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ABSTRACT. In this paper we study the topology of the hyperbolic component of the param-
eter plane for the Newton’s method applied to n-th degree Bring-Jerrard polynomials given
by P.(z) = 2" —cz+ 1, ¢ € C. For n = 5, using the Tschirnhaus-Bring-Jerrard nonlinear
transformations, this family controls, at least theoretically, the roots of all quintic polyno-
mials. We also study a bifurcation cascade of the bifurcation locus by considering ¢ € R.
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1. INTRODUCTION

The historical seed of complex dynamics goes back to Ernst Schroder and Arthur Cayley
who, at the end of the nineteenth century, investigated the global dynamics of Newton’s
method in C applied to polynomials of degree two (previous studies did not deal with the
complex variable). They were able to see that the two neighbourhoods around each root of the
quadratic polynomial where Newton’s method converges to each root, in fact extend to two
half planes and the separation straight line between them is precisely the bisectrix. In other
words, any Newton map for a quadratic polynomial with two different roots is conformally
conjugate to the map z — z? in the Riemann sphere (in McMullen language the family is
trivial [15]). With the same aim, Cayley also considered the global dynamics of Newton’s
method applied to cubic polynomials but he was not able to conclude satisfactorily.

Since then, complex dynamics as a whole, that is the study of iterates of holomorphic maps
on the complex plane or the Riemann sphere, has become an important issue in dynamical
systems. The natural space for iterating a rational map f is the Riemann sphere. So, for a
given rational map f, the sphere splits into two complementary domains: the Fatou set F(f)
where the family of iterates {f"(z)},>0 is a normal family, and the Julia set J(f) where the
family of iterates fails to be a normal family. The Fatou set, when nonempty, is given by the
union of, possibly, infinitely many open sets in C, usually called Fatou components. On the
other hand, it is known that the Julia set is a closed, totally invariant, perfect nonempty set,
and coincides with the closure of the set of repelling periodic points. For a deep and helpful
review on iteration of rational maps see [17].

The rational (transcendental meromorphic) family given by the Newton’s map applied to a
polynomial (transcendental entire) family has become a central subject in complex dynamics.
The reason for this special interest is based on the implications of this global analysis on
Newton’s map as a root finding algorithm. It is very difficult, or, possibly, not possible,
to give a short survey on Newton’s method and how a better understanding of the whole
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dynamics gives a better understanding of the Newton’s map as a root finding algorithm. But
we focus on some main observations connected to our work.

A first important observation coming from this global analysis is somehow negative. New-
ton’s method applied to cubic (or higher degree) polynomials Q.(z) = z(z —1)(z —a), a € C
fails. That is, there are open sets in the a-parameter plane for which there are open sets in the
dynamical plane converging to neither 0, 1 nor a. The reason for this is the existence of a free
critical point that, for certain parameters does its own dynamical behavior independently of
the attracting basins associated to the roots of Q.. A remarkable result due to C. McMullen
[14] goes deeply in this direction by showing that even though we can substitute Newton’s
map for another rational root finding algorithm for which the previous limitation is solved,
the problem is unsolvable for polynomials of higher degree.

A second relevant consideration is, given P, how to use the Newton’s map to find numer-
ically all roots of P; that is, how to choose the initial seeds to ensure we get all roots of
P. This important question, from the numerical analysis point of view, was solved using a
dynamical system approach in the paper [13], where the authors gave a universal set of initial
conditions, with cardinality depending only on the polynomial degree.

