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PIECEWISE BOUNDED QUADRATIC SYSTEMS

IN THE PLANE

JAUME LLIBRE, CLAYTON E. L. DA SILVA AND PAULO R. DA SILVA

Abstract. In this paper we study the sliding mode of piecewise bounded

quadratic systems in the plane given by a non-smooth vector field Z = (X,Y ).

Analyzing the singular, crossing and sliding sets, we get the conditions which

ensure that any solution, including the sliding one, is bounded.

1. Introduction

Non-smooth dynamical systems appear in a large number of problems from

mechanics (dry friction with stick and slip modes, impacts, oscillating systems

with viscous damping, elasto plasticity), electrical engineering (electrical circuits

and networks with switches, power electronics) theory of automatic and optimal

control, games theory, walking machines, biological and physiological systems.

For bidimensional problems some of these models are described by piecewise

differential system (or non-smooth system) as follows

ẋ =

{
X(x) if f(x) > 0,

Y (x) if f(x) 6 0,

where f : Ω ⊂ R2 −→ R and X,Y : Ω ⊂ R2 −→ R2 are of class Cr (r > 1) and

0 is a regular value of f . The dynamics of the system on the switching manifold

Σ given by the points x such that f(x) = 0 is also studied. We use the notation

Z(x) = (X(x), Y (x)) or simply Z = (X,Y ) and assume that Z is bi-valuated on

Σ. The flow of Z = (X,Y ) is defined respectively by the vector fields X and Y

as usual. The convention adopted by Filippov, in the pioneering work [4], for the

transition of orbits (trajectories) between the two regions separated by Σ and

its permanence in Σ is presented in section 2.

In this work we consider that X and Y are bounded quadratic vector fields in

the plane. More precisely we study X and Y as one of the normal forms of the

bounded quadratic vector fields, studied in [6].
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A piecewise differential system is said bounded when all its trajectories are

bounded for t > 0. A natural question is

X,Y bounded =⇒ Z = (X,Y ) bounded ?

The following proposition says that in general the answer is negative.

Proposition 1. There exist bound quadratic vector fields X an Y such that

Z = (X,Y ) is not bounded.

In this paper we consider the following:

Problem: Let Z = (X,Y ) be a non-smooth vector field with X and Y bounded

quadratic. Is it possible to give sufficient conditions on the coefficients of the

linear parts of X and Y which ensures that Z is bounded?

The paper is organized as follows. In section 2 we present preliminaries results

and state our main results. In section 3 we prove the main results. In section 4

we present an important application of the piecewise bounded quadratic system:

the mass-spring system. This model is extremely important for the study of

the natural phenomena. It is used as a good approximation for small amplitude

oscillations. The oscillatory systems can be studied by second order differential

equations, from the application of laws physical, such as Newton’s laws, Hooke’s

law and hypothesis such as damping proportional to the speed etc. We analyzed

the mass-springer system under the action of a force with different intensities

and the switching manifold Σ is interpreted as the interrupt of each one of the

forces to start the other. For more details see section 4.

2. Preliminaries

2.1. Bounded quadratic systems in the plane. Consider an autonomous

quadratic differential system in the plane with an equilibrium point at (0, 0)

given by

(1) ẋ = Ax+ ϕ(x),

with x = (x1, x2) ∈ R2, A = (aij)2×2 a real constant matrix, ϕ(x) = (P (x), Q(x))T ,

P (x) = ax2
1 + bx1x2 + cx2

2 and Q(x) = dx2
1 + ex1x2 + fx2

2 where a, b, c, d, e, f

are real constants.

According to Markus (see [6]) if ϕ(x) 6= 0 it is linearly equivalent to one of

the following forms:

(2) (0, x1x2)T ; (x2
2, 0)T ; (x1x2 +x2

2 , x
2
2)T ; (x2

2 , −x1x2 +cx2
2)T , |c| < 2.

We say that a quadratic system is bounded if all its trajectories are bounded

for t > 0. Dickson and Perko (see [3]) determined what of those systems (1) are

bounded. More preciselly they proved the following.

