇
= G(θ, r, ε) = εF1(θ, r) + ε2F2(θ, r) + ...,

where F1(θ, r) =

[
∂

∂ε
G(θ, r, ε)

]

ε=0

and F2(θ, r) =

[
1

2

∂2

∂ε2
G(θ, r, ε)

]

ε=0

. More pre-

cisely, we have

F1(θ, r) = r sin2 θ(p1 + q1r sin θ)

and

F2(θ, r) = r sin2 θ(p2 + q2r sin θ) − r sin3 θ cos θ(p1 + q1r sin θ)2.

Substituting p1 =

n∑

i=0

ai1r
i cosi θ and q1 =

n∑

i=0

bi1r
i cosi θ in F1(θ, r) we obtain

that

(5) F1(θ, r) =

n+1∑

i=0

Ai(θ)r
i+1,

where
Ak(θ) = ak1Tk(θ) + bk−1,1Sk−1(θ),

Tj(θ) = cosj θ − cosj+2 θ,

Sj(θ) = sin θ cosj θ − sin θ cosj+2 θ.

By convention in the expression of Ak(θ) we have taken

(6) ai1 = 0 if i > n, and bi1 = 0 if i < 0.

Doing an analogous process with F2(θ, r) we obtain that

(7) F2(θ, r) =

n+1∑

i=0

Ãi(θ)r
i+1 −

(
n+1∑

i=0

Di(θ)r
i

)(
n+1∑

i=0

Ai(θ)r
i+1

)
,

where
Ãk(θ) = ak2Tk(θ) + bk−1,2Sk−1(θ),

Dk(θ) = ak1Rk+1(θ) + bk−1,1Tk(θ),

Rj(θ) = sin θ cosj θ.

In short, we have reduced the study of the limit cycles of the polynomial system
(2) to study the limit cycles of the differential equation (4).

First we shall study the limit cycles of the differential equation (4) using the
averaging theory of first order. Therefore, by section 2 we must study the simple
positive zeros of the function

(8) F10(r) =
1

2π

∫ 2π

0

F1(θ, r) dθ.
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For every one of these zeros we will have a limit cycle of the polynomial differential
system (2).

If F10(r) is identically zero, applying the theory of averaging of second order (see
again section 2) every simple positive zero of the function

(9) F20(r) =
1

2π

∫ 2π

0

[
∂F1(θ, r)

∂r

(∫ θ

0

F1(t, r)dt

)
+ F2(θ, r)

]
dθ,

will provide a limit cycle of the polynomial differential system (2).

Taking into account the expression of (5) and (7), in order to obtain F10(r) and
F20(r) it is necessary to evaluate the integrals of the form

∫ 2π

0

Tk(θ)dθ and

∫ 2π

0

Sk(θ)dθ.

In the following lemmas we compute these integrals.

Lemma 3. Let Īk(θ) =

∫ θ

0

Tk(t)dt. Then

(10) Īk(θ) =

[ k+1
2 ]∑

i=0

Mi(k) sin θ cosk+1−2i θ +

(
k + 1 − 2

[
k + 1

2

])
M[ k+1

2 ](k)θ,

where

(11)

M0(k) = − 1

k + 2
,

M1(k) =
1

k(k + 2)
,

Mj(k) = Mj−1(k)
k − 2j + 3

k − 2j + 2
for each j = 2, 3, ...,

[
k + 1

2

]
.

Moreover

(12) Īk(2π) =





0 if k is odd,
(

k

k/2

)
π

(k + 2)2k−1
if k is even.