A third remark is a topological question which relates the connectivity of the Julia set,
or equivalently, the simple connectivity of the Fatou components. It is well known that
rational maps, in general, may have non simply connected Fatou components given by either
Herman rings (doubly connected components), basins of attraction or parabolic basins with
(infinitely many) holes or preimages of simply connected components which could be multiple
connected. Przytycki [18] showed that every root of a polynomial P has a simply connected
immediate basin of attraction for its corresponding Newton’s method Np (see below for formal
definitions). Later, Meier [16] proved the connectivity of the Julia set of Np when degP = 3,
and later Tan [22] generalized this result to higher degrees of P. However, the deeper result
in this line is due to Shishikura [21] who proved that the Julia set of Np is connected for any
non-constant polynomial P. In fact, he obtained this result as a corollary of a much more
general theorem for rational functions, namely, the connectedness of the Julia set of rational
functions with exactly one weakly repelling fixed point, that is, a fixed point which is either
repelling or parabolic with multiplier 1.

Similarly, and in most cases strictly related to this, it is important to study the topology
of the hyperbolic components in the parameter plane and, consequently, the structure of the
bifurcation locus. A cornerstone example of this is the paper of P. Roesch [19] were she
used the Yoccoz Puzzles to prove the simple connectivity of hyperbolic components in the
parameter as well as the dynamical plane for the family of cubic polynomials.

The main goal of this paper is to study some topological properties of the parameter plane
of Newton’s method applied to the family

(1) Po,c:=P.(z)=2"—cz+1,

)

where n > 3 (to simplify the notation we will assume, throughout the whole paper, that n is
fixed; so, we erase the dependence on n unless we need to refer to it explicitly). The interest to
consider this family is explained in Section 2 where we show that the general quintic equation
P5(z) = 0 can be transformed (through a strictly nonlinear change of variables) to one of the
form Ps.:= 2° —cz+1 =0, ¢ € C. Letting n as a parameter in (1) allows us to have a
better understanding of the problems we are dealing with.
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Easily, the expression of the Newton’s map applied to (1) can be written as (see Lemma
4.1):
P.(z) 2P —cz+1  (n—1)2" -1

-~ Pl(z) S e Qs

(2) N.(z) ==z

So, the critical points of N, correspond to the zeroes of F., which we denote by «;, j =
0,...,m — 1 and z = 0 which is the unique free critical point of N, of multiplicity n — 2.
We notice that since all critical points except z = 0 coincide with the zeroes of P, they are
superattracting fixed points; so, their dynamics is fixed for all ¢ € C. Note that for certain
values of n and ¢, this rational map is not irreducible.

For each root aj(c) := o, j =0,...,n—1 we define its basin of attraction, A.(a;), as the
set of points in the complex plane which tend to a;; under the Newton’s map iteration. That
is

Ac(a) = {2 € C, N¥(2) = aj as k — oo},
In general A.(a;) may have infinitely many connected components but only one of them,
denoted by A}(c;) and called immediate basin of attraction of o, contains the point z = «;.

To label each root of P, we observe that, for large values of |c|, there exists a unique root
of P., ap, having modulus smaller than one and there exists a unique root of P, a;j =
1,...,n —1, inside a disc of radius 1, centered at

A 2mj

(see Lemma 3.1 for details). These labeling for the roots of P, can be extended for all values
of ¢ by analytic continuation of the roots with respect the parameter ¢ (as long as we do not
touch the points for which two roots collapse which are described in Lemma 4.1).

Similarly, the hyperbolic components in the c-parameter plane are the open subsets of C
in which the unique free critical point z = 0 either eventually maps to one of the immediate
basin of attraction corresponding to one of the roots of P. or it has its own hyperbolic
dynamics associated to an attracting periodic point of period greater than one. Of course,
the bifurcation locus corresponds to the union of all boundaries of those components and
possible accumulating points (see Section 4 for more precise definitions).

If Nk(0) € A%(a;), k > 0forsome j = 0,...n—1 (that is the free critical z = 0 is eventually
trapped by one of the roots of P.) we say that c is a capture parameter. As we will see, the set
of all capture parameters has infinitely many connected components depending on the first
number k > 0 and the value of j so that N¥(0) € A%(;). To distinguish among different
captured hyperbolic components we use the following notation which takes into account the
number of iterates of z = 0 to get into the immediate basin of attraction of one of the roots:

C;-) ={ceC,0€ A;(e;)} and
¢ = {c e C, NH(0) € A(ay) and N¥1(0) ¢ At(ay), b2 1},

We prove, in Section 4, some topological results about those stable subsets of the parameter
plane.