Theorem 2. Consider ẋ = Ax + ϕ(x) an autonomous quadratic differential

system in the plane with an equilibrium point at (0, 0), as above, and initial

condition x(0) = x0.
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(a) If ϕ(x) = (x1x2 + x2
2, x

2
2)T , then the system has an unbounded trajectory

(as t→∞) for some x0 ∈ R2.

(b) If ϕ(x) = (0, x1x2)T , then the system has all of its trajectories bounded

(for t > 0) if and only if a12 = 0, a11 < 0 and a22 6 0.

(c) If ϕ(x) = (x2
2, 0)T , then the system has all of its trajectories bounded (for

t > 0) if and only if a21 = 0, a11 6 0, a22 6 0 and a11 + a22 < 0.

(d) If ϕ(x) = (x2
2,−x1x2 + cx2

2)T , then the system has all of its trajectories

bounded (for t > 0) if and only if |c| < 2 and satisfies one of the following sets

of conditions: (i) a11 < 0; (ii) a11 = 0 and a21 = 0; or (iii) a11 = 0, a21 6= 0,

a12 + a21 = 0 and ca21 + a22 6 0.

Theorem 2 classifies the quadratic systems in the plane that are bounded. If a

quadratic system is linearly equivalent to a system with the quadratic part given

by (0, x1x2)T , (x2
2, 0)T or (x2

2,−x1x2 +cx2
2)T , satisfying the respective conditions

of the statements (b), (c) or (d), then this system is bounded.

The complete study of the phase portraits of the bounded quadratic systems

having limit cycles can be found in [1] and their perturbation inside all quadratic

systems in [5]. Moreover we refer [2] as a survey of the known results for this

kind of systems.

First proof of Proposition 1. Consider f(x1, x2) = x2 and Z = (X,Y ) with

X(x1, x2) = (2 + 3x2 + x2
2,−1− x2) and Y (x1, x2) = (−1 + x2

2, 2− 2x2).

Applying Theorem 2, statement (c), we conclude that X and Y are bounded.

The manifold Σ, that is formed by the points (x1, 0), is a sliding region and the

vector field defined in this region, called Filippov vector field, is FZ(x1, 0) = (1, 0).

This vector field has no equilibrium point and the trajectory of FZ is unbounded,

as shown in figure 1. Thus Z = (X,Y ) is unbounded. For details see section

2. �

Σ = {(x1, x2) : x2 = 0}

Figure 1. Unbounded non-smooth system in the sliding region.

2.2. Piecewise smooth dynamical systems in R2. Let f : Ω ⊂ R2 −→ R be

a smooth function and Ω an open set. Consider Σ = f−1(0) = {x ∈ Ω : f(x) =

0}, Σ+ = {x ∈ Ω : f(x) > 0} and Σ− = {x ∈ Ω : f(x) 6 0}. Assume that 0 is a

regular value of f , i.e., ∇f(x) 6= (0, 0), for any x ∈ Σ. As usual ∇f denotes the

gradient vector ∇f = (∂f/∂x1, ∂f/∂x2).
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We denote χr(Ω) the set of the vector fields X : Ω ⊂ R2 −→ R2 of Cr class

with r > 1.

Consider X, Y ∈ χr(Ω). A vector field like the following

(3) Z(x) =

{
X(x) if x ∈ Σ+,

Y (x) if x ∈ Σ−,

is said to be a non-smooth vector field with switching manifold Σ, and it is

denoted by Z = (X,Y ). The set of these vector fields is denoted for χr(Ω, f).

Define Xf(x) := 〈X(x),∇f(x)〉 and Y f(x) := 〈Y (x),∇f(x)〉 for any x ∈ Σ.

p

∇f(p)

X(p)

Y (p)

Σ

Σ+

Σ−

Ω ⊂ R2

Figure 2. Non-smooth vector field Z = (X,Y ) in p with

Xf(p) > 0 and Y f(p) < 0.