Proof. In order to prove the value of Īk(θ) given in (10), it is sufficient to prove
that its derivative is Tk(θ). Now, if we derive the expression of the second right
hand part of (10) with respect to θ, we obtain

[ k+1
2 ]∑

i=0

Mi(k)
(
cosk+2−2i θ − (k + 1 − 2i)(1 − cos2 θ) cosk−2i θ

)

+

(
k + 1 − 2

[
k + 1

2

])
M[ k+1

2 ](k),

that is,

[ k+1
2 ]∑

i=0

Mi(k)
(
(k + 2 − 2i) cosk+2−2i θ − (k + 1 − 2i) cosk−2i θ

)

+

(
k + 1 − 2

[
k + 1

2

])
M[ k+1

2 ](k),
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that can be written in the form

(k + 2)M0(k) cosk+2 θ +

[ k+1
2 ]∑

i=1

Mi(k)(k + 2 − 2i) cosk+2−2i θ

−
[ k+1

2 ]−1∑

i=0

Mi(k)(k + 1 − 2i) cosk−2i θ − M[ k+1
2 ](k)

(
k + 1 − 2

[
k + 1

2

])
cosk−2[(k+1)/2] θ

+

(
k + 1 − 2

[
k + 1

2

])
M[ k+1

2 ](k).

Taking into account that

[ k+1
2 ]−1∑

i=0

Mi(k)(k + 1 − 2i) cosk−2i θ =

[ k+1
2 ]∑

j=1

Mj−1(k)(k + 3 − 2j) cosk+2−2j θ,

the expression of
dĪk(θ)

dθ
becomes

(13)

[ k+1
2 ]∑

i=0

Ni(k) cosk+2−2i θ +

(
k + 1 − 2

[
k + 1

2

])
M[ k+1

2 ](k)(1 − cosk−2[ k+1
2 ] θ),

where

N0(k) = (k + 2)M0(k),

Ni(k) = ((k − 2i + 2)Mi(k) − (k − 2i + 3)Mi−1(k)) , for i ≥ 2.

Using (11) we deduce that N0(k) = −1, N1(k) = 1 and Ni(k) = 0 for i ≥ 2.

Finally we note that if k is odd then k + 1 − 2

[
k + 1

2

]
= 0, and if k is even then

1 − cosk−2[ k+1
2 ] θ = 0. Hence the value of (13) is cosk θ − cosk+2 θ, that is Tk(θ).

Therefore (10) is proved.

Now we shall compute the value of Īk(2π). First we observe that k+1−2

[
k + 1

2

]

is 0 if k is odd. Therefore, from (10) we have that

Īk(2π) =

[ k+1
2 ]∑

i=0

Mi(k) sin (2π) cosk+1−2i (2π) = 0.

On the other hand, when k is even k + 1 − 2

[
k + 1

2

]
= 1 and, taking into account

(11) we have

M[ k+1
2 ](k) = M k

2
(k) =

(k − 1)(k − 3)...3

(k + 2)k(k − 2)...2
=

(
k

k/2

)
1

(k + 2)2k
,

and hence, again from (10) we obtain

Īk(2π) =

[ k+1
2 ]∑

i=0

Mi(k) sin (2π) cosk+1−2i (2π) +

(
k

k/2

)
π

(k + 2)2k−1
.

This completes the proof of the lemma. �
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Lemma 4. Let Jk(θ) =

∫ θ

0

sin t cosk tdt and J̄k(θ) =

∫ θ

0

Sk(t)dt = Jk−2(θ)−Jk(θ).

Then the following equalities hold:

(14)
J̄k(θ) =

2

(k + 1)(k + 3)
+

1

k + 3
cosk+3 θ − 1

k + 1
cosk+1 θ,

J̄k(2π) = 0,

for each value de k.

Proof. Both equalities follow easily by direct computation. �

Using these two lemmas we shall obtain in the next proposition the integral the
function F10(r). First, we define the function

Iθ(r) =

∫ θ

0

F1(t, r) dt.

Then taking into account the expression of (5), we deduce that

(15) Iθ(r) =
n+1∑

i=0

Bi(θ)r
i+1,

where Bi(θ) =

∫ θ

0

Ai(θ) dθ, that is

(16) Bi(θ) = ai1Īk(θ) + bi−1,1J̄i−1(θ).