(3)

Theorem A. The following statements hold.

(a) CJ is connected, simply connected and unbounded.
(b) CJQ, 1<j<n—1 are empty.
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(c) C;, 0<j<n-—1 are empty.
(d) Cjk, 0<j<n—1andk > 2 are simply connected as long as they are nonempty.

The proofs of statements (a) and (b) follow directly from Proposition 4.3 while (c¢) and
(d) follow from Proposition 4.5. Apart from the captured components we also observe the
presence of Generalized Mandelbrot sets My, (the bifurcation locus of the polynomial families
2F + ¢, ¢ € C). As an application of a result of C. McMullen [15], we can show that for a
fixed n, all non-captured hyperbolic components correspond to n — 1 Generalized Mandelbrot
sets. Precisely, we can prove the following result (see Proposition 4.7):

Corollary B. Fiz n > 3. The bifurcation locus B(N,) is nonempty and contains the quasi-
conformal image of OM,_1 and B(N,) has Hausdorff dimension two. Moreover, small copies

of OMy_1 are dense in B(Ny,).

Finally, we turn the attention to real parameters. Because of the symmetries in the pa-
rameter plane, to have a good understanding of real positive values of ¢ is quite important
to describe the bifurcation locus. In Section 5 we show the existence of different sequences
of c-real values tending to 0 corresponding to centers of capture components, preperiodic
parameters and centers of the main cardioids of M,,_; sets.

Theorem C. Fixn > 3 and let ¢ be a positive real parameter. Denote by ¢* =n/(n— 1)71771
The following statements hold:

(a) If ¢ > c* then c € CJ.

(b) If ¢ < ¢* there are two different decreasing sequences of parameters tending to 0 for
which the free critical point z = 0 is (i) a superattracting periodic point (with increasing
period) or (ii) a preperiodic point (in fact pre-fix, with increasing pre-periodicity).
Moreover,

(b.1) If n is odd, there is a decreasing sequence of parameters tending to 0 for which
the free critical point z = 0 is the center of a capture component CJ’»C for some j.

(b.2) If n is even, C]’?QR:(Z)foranyj:O,...,n—l and k > 2.

The proof of statement (a) follows from Lemma 4.4. The rest of the statements follows
from Proposition 5.1.

The paper is organized as follows. In Section 2 we briefly explain the reduction of a
general quintic equation to its Bring-Jerrard form. In section 3.1 we give some results on the
dynamical plane of the Newton’s map N.. In Section 4 we state and prove the topological
properties of the hyperbolic components in the parameter plane. Finally, in Section 5 we
study real parameters and prove Theorem C.

2. TSCHIRNHAUS’, BRING’S AND JERRARD’S TRANSFORMATIONS

As we have already explained in the introduction we study the Newton’s method applied
to the family of n-degree polynomials (1) defined by

Phc(z)=2"—cz+1.

Easily, any polynomial of degree 5 can be linearly conjugated through n(z) = mz + n2
to one monic polynomial without 4 -degree term. Using this idea any quadratic polynomial
az? + bz + ¢, a,b,c € C can be reduced to a polynomial of the family 22 + X\, A € C. Of
course, via a linear transformation, we cannot expect to reduce (in the sense of getting a
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conjugacy) all quintic polynomial to a one parameter family, concretely to the family (1), like
in the quadratic case.

However, using nonlinear transformations, it is possible to actually reduce all quintic poly-
nomials (in a weaker sense only preserving certain information of the roots of the original
polynomial) to the family (1) for n = 5. Consequently, the interest of applying Newton’s
method to (1) is due to Tschirnhaus’ (Bring’s and Jerrard’s) transformations applied to 5-
degree polynomials. For a good explanation of all these transformations see the translation
of the original paper of Tschirnhaus [24], the short review in [1] and references therein. For
completeness we give here a brief summary.