We classify the points on Σ according the product Xf(x) · Y f(x). By the

Filippov convention, the points x ∈ Σ such that Xf(x) · Y f(x) > 0 determine a

crossing region and the points x ∈ Σ such that Xf(x) · Y f(x) < 0 determine a

sliding region. The points x ∈ Σ such that Xf(x) · Y f(x) = 0 are called tangent

points of Z. Thus we have Σ = Σc∪Σs∪Σt, where Σc = {x ∈ Σ : Xf(x)·Y f(x) >

0}, Σs = {x ∈ Σ : Xf(x) · Y f(x) < 0} and Σt = {x ∈ Σ : Xf(x) · Y f(x) = 0}.

(a) Xf, Y f > 0 (b) Xf, Y f < 0 (c) Xf > 0, Y f < 0 (d) Xf < 0, Y f > 0

Figure 3. Examples of the crossing regions in (a) and (b), and

sliding regions in (c) and (d).

p

∇f(p)

X(p)

Y (p)Σ

Figure 4. Tangent point p with Y f(p) = 0, separating the cross-

ing and sliding regions.

In the sliding region, we define the Filippov vector field, which is given by

(4) FZ(x) = λX(x) + (1− λ)Y (x),
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for any x ∈ Σs with λ ∈ [0, 1] satisfying 〈λX(x) + (1 − λ)Y (x),∇f(x)〉 = 0, as

shown in figure 5.

p

∇f(p) X(p)

Y (p)

FZ(p)

Σ

Figure 5. The Filippov vector field.

We say that a point p ∈ Σ is a regular point of Z if p ∈ Σc or if p ∈ Σs and

det[X,Y ](p) 6= 0, i.e., {X(p), Y (p)} is a linearly independent set.

An equilibrium point of FZ is a point p ∈ Σs such that det[X,Y ](p) = 0. This

equilibrium point is called hyperbolic if d(det[X,Y ])(p) 6= 0. If d(det[X,Y ])(p) >

0 then the hyperbolic equilibrium point p is a saddle if Xf(p) < 0 and Y f(p) > 0

or a repelling node if Xf(p) > 0 and Y f(p) < 0. If d(det[X,Y ])(p) < 0 then p

is a saddle if Xf(p) > 0 and Y f(p) < 0 or a attracting node if Xf(p) < 0 and

Y f(p) > 0. The set of the equilibrium points of FZ is denoted by Σe.

We say that a point p ∈ Σ is a singular point of Z if p is a tangent point of Z

or p is an equilibrium point of FZ .

The set of the regular points is denoted by Σreg and the set of the singular

points is denoted for Σsin. Thus Σreg = Σc ∪ (Σs \ Σe) and Σsin = Σt ∪ Σe.

(a) Attracting node (b) Repelling node (c) Saddle (d) Saddle

Figure 6. Hyperbolic equilibrium points.

2.3. Piecewise bounded quadratic systems in the plane. Let Qr(Ω, f) ⊂
χr(Ω, f) be the set of piecewise quadratic systems in the plane. Consider x =

(x1, x2) ∈ R2, p = (p1, p2) ∈ R2, q = (q1, q2) ∈ R2 and A = (aij)2×2, B =

(bij)2×2, ϕ and ψ as in (1). In this subsection and in the following we consider

Σ = f−1(0) with f(x) = x2 and Z = (X,Y ) given by

(5) Z(x) =

{
X(x) = A(x− p) + ϕ(x− p) if x2 > 0,

Y (x) = B(x− q) + ψ(x− q) if x2 6 0.

Observe that the equilibrium point of X and Y are now the points p and q

respectively and Σ = {(x1, x2) ∈ R2 : x2 = 0}.
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−2 2 Σ

Figure 7. An unbounded trajectory of Z = (X,Y ) passing by

crossing points, with X and Y bounded.

Similarly as defined in section 2.1, we say that a piecewise quadratic system

in the plane is bounded if all its trajectories are bounded for t > 0.