Proposition 5. We have

(17) F10(r) =
I2π(r)

2π
= r




[n/2]∑

i=0

a2i,1

22i+1(i + 1)

(
2i

i

)
r2i


 .

Proof. Since I2π(r) can be obtained using (15) with θ = 2π, we must determine
the values of Bi(2π). Using (16) and, taking into account that J̄i−1(2π) = 0 (see
Lemma 4), we have that Bi(2π) = ai1Īk(2π). Now, if we calcule Bi(2π), by using
the expression for Īk(2π) obtained in (12), it follows (17). �

Proof of Theorem 1. From Proposition 5 the function F10(r) has at most
[n
2

]
sim-

ple positive zeros. Furthermore, since we can choose arbitrary values for a2i,1 and,
in addition, these coefficients appear multiplied by nonzero constants, it is possible
to reach this upper bound. Therefore, using the averaging theory of first order, the

polynomial differential system (2) has at most
[n
2

]
limit cycles bifurcating from the

periodic solutions of the linear center ẋ = y, ẏ = −x and, by choosing an adequate
system, one can has exactly these number of limit cycles. �

4. Proof of Theorem 2

When I2π(r) ≡ 0 we shall apply the second order averaging theory for studying
the limit cycles of the polynomial differential system (2). Therefore, from (9) we
must study the simple positive zeros of the function

F20(r) =
1

2π

∫ 2π

0

(
∂F1(θ, r)

∂r
Iθ(r) + F2(θ, r)

)
dθ.
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We split the computation of the function F20(r) in two pieces, i.e. we define
2πF20(r) = L(r) + J(r), where

L(r) =

∫ 2π

0

∂F1(θ, r)

∂r
Iθ(r) dθ and J(r) =

∫ 2π

0

F2(θ, r) dθ.

First we shall calcule the function L(r).

From (5) and (15) we get

(18)

L(r) =

n+2∑

k=1




k−1∑

j=0

(j + 1)

∫ 2π

0

Aj(θ)Bk−j−1(θ) dθ


 rk +

n+1∑

k=1




n+1∑

j=k

(j + 1)

∫ 2π

0

Aj(θ)Bn+k−j+1(θ) dθ


 rn+k+2.

Remark 6. We have that

∫ 2π

0

Ak(θ)Bk(θ) dθ = 0. Indeed, we have that Ak(θ) is

the derivative of Bk(θ). Hence a primitive function of the integrand is Bk(θ)2/2
and taking into account (16) and Lemmas 3 and 4, we deduce that the values of the
primitive function at 2π and at 0 coincide.

Now we shall compute the integrals

∫ 2π

0

Ap(θ)Bq(θ) dθ that appear in (18) when

p ̸= q. Using the expression of Ak(θ) and (16) we have

(19)

∫ 2π

0

Ap(θ)Bq(θ) dθ = ap1aq1

∫ 2π

0

Tp(θ)Īq(θ) dθ+

ap1bq−1,1

∫ 2π

0

Tp(θ)J̄q−1(θ) dθ+

bp−1,1aq1

∫ 2π

0

Sp−1(θ)Īq(θ) dθ+

bp−1,1bq−1,1

∫ 2π

0

Sp−1(θ)J̄q−1(θ)dθ.

In the next proposition we obtain some results on the integrals of the right hand
part of (19).

Proposition 7. If p ̸= q the following statements hold.

(a)

∫ 2π

0

Sp−1(θ)J̄q−1(θ) dθ = 0 for all values of p and q.

(b) If q is odd, then

∫ 2π

0

Tp(θ)Īq(θ) dθ = 0.