In his original paper in 1683, Tschirnhaus proposed a method for solving P, (z) = 0, where
P, is a polynomial of degree n, by simplifying it to a polynomial Q,,(y) where Q,, is a (simpler)
polynomial of degree n with less coefficients (trivially, the linear change of variables allows
to eliminate the coefficient 2"~!). His idea was to introduce the new variable y in the form
y = Ti(z) with k& < n. Tschirnhaus’ original idea was used later by Bring and Jerrard to
move forward in the simplification process. Although Tschirnhaus’ method works for general
polynomials of degree n, here we present n = 5.

Precisely, we want to reduce the general expression of a quintic equation

(4) P tazt a2+ a2t +arz+a9=0, a; €C
to one of the form
(5) 2D 4+ez4¢=0,

in such a way that the roots of (4) can be recuperated once the roots of (5) are obtained. To
do so, we first reduce the general quintic equation to its principal form, that is,

(6) 2° + 522’2 + b1z + by =0.
The n-th power-sums of the roots, ;’s of (4) are given by
5
(7) S =Snl(x;) =) _af, n=1,...
j=1

which satisfy (Newton’s formulae [10])

n—1

Sn = —nas—np — Z Sn_jag,_j

j=1

where a; = 0 if j < 0. For equation (4) we have, for instance, S; = —aq and S3 = —a3 +

3aszas — 3az. The key idea is to assume (and prove) that the roots x;’s of (4) are related to
the roots y;’s of (6) through a quadratic (Tschirnhaus) transformation

(8) yj:xf—i-amj—i-ﬁ, a, 8 € C.

That is, we want to see that o and 8 can be expressed algebraically in terms of the coefficients.
From Newton’s formulaes, the power sums for equation (6) give

(9) S1 =85, =0, S3=—3by, Sy = —4b1, S5 = —5by.
Hence, from S; = S5 = 0, we obtain
aay — 56+ 2a3 — a3 =0,

(10) 2 2 2
aza” — 108% + (3a2 — a3a4) o+ 2a1 — 2aza4 + a3 = 0,
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and from those equations we can solve for v and 3, algebraically, in terms of the coefficients
ay’s (indeed the equations are quadratic in o and 8 and we are free to choose either of the
solutions). In turn, it is an exercise to see (but involve some computations) that from the
three later equations in (9), we may obtain b;, j = 0,1,2 as functions of a;’s, a and £.

Once we have reduced the general equation (4) into its principal form (6) we also want to
eliminate the quadratic coefficient by of the later expression to get its Bring-Jerrard form (5).
A first attempt (the one Tschirnhaus had in mind) may be to impose the cubic equation (so
getting an extra parameter)

(11) ri=vys+ay;+By;+v, oB,7€eC

for the roots of (5), denoted by 7;’s, and the roots y;’s of (6). If we argue as before, Newton’s
formulae for the power sums for equation (5) gives

(12) Sl = Sg = 53 = 0, 54 = —461, S5 = —560.

However to determine «, 8 and v using S; = Sy = S3 = 0 one gets a sixth degree polynomial
for «, so not being solvable by radicals.

The new ingredient introduced by Bring and Jerrard was to add an extra parameter so
that equation (11) becomes

(13) rj=y;+ays+By; +yy; +6, «,B,7,6€C.

Using the three first equations in (12), equation (13) and Newton’s formulaes applied to the
principal form (6) we get three new equations from which it is possible to write «, 3, v and
0 as algebraic functions of the b;’s coefficients. From the first of those equation we obtain vb

1
o= 5(4()1 + 30[()2)7
which we substitute in the second equation to get
4 4
—10afby — 458%b1 + gbf + 8bgby + gablbg + ga%g + 66b5 — 27 (5bo + 4aby + 38by) =0

If we (cleverly) choose 3 to cancel out the 7 coefficient in the above equation, the expression
becomes quadratic in «, so algebraically solvable. Finally, substituting J, 8 and « in the third
of those mentioned equations we obtain a cubic equation for the later coefficient v. As a final
step in this process we use the fourth and fifth equations in (12) to determine (linearly) the
coefficients ¢y and c¢; in terms of the b;’s.