In the introduction we mentioned that if X and Y are bounded quadratic

vector fields, this does not imply that Z = (X,Y ) is bounded and the example

that was presented is unbounded in the sliding region Σs.

The vector field Z = (X,Y ) with X and Y bounded, can have an unbounded

trajectory x(t) = (x1(t), x2(t)) passing by crossing points as shown the example

below.

Second proof of Proposition 1. Consider the vector field Z ∈ Qr(Ω, f) given by

Z(x1, x2) =





(
0 0

0 1

)(
x1 − 1

x2 + 1

)
+

(
(x2 + 1)2

−(x1 − 1)(x2 + 1)

)
if x2 > 0,

(
0 0

0 1

)(
x1 + 1

x2 − 1

)
−
(

(x2 − 1)2

−(x1 + 1)(x2 − 1)

)
if x2 6 0.

The lines x2 = −1 and x2 = 1 are lines of equilibrium points of X and Y

respectively. We have Σt = {−2, 2}, Σs = {x1 ∈ R : −2 < x1 < 2} and

Σc = {x1 ∈ R : x1 < −2 or x1 > 2}. The vector field Z is unbounded. See

figure 7. �

Our main result is the following.

Theorem 3. Let Z = (X,Y ) ∈ Qr(Ω, f) be a non-smooth quadratic system with

X,Y bounded and f(x1, x2) = x2.

(a) If either Σ = Σs, or ]Σt = 1 and Σs is unbounded, or ]Σt ≥ 2 and

ΣC is bounded, then Z is bounded if and only if the sliding vector field

FZ(x1) ≤ 0 near x1 = +∞ and FZ(x1) ≥ 0 near x1 = −∞.
(b) If Σ = ΣC then Z is bounded.

Now consider Z = (X,Y ) where X and Y are given by Ax + ϕ(x) as in the

Theorem 2 statements (b), (c) or (d). Let

Qpi = {Fi ∈ χr(Ω) : Fi(x) = A(i)(x− p) + ϕ(i)(x− p)} for i = 1, . . . , 5

be the set of quadratic vector fields satisfying the following conditions

A(1) = (aij)2×2 with a11 < 0, a12 = 0, a22 6 0;

A(2) = (aij)2×2 with a11 6 0, a21 = 0, a22 6 0, a11 + a22 < 0;

A(3) = (aij)2×2 with a11 < 0;

A(4) = (aij)2×2 with a11 = a21 = 0;

A(5) = (aij)2×2 with a11 = 0, a21 6= 0, a12 + a21 = 0, ca21 + a22 6 0;
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ϕ(1)(y) = (0, y1y2)T ;

ϕ(2)(y) = (y2
2, 0)T ;

ϕ(3)(y) = ϕ(4)(y) = ϕ(5)(y) = (y2
2,−y1y2 + cy2

2)T .

The constant c in the expressions of ϕ(3), ϕ(4), ϕ(5) is such that |c| < 2

according with Theorem 2 and y = x− p with y = (y1, y2).

Define Qp =

5⋃

i=1

Qpi . For p, q ∈ R2 denote Qpq = Qp×Qq. Thus Qpq =

5⋃

i,j=1

Bij

with Bij ∩Bkl = ∅ if i 6= k or j 6= l where Bij = Qpi ×Q
q
j .

In what follows when we refer the coefficients of the matrix of the vector field

X we use aij and for the vector field Y we use bij .

Theorem 4. Let Qpq = Qp ×Qq be a subset of Qr(Ω, f) as described above and

Σ = f−1(0) where f(x1, x2) = x2. There exists BL
ij ⊂ Bij, BL

ij 6= ∅, such that any

Z = (X,Y ) ∈ BL
ij is bounded. Moreover the boundness is characterized by the

sign of rational functions depending on the parameters (a11, a12, a21, a22, b11, b12,

b21, b22).