(c) If p is odd, then

∫ 2π

0

Tp(θ)J̄q−1(θ) dθ takes the value 0 if q is even, and the

value

− π(2p + 5q + 8)

2p+q−1q(q + 2)(p + q + 2)(p + q + 4)

(
p + q

(p + q)/2

)

if q is odd.
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(d) If q is odd, then

∫ 2π

0

Īq(θ)Sp−1(θ) dθ takes the value 0 if p is even, and the

value
(q+1)/2∑

i=0

3πMi(q)

2p+q−1−2i(p + q + 2 − 2i)(p + q + 4 − 2i)

(
p + q − 2i

(p + q − 2i)/2

)

if p is odd, where Mi(q) is defined in Lemma 3.

Proof. From the definition of the function Sj(θ) and (14) we obtain that the 2π–
periodic function Sp−1(θ)J̄q−1(θ) is odd. Therefore statement (a) follows.

If q is odd, then

Tp(θ)Īq(θ) = (cosp θ − cosp+2 θ)




q+1
2∑

i=0

Mi(q) sin θ cosq+1−2i θ


 .

This function again is odd and 2π–periodic, therefore statement (b) is proved.

Since

Tp(θ)J̄q−1(θ) = (cosp θ − cosp+2 θ)

(
2

q(q + 2)
+

1

q + 2
cosq+2 θ − 1

q
cosq θ

)
,

from the definition of Tp, we obtain that

Tp(θ)J̄q−1(θ) =
2

q(q + 2)
Tp(θ) +

1

q + 2
Tp+q+2(θ) − 1

q
Tp+q(θ).

Hence, taking into account the definition of Īk(θ), we deduce that
∫ 2π

0

Tp(θ)J̄q−1(θ)dθ =
2

q(q + 2)
Īp(2π) +

1

q + 2
Īp+q+2(2π) − 1

q
Īp+q(2π).

Now if we take into account the values of Īk(2π) given in Lemma 3, statement (c)
follows.

Finally taking into account that

Īq(θ)Sp−1(θ) =




q+1
2∑

i=0

Mi(q) sin θ cosq+1−2i θ


(sin θ cosp−1 θ − sin θ cosp+1 θ

)

= (1 − cos2 θ)




q+1
2∑

i=0

Mi(q) cosq+1−2i θ


(cosp−1 θ − cosp+1 θ

)
,

again we can express Īq(θ)Sp−1(θ) in terms of the integrals of the functions Ti, and
using again the values of Īk(2π) given in Lemma 3, statement (d) follows. �

Proposition 8. If I2π(r) ≡ 0, then

(20)

L(r) =

[n
2 ]∑

k=1




k−1∑

j=0

(2j + 2)L(k, j)


 r2k+1 +

[n
2 ]∑

k=0




[n
2 ]∑

j=k

(2j + 2)L(k +

[
n + 2

2

]
, j)


 r2(k+[n+2

2 ])+1,
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where

(21)
L(t, j) = −a2j+1,1b2t−2j−2,1

π

(
2t

t

)
(10t − 6j + 5)

22t+1(t + 1)(t + 2)(2t − 2j − 1)(2t − 2j + 1)

+b2j,1a2t−2j−1,1

t−j∑

i=0

3πMi(2t − 2j − 1)

22t−2i+1(t + 1 − i)(t + 2 − i)

(
2t − 2i

t − i

)
.

Proof. If I2π(r) = 0, using Proposition 5, we have that ai1 = 0 when i is even.

Then we shall prove that

∫ 2π

0

Ap(θ)Bq(θ)dθ = 0 if p or q are even. If p is even,

from (19) and statement (a) of Proposition 7, we get
∫ 2π

0

Ap(θ)Bq(θ)dθ = bp−1,1aq1

∫ 2π

0

Sp−1(θ)Īq(θ)dθ.

Therefore using that aq1 = 0 if q is even and statement (d) of Proposition 7 if q is
odd, it follows that the above integral is 0.

If q is even, using again statement (a) of Proposition 7, we obtain
∫ 2π

0

Ap(θ)Bq(θ)dθ = ap1bq−1,1

∫ 2π

0

Tp(θ)J̄q−1(θ)dθ.