All this process allows to reduce the original equation (4) to the simpler equation (5).
Assuming you know the five solutions of the equation (5) you should invert the process to
find out the solutions of your original equation (4). Since the transformations you have applied
are nonlinear, what happens is that you have twenty candidates for the five zeroes of (4). As
far as we know, there are no non-numerical tests to determine which ones are the correct ones,
but theoretically you could write the solutions of (4) in terms of the solutions of (5).

On the other hand it is easy to show that the Newton’s method applied to the polynomial

(14) P(z)=2"+ciz+c, c1,0€C

is either conjugated to the Newton’s method applied to ¢,(z) = 2° + az (which in turn is
conjugate to either the Newton’s method applied to ¢_(z) = z(z*—1), or the Newton’s method
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applied to g4 (z) = z(z* 4+ 1) or conjugate to the Newton’s method applied to go(z) = 2°), or
conjugate to one of the family

P.(2)=2"—cz+1, ceC.

Consequently there is a formal connection between the use of Newton’s method for the general
quintic equation and its Bring-Jerrard form.

3. DYNAMICAL PLANE: DISTRIBUTION OF THE ROOTS AND ATTRACTING BASINS

In this section we prove some estimates, that we will need in next sections, for the relative
distribution of the roots a;, j =0,...n — 1 of the polynomials in family (1), assuming they
are all different roots.

Fix ¢ € C and denote by D(zg,) the disc centered at z = zy of radius 7 > 0. Let w; :=
w;(c), 5 =0,...,n — 1 be the n different solutions of z(z"~1 — ¢) = 0. In particular, we set
wo = 0. Next lemma shows that if |c| is large enough we have a; € D(w;,1), 7 =0,...,n—1.
In particular if || is large enough we set g to be the root of the corresponding polynomial
such that ag € D(0,1) and a5, j = 1,...n—1 to be the root of the corresponding polynomial
such that a; € D(wj,1). That is to say, the root o is always inside a disc of radius 1 centered
at 0 and the other roots o, j = 1,...,n — 1 are inside discs centered at w;. As we see in the
following, o behaves as % for ¢ large enough.

Lemma 3.1. The following statements hold:
(a) For all ¢ in the parameter space, the roots ay, . ..,an—1 of (1) belong to the set

n—1
D=|]J D(w;,1)
=0

(b) Let ¢ € C such that
1

san—1 s
sin® (ﬁ)
Then, D(wj,1) N D(wg,1) = 0, j # k. Moreover, each D(wj,1) contains one and

only one of the roots of (1).
(¢c) If ¢ is large enough, there exists M = M(n) > 0 such that

(16) lag — No(0)] < M|~ (D),

Proof. Let a be any of the solutions of the equation 2" — cz 41 = 0 (that is a = o for some
j=0,...,n—1). Easily a should satisfy |a|-[a" ! —¢| = |a| - |a —w1]- ... | —w,_1] = 1.
If o ¢ D we have that |a - |a—wq|-...-|o—wp—1]| > 1, a contradiction. Thus, statement (a)
is proved.