Theorem 4 characterizes the non–smooth vector fields Z = (X,Y ) ∈ Qpq

which are bounded. In section 3 we prove Theorems 3 and 4. To prove Theorem

4, first of all we compute Xf · Y f on Σ. We prove (see Lemma 5) that either

Xf ·Y f ≡ 0 or Σ has 0, 1 or 2 tangent points. If Xf ·Y f ≡ 0 then Z is bounded.

Besides, if Σ has 0, 1 or 2 tangent points then Lemmas 7, 8 and 11, respectively,

give the conditions for the boundness.

3. Proof of Theorems 3 and 4

In this section we proof our main results.

Proof of Theorem 3. (a). Suppose that Σ = Σs. Thus the Filippov vector field

FZ is an one dimensional vector field. Therefore Z is bounded if and only if

FZ(x1) ≤ 0 near x1 = +∞ and FZ(x1) ≥ 0 near x1 = −∞. If #Σt = 1 and

Σs is unbounded again the only possibility of Z be unbounded, occurs in sliding

region Σs because if Z has an unbounded trajectory passing by the crossing

region Σc then there exists at least two distinct points (z, 0) and (w, 0) of Σc

with Xf(z, 0), Y f(z, 0) > 0 and Xf(w, 0), Y f(w, 0) < 0. Thus exist yt 6= xt

such that Xf(yt) ·Y f(yt) = 0. The last case, Σ = Σs∪Σc∪Σt with Σc bounded,

just make the study of the signal of Xf · Y f . The proof is analogous previous

arguments (b). If Σ = Σc then the only possibility of a trajectory of Z be

unbounded occurs if it contains at least two distinct points of Σc. In this case

there exists z such that Xf(z, 0) = 0 or Y f(z, 0) = 0 and thus (z, 0) ∈ Σt.

Therefore Z is bounded. �

Proof of Theorem 4. In the following theorems we denote by Σ0
t the set of vector

fields Z ∈ Qpq without tangent points, by Σ1
t with exactly one tangent point and

by Σ2
t with two tangent points. We use the notation [Xf · Y f ](x1) to represent

Xf(x1, 0) · Y f(x1, 0) with (x1, 0) ∈ Σ.
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Lemma 5. Consider Z = (X,Y ) ∈ Qpq. If [Xf · Y f ](x1) 6= 0 for some x1 ∈ R
then #Σt = 0, 1 or 2. Moreover, if Xf · Y f ≡ 0 then Z is bounded.

Proof. Consider Z = (X,Y ) ∈ Qr(Ω, f) and suppose that [Xf · Y f ](x1) 6= 0 for

some x1 ∈ R. Then Z have at most 4 tangent points. In fact, the tangent points

are solutions of equation Xf(x) · Y f(x) = 0 with x = (x1, 0). Write

Z(x) =





(
a11 a12

a21 a22

)(
y1

y2

)
+

(
a1y

2
1 + a2y1y2 + a3y

2
2

a4y
2
1 + a5y1y2 + a6y

2
2

)
if x2 > 0,

(
b11 b12

b21 b22

)(
z1

z2

)
+

(
b1z

2
1 + b2z1z2 + b3z

2
2

b4z
2
1 + b5z1z2 + b6z

2
2

)
if x2 6 0,

with x = (x1, x2), y1 = x1 − p1, y2 = x2 − p2, z1 = x1 − q1, z2 = x2 − q2 where

p = (p1, p2) and q = (q1, q2) are equilibrium points of X and Y respectively.

Thus

Xf(x1, 0) = 〈X(x1, 0),∇f(x1, 0)〉 =

= a4x
2
1 + (a21 − 2a4p1 − a5p2)x1 + (a4p

2
1 − a21p1 − a22p2 + a5p1p2 + a6p

2
2),

and

Y f(x1, 0) = 〈Y (x1, 0),∇f(x1, 0)〉 =

= b4x
2
1 + (b21 − 2b4q1 − b5q2)x1 + (b4q

2
1 − b21q1 − b22q2 + b5q1q2 + b6q

2
2).