In this case using that ap1 = 0 if p is even, and statement (c) of Proposition 7 if p
is odd, again we obtain that the above integral is 0.

On the other hand in the case that p and q are odd, using statements (a) and
(b) of Proposition 7 we can write (19) as
∫ 2π

0

Ap(θ)Bq(θ)dθ = ap1bq−1,1

∫ 2π

0

Tp(θ)J̄q−1(θ)dθ+bp−1,1aq1

∫ 2π

0

Sp−1(θ)Īq(θ)dθ.

The integrals on the right hand part can be calculated using statements (c) and
(d) of Proposition 7. If we remove from (18) all the integrals where p or q are
even and we substitute the others integrals by their values, we obtain (20) and the
proposition follows. �

We note that some of the values of L(t, j) are zero. Indeed, the integral that

corresponds to t = (j − 1)/2 is

∫ 2π

0

A2j+1(θ)B2j+1(θ) dθ, and from Remark 6 it is

zero.

In order to complete the computation of F20(r) we must determine the function
J(r). Taking in account the expression of F2(θ, r) given in (7), first we compute the

integral

∫ 2π

0

n+1∑

i=0

Ãi(θ)dθ.

Lemma 9. We have

∫ 2π

0

n+1∑

i=0

Ãi(θ) dθ = π

[n/2]∑

i=0

a2i,2

22i(i + 1)

(
2i

i

)
.

Proof. The proof is analogous to the proof of Proposition 5. �
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Next we shall compute the function

S(r) =

∫ 2π

0

(
n+1∑

i=0

Di(θ)r
i

)(
n+1∑

i=0

Ai(θ)r
i+1

)
dθ,

i.e.

S(r) =
n+2∑

k=1




k−1∑

j=0

∫ 2π

0

Dj(θ)Ak−j−1(θ) dθ


 rk+

n+1∑

k=1




n+1∑

j=k

∫ 2π

0

Dj(θ)An+k−j+1(θ) dθ


 rn+k+2.

Using the definitions of the functions Aq(θ) and Dp(θ) we have

(22)

∫ 2π

0

Dp(θ)Aq(θ) dθ = ap1aq1

∫ 2π

0

Rp+1(θ)Tq(θ) dθ+

ap1bq−1,1

∫ 2π

0

Rp+1(θ)Sq−1(θ) dθ+

+bp−1,1aq1

∫ 2π

0

Tp(θ)Tq(θ) dθ+

bp−1,1bq−1,1

∫ 2π

0

Tp(θ)Sq−1(θ)dθ.

In the next proposition we obtain some results on the integrals of the right hand
part of (22).

Proposition 10. The following statements hold.

(a)

∫ 2π

0

Rp+1(θ)Tq(θ) dθ = 0.

(b) If p is odd, then

∫ 2π

0

Rp+1(θ)Sq−1(θ) dθ is zero if q is even, and equal to

3π

(
p + q

(p + q)/2

)

2p+q−1(p + q + 2)(p + q + 4)
,

if q is odd.

(c) If q is odd, then

∫ 2π

0

Tp(θ)Tq(θ) dθ is zero if p is even, and equal to

3π

(
p + q

(p + q)/2

)

2p+q−1(p + q + 2)(p + q + 4)
,

if p is odd.

(d)

∫ 2π

0

Tp(θ)Sq−1(θ) dθ = 0.

Proof. The proof of this proposition is similar to the proof of Proposition 7. �
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Proposition 11. If I2π(r) ≡ 0, then

(23)

S(r) =

[n
2 ]∑

k=1




k−1∑

j=0

S(k, j)


 r2k+1+

[n
2 ]∑

k=0




[n
2 ]∑

j=k

S(k +

[
n + 2

2

]
, j)


 r2(k+[n+2

2 ])+1,

where

(24) S(t, j) =

3π

(
2t

t

)
(a2j+1,1b2t−2j−2,1 + b2j,1a2t−2j−1,1)

22t+1(t + 1)(t + 2)
.

Proof. Since I2π(r) ≡ 0, by Proposition 5, the coefficients ai1 = 0 when i is even.

Then we shall prove that

∫ 2π

0

Dp(θ)Aq(θ) dθ = 0 if p or q are even. If p is even,

from (22) and statement (d) of Proposition 10, we have

∫ 2π

0

Dp(θ)Aq(θ)dθ = bp−1,1aq1

∫ 2π

0

Tp(θ)Tq(θ)dθ.

Then using that aq1 = 0 if q is even and statement (c) of Proposition 10 if q is odd,
we obtain that the above integral is 0.

If q is even, using statement (a) of Proposition 10 we get

∫ 2π

0

Dp(θ)Aq(θ)dθ = ap1bq−1,1

∫ 2π

0

Rp+1(θ)Sq−1(θ)dθ.

Then, since ap1 = 0 if p is even, and from statement (b) of Proposition 10 if p is
odd, we obtain that the above integral is 0.

In the case that p and q are odd, using statements (a) and (b) of Proposition 10
we can write (22) as

∫ 2π

0

Dp(θ)Aq(θ)dθ = ap1bq−1,1

∫ 2π

0

Rp+1(θ)Sq−1(θ)dθ+bp−1,1aq1

∫ 2π

0

Tp(θ)Tq(θ)dθ,

that can be calculated using statements (b) and (c) of Proposition 10. If we remove
from the definition of the function S(r) all the integrals where p or q are even,
and we substitute the others integrals by their values, we obtain (23), and the
proposition is proved. �

Proposition 12. If I2π(r) ≡ 0, then the function F20(r) defined in (9) can be

expressed as r
2H̃(r) where

(25) H̃(r) = H0 +

[ n
2 ]∑

k=1

Hkr2k +

[ n−1
2 ]∑

k=0

Hk+[ n+2
2 ]r

2(k+[ n+2
2 ]),
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with

H0 = a02,

Hk =

a2k,2

(
2k

k

)

22k(k+1)
+

k−1∑

j=0

a2j+1,1b2k−2j−2,1 (C(k, j) + E(k, k − j − 1)) ,

Hk+[ n+2
2 ] =

[ n−1
2 ]∑

j=k

a2j+1,1b2(k+[ n+2
2 ])−2j−2,1

(
C(k + [n+2

2 ], j) +

E(k + [n+2
2 ], k + [n+2

2 ] − j − 1)
)
,

and

C(t, j) = −
(

(2j + 2)(10t − 6j + 5)

(2t − 2j − 1)(2t − 2j + 1)
+ 3

)
(

2t

t

)

22t+1(t + 1)(t + 2)
,

E(t, j) =

t−j∑

i=0

(2j + 2)

3Mi(2t − 2j − 1)

(
2t − 2i

t − i

)

22t−2i+1(t + 1 − i)(t + 2 − i)
−

3

(
2t

t

)

22t+1(t + 1)(t + 2)
.

Proof. Since 2πF20(r) = L(r) + J(r) and

J(r) =

(∫ 2π

0

n+1∑

i=0

Ãi(θ) dθ

)
ri+1 − S(r),

using Propositions 8 and 11 and Lemma 9, we have

2πF20(r) = π




[n/2]∑

i=0

a2i,2

22i(i + 1)

(
2i

i

)
r2i+1


+

[n
2 ]∑

k=1




k−1∑

j=0

(2j + 2)L(k, j) − S(k, j)


 r2k+1+

[n
2 ]∑

k=0




[n
2 ]∑

j=k

(2j + 2)L(k +

[
n + 2

2

]
, j) − S(k +

[
n + 2

2

]
, j)


 r2(k+[n+2

2 ])+1.