Then

Xf(x1, 0)·Y f(x1, 0) = a4b4x
4
1+[a4(b21−2b4q1−b5q2)+b4(a21−2a4p1−a5p2)]x3

1+

+[a4(b4q
2
1−b21q1−b22q2+b5q1q2+b6q

2
2)+b4(a4p

2
1−a21p1−a22p2+a5p1p2+a6p

2
2)+

+(a21 − 2a4p1 − a5p2)(b21 − 2b4q1 − b5q2)]x2
1 + . . .

Note that Xf(x1, 0) · Y f(x1, 0) is a polynomial of degree less than or equal to 4

depending on the coefficients. Thus it has at most 4 real zeros.

If Z = (X,Y ) ∈ Qpq and [Xf · Y f ](x1) 6= 0 for some x1 ∈ R, then the non-

smooth vector field Z has at most 2 tangent points. In fact it follows immediately

since a1 = a2 = a4 = b1 = b2 = b4 = 0 in each one of the cases for Qpi .

Now we prove the boundness of Z when Xf · Y f ≡ 0 on Σ. In this case

we conclude that Σ = Σt. If a trajectory of (X,Y ) is unbounded then either

the trajectory passes by crossing region and returns or the trajectory escapes by

sliding region. Since Σc = Σs = ∅, it can not happen. �

Example 6. The number 4 in the proof of Lemma 5 is realizable. Choose the

following: a1 = a2 = a4 = a5 = b4 = a11 = a21 = b22 = p2 = q1 = 1,

a3 = a6 = −2, b1 = b12 = b21 = 2, b2 = b5 = p1 = 0, b3 = −21, b6 = −4,

a12 = 3, a22 = q2 = −1 and b11 = 4. Thus we obtain Σt = {±1,±
√

3}.

Lemma 7. Consider Z ∈ Qpq ∩ Σ0
t . Then Σ = Σs or Σ = Σc.

(a) If Σ = Σs then Z ∈ Bij is bounded if and only if Rpqij = An/Bm < 0 where

An is the coefficient of term of the greater degree of det[X,Y ](x1, 0) with

n = ∂(det[X,Y ]), Bm is the coefficient of term of the greater degree of

Y2(x1, 0)−X2(x1, 0) with m = ∂(Y2−X2) and n > m. If Σs is composed

only by equilibrium points of FZ then Z is trivially bounded.
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(b) If Σ = Σc then Z is bounded.

Proof. By hypothesis #Σt = 0 (Σt = ∅). This imply that Σs = ∅ or Σc = ∅
otherwise (if Σs 6= ∅ and Σc 6= ∅) we would have at least one tangent point, since

Xf · Y f is a continuous function, [Xf · Y f ](z) > 0 and [Xf · Y f ](w) < 0 for

(z, 0) ∈ Σ and (w, 0) ∈ Σ. Therefore Σ = Σs or Σ = Σc.

(a) We prove only the case i = j = 1. The other cases are similar. We have

Z = (X,Y ) ∈ B11 = Qp1 ×Qq1 where

Qp1 = {F1 ∈ χr(Ω) : F1(x) = A(1)(x− p) + ϕ(1)(x− p)},

Qq1 = {F1 ∈ χr(Ω) : F1(x) = B(1)(x− q) + ϕ(1)(x− q)},
and A(1) = (aij)2×2 with a11 < 0, a12 = 0, a22 6 0, B(1) = (bij)2×2 with b11 <

0, b12 = 0, b22 6 0, ϕ(1)(y) = (0, y1y2)T with y = (y1, y2).

If Σ = Σs, the expression of the Filippov vector field FZ (seen as one dimen-

sional) is

FZ(x1) =

(x1 − p1)[(a11(b21 − q2)− b11(a21 − p2))(x1 − q1)− a11b22q2] + b11a22p2(x1 − q1)

[(b21 − q2)− (a21 − p2)]x1 − q1(b21 − q2) + p1(a21 − p2)− b22q2 + a22p2
.