From (21) and (24) we get

(2j + 2)L(t, j) − S(t, j) = π(a2j+1,1b2t−2j−2,1C(t, j) + b2j,1a2t−2j−1,1E(t, j)),

and consequently

H̃(r) = H0 +

[ n
2 ]∑

k=1

Hkr2k +

[ n
2 ]∑

k=0

Hk+[ n+2
2 ]r

2(k+[ n+2
2 ])
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where

H0 = a02,

Hk =

a2k,2

(
2k

k

)

22k(k + 1)
+

k−1∑

j=0

(a2j+1,1b2k−2j−2,1C(k, j) + b2j,1a2k−2j−1,1E(k, j)) ,

Hk+[ n+2
2 ] =

[ n
2 ]∑

j=k

(a2j+1,1b2(k+[ n+2
2 ])−2j−2,1C(k + [

n + 2

2
], j)+

b2j,1a2(k+[ n+2
2 ])−2j−1,1E(k + [n+2

2 ], j)).

Now we observe that if t is fixed and j2 = t − j1 − 1, then a2j1+1,1b2t−2j1−2,1 =
b2j2,1a2t−2j2−1,1. Using this relation we can write Hk and Hk+[ n+2

2 ] as they appear

in the statement of the proposition. We note that now the sum in Hk+[ n+2
2 ] ends

with j = [(n − 1)/2], because if n is even the term that corresponds to j = [n
2 ] is

zero, see (6). This completes the proof of the proposition. �

Proof of Theorem 2. From (25), the coefficient of the highest degree of H̃(r) has
exponent 2([n−1

2 ]+ [n+2
2 ]). Since [n−1

2 ]+ [n+2
2 ] takes the value (n−1)/2+(n+1)/2

if n is odd, and the value (n − 2)/2 + (n + 2)/2 if n is even, that is n in both cases,

then the polynomial H̃(r) has degree at most 2n.

Taking into account the above arguments, we deduce that F20(r) = r
2H̃(r) can

has at most n simple positive zeros, and consequently the polynomial differential
system (2) will have at most n limit cycles bifurcating from the periodic solutions
of the linear center ẋ = y, ẏ = −x, using the averaging theory of second order. �

Remark 13. In Section 1 we conjecture that the upper bound n of Theorem 2 can
be reached and, in fact, our numerical computations confirm this idea. For example,
in the following we prove that the bound is reached for the values of n = 1, 2, 3, 4.

If we denote by F̃n(r) the function H̃(r) = 2F20(r)/r corresponding to degree n,
an adequate computation allows to obtain that

F̃1(r) = a02 − (1/4)a11b01r
2,

F̃2(r) = F̃1(r) + (1/4)r2(a22 − (1/6)a11b21r
2),

F̃3(r) = F̃2(r) − (1/8)r4a31((7/3)b01 + (3/8)b21r
2),

and

F̃4(r) = F̃3(r) + (1/8)r4(a42 − (1/8)a11b41r
2 − (11/80)a31b41r

4).

Now if we fix a02 = 1, a11 = 2 and b01 = 2 we have that F̃1(r) = 1 − r2, that
has exactly one positive zero. If we fix again a02 = 1, a11 = 2 and b01 = 2 and
furthermore we choose a22 = −1 and b21 = −3, we have F̃2(r) = 1

4 (1 − r2)(4 − r2)
that has exactly two positive zeros.

On the other hand, if we choose a02 = 1, a11 = 0, b01 = −4
3 , a22 = −49

9 ,

b21 = 16
27 , and a31 = 1, then F̃3(r) = 1

36 (1 − r2)(4 − r2)(9 − r2) has exactly three

positive zeros. Finally if we choose a02 = 1, a11 = 0, b01 = 0, a22 = −205
36 , b21 = 1,

a31 = 10
9 , a42 = 91

24 and b41 = − 1
11 , then F̃4(r) = 1

576 (1−r2)(4−r2)(9−r2)(16−r2)
has exactly four positive zeros.
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