Suppose that b21 6= q2 and a21 6= p2. Thus A2 = a11(b21− q2)− b11(a21− p2) and

B1 = (b21 − q2)− (a21 − p2). We have

lim
x1→∞

FZ(x1) = lim
x1→∞

a11(b21 − q2)− b11(a21 − p2)

(b21 − q2)− (a21 − p2)
x1,

where the symbol ∞ represents ±∞. Therefore Z is bounded if and only if

Rpq11 =
a11(b21 − q2)− b11(a21 − p2)

(b21 − q2)− (a21 − p2)
< 0.

(b) If Σ = Σc then Σt = Σs = ∅. The only possibility of a trajectory of Z

be unbounded occur if it contains at least two distinct points of Σc. If it occurs

then there exists z such that Xf(z, 0) = 0 or Y f(z, 0) = 0 and thus (z, 0) ∈ Σt.

Therefore Z is bounded. �

Lemma 8. Consider Z ∈ Qpq ∩ Σ1
t . Then Σ = Σs ∪ Σt ∪ Σc with Σs and

Σc unbounded, Σ = Σs ∪ Σt or Σ = Σc ∪ Σt. If Σ = Σs ∪ Σt ∪ Σc with Σs

and Σc unbounded or Σ = Σs ∪ Σt then Z ∈ Bij is bounded if and only if

Rpqij = An/Bm < 0 where An is the coefficient of term of the greater degree

of det[X,Y ](x1, 0) with n = ∂(det[X,Y ]), Bm is the coefficient of term of the

greater degree of Y2(x1, 0)−X2(x1, 0) with m = ∂(Y2−X2) and n > m. If Σs is

composed only by equilibrium points of FZ then Z is trivially bounded.

Proof. Since #Σt = 1 (Σt = {xt}) then [Xf · Y f ](x1) is a polynomial of degree

1 or 2. In the first case, we have Σ = Σs ∪ Σt ∪ Σc with Σs and Σc unbounded.

In the other case, Σ = Σs ∪ Σt or Σ = Σc ∪ Σt. The only possibility of Z be

unbounded, occurs in sliding region Σs because if Z has an unbounded trajectory

passing by the crossing region Σc then there exists at least two distinct points

(z, 0) and (w, 0) of Σc with Xf(z, 0), Y f(z, 0) > 0 and Xf(w, 0), Y f(w, 0) < 0.
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Thus exist yt 6= xt such that Xf(yt) · Y f(yt) = 0. The remainder of proof is

analogous to proof of the statement (a) of the Lemma 7. �

Remark 9. If Σ = Σc ∪ Σt we can not ensure that the system is bounded. See

the following example.

Example 10. Consider the vector field Z given by

Z(x1, x2) =





E.

(
x1 − 1

x2 + 1

)
+

(
(x2 + 1)2

−(x1 − 1)(x2 + 1) + (x2 + 1)2

)
if x2 > 0,

F.

(
x1 − 3

x2 − 1

)
−
(

(x2 − 1)2

−(x1 − 3)(x2 − 1) + (x2 − 1)2

)
if x2 6 0,

with

E = −F =

(
0 0

0 1

)
.

The lines x2 = −1 and x2 = 1 are lines of equilibrium points of X and Y

respectively. We have Σt = {3}, Σs = ∅ and Σc = {x1 ∈ R : x1 6= 3}.

Figure 8. Unbounded trajectory when Σ = Σc ∪ Σt .

Lemma 11. Consider Z ∈ Qpq ∩ Σ2
t . Then Σ = Σs ∪ Σc ∪ Σt with Σc bounded

or Σ = Σs ∪ Σc ∪ Σt with Σs bounded. If Σ = Σs ∪ Σc ∪ Σt with Σc bounded

then Z ∈ Bij is bounded if and only if Rpqij = An/Bm < 0 where An is the

coefficient of term of the greater degree of det[X,Y ](x1, 0) with n = ∂(det[X,Y ]),

Bm is the coefficient of term of the greater degree of Y2(x1, 0) − X2(x1, 0) with

m = ∂(Y2 −X2) and n > m. If Σs is composed only by equilibrium points of FZ

then Z is trivially bounded.

Proof. To verify that Σ = Σs ∪ Σc ∪ Σt with Σc bounded or Σ = Σs ∪ Σc ∪ Σt

with Σs bounded, just make the study of the signal of Xf · Y f . The proof is

analogous arguments to the proof of statement (a) of the Lemma 7. �

Remark 12. If Σ = Σs ∪Σc ∪Σt we cannot ensure that the system is bounded.

See for instance, the example in the second proof of Proposition 1.

To define the set BL
ij , stated in Theorem 4, we consider the set of quadratic

systems (X,Y ) ∈ Bij that satisfies the conditions given in the Lemmas 5, 7, 8

and 11. It concludes the proof of Theorem 4. �
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s

x

F
(1)
2 F

(2)
2m

m

Figure 9. The mass-spring system under the action of two forces

F
(1)
2 and F

(2)
2 given by quadratic term y2 in the system (6).

4. Application: the mass-spring system

Consider the vertical mass-spring system, as shown bellow. The object of mass

m when displaced from its equilibrium position s, experiences a restoring force

F1 proportional to the displacement x. This force is described as F1 = −k(s+x)

where k is a positive constant, known as the spring constant. Suppose that a

frictional force (damping), for example the air resistance, is also present. This

force F2 is proportional to the velocity and is described as F2 = −βẋ, where β is

a positive constant. Consider the action of gravity F3 = mg, where g ∼= 9, 8m/s2.

The resultant force is F =
∑
Fi and using the Newton’s second law and observing

that −ks = mg the we write

mẍ = −kx− βẋ.

We want that the planar system to be quadratic and bounded and for this is

sufficient choose ẋ = y2 − cx with a convenient constant c. Thus we write the

planar system

(6) ẋ = −cx+ y2, ẏ =
mc− β

2m
y − mc2 − βc+ k

2m
(x/y).

Imposing the condition mc2 − βc + k = 0, we find the values of c such that

the system (6) is quadratic. These values are

c1 =
β +

√
β2 − 4mk

2m
and c2 =

β −
√
β2 − 4mk

2m
.

We admit β2 − 4mk > 0 and observe that c1, c2 > 0.

Now, consider X(x, y) and Y (x, y) the vector fields given by (6) with the

respective constants c1 and c2. Observe that
mc1 − β

2m
and

mc2 − β
2m

are negative

constants. Therefore, by Theorem 2, the quadratic systems given by X and Y

are bounded.

Let Z = (X,Y ) be a non-smooth quadratic system with f(x, y) = y. Let

p = (p1, p2) be the equilibrium point of X and q = (q1, q2) of Y . The switched

manifold Σ = f−1(0) is interpreted as the interrupt of each one of the forces
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(given by y > 0 and y < 0) to start the other. Thus

Z(x, y) =





(
−c1 0

0 (mc1 − β)/2m

)(
x− p1

y − p2

)
+

(
(y − p2)2

0

)
if y > 0,

(
−c2 0

0 (mc2 − β)/2m

)(
x− q1

y − q2

)
+

(
(y − q2)2

0

)
if y 6 0.

We have Z ∈ B22 and X(x, 0) · Y f(x, 0) =

(
mc1 − β

2m

)(
mc2 − β

2m

)
p2q2.

If p2q2 = 0 then by Lemma 5, Z is bounded. Now consider p2q2 6= 0. In

this case no have tangent points (Σt = ∅). If p2q2 > 0 then Σ = Σc (Σs = ∅)
and by item (b) of the Lemma 7, Z = (X,Y ) is bounded. If p2q2 < 0 then

Σ = Σs (Σc = ∅) and by item (a) of the Lemma 7 we conclude that Z = (X,Y )

is bounded since Rpq22 < 0 where

Rpq22 =
p2

mc1−β
2m c2 − q2

mc2−β
2m c1

−p2
mc1−β

2m + q2
mc2−β

2m

.
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