By definition, the set D is formed by n discs of radius 1 and centered at w;, j =0,...n—1.
Notice that the w;, j = 1,...,n—1 are the vertices of a regular polygon of n—1 sides centered

(15) lc| > max {2771,

1
at 0 (lying on the circle centered at the origin and radius |c¢|»—T) and hence the distance

1
between two consecutive vertices is exactly 2|c|»=T sin ("5 ) while the distance from each of
1
them to the origin is |¢|»T.
In order to prove that these discs are disjoint we only need to check that the distance
between any pair of centers is bigger that 2. Taking into account the previous discussion this

happens precisely if (15) is satisfied.
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To finish the proof of statement (b) we should show that if the discs are disjoint each of
them contains a unique root of (1). Fix ¢ satisfying (15) or in other words, so that D is formed
by n disjoint discs of radius 1 and centered at w;, j = 0,...,n—1. Define hy(z) = 2(2""! —¢)
and ho(z) = 1. We claim that |he(2)| < |h1(2)] for all z € 0D(wj,1), j =0,...,n— 1. So,
Rouche’s Theorem implies that hi(z) and hi(2) + ha(z) = 2™ — cz + 1 have the same number
of zeroes in each D(wj, 1). But clearly hi(z) has one and only one zero in each of the discs.

To see the claim we observe that

|hi(2)] = |2(z" =) = |z —wo| - |z —wi| - ... - |2z — wa_1].

If z € 0D(wj, 1) the factor |z — wj| is equal to 1 and the rest of the factors are bigger than 1,
since by assumption D is formed by n disjoint discs. We thus obtain that |hq(2)| > 1 = |ha(z)]
when z € 0D(wj, 1) for j=0,...,n— 1.

Finally, we prove statement (c). Easily we have that N.(0) = 1/c. Fix again ¢ large enough
so that D is formed by n disjoint discs, in particular we have that «g is in D(0,1). Notice that

since cap = 1+ aff we have |cap| = [1+aof| < 1+ |ap|™ < 2 and so |cap|™ < 2". Consequently,
1 I S| n n 1
|Oé()—g‘—H|C040—1|—H|Oéo‘—’c|T+l|COé0| §2 ‘C‘T‘Fl
]

In particular, for a fixed n, as ¢ goes to infinity the small root of (1) tends to 1/c¢ (expo-
nentially) faster than ¢ approaches infinity. As we will state in Section 4.1, statement (c) of
Lemma 3.1 is equivalent to say that for ¢ outside a certain disc in the parameter plane, the
free critical point z = 0 always belongs to the same immediate basin of attraction, the one of
ag ~ 1/c.

The following quite general topological properties of the basins of attraction and hyper-
bolic components of the Julia set are well known (see, for instance, [13], where they studied
Newton’s method for a general polynomial, and Shishikura [20]).

Proposition 3.2. The following statements hold:
(a) Aj(aj) is unbounded.
(b) The number of accesses to infinity of Aj, .(a;) is either 1 orn — 1.
(d) J(N.) is connected. So, any connected component of the Fatou set is simply connected.

The classical Bottcher Theorem provides a tool related to the behavior of holomorphic
maps near a superattracting fixed point [4], which we apply to make a detailed description of
the superattracting basin of each simple root o for j =0,...,n —1 of N,.

Theorem 3.3. Suppose that f is an holomorphic map, defined in some neighborhood U of 0,
having a superattracting fixed point at 0, i.e.,

f(z)=am 2"+ am1 2™ 4 where m > 2 and a,y, # 0.

Then, there exists a local conformal change of coordinate w = ¢(z), called Béttcher coordinate
at 0 (or Béttcher map), such that po fop™! is the map w — w™ throughout some neighborhood
of (0) = 0. Furthermore, ¢ is unique up to multiplication by an (m — 1)-st root of unity.

Assume that o; is one of the simple roots of IV, for j = 0,...,n — 1. Applying Bottcher’s
Theorem near «; the map NN, is conformally conjugate to z — 2% near the origin and we
notice that this Bottcher map is unique since m = 2. As explained before, we will use a linear
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change of coordinates in order to have a monic expansion of N, near a;. Near o; we have
that

N”(O&') N,//(Oé')
Ne(z) = aj + ch(z —aj)? + CT](Z — ) ...
Using the conformal map 7(z) = W(z — oj) we obtain that the map
R n—1  pN(n) (o))
(17) N(z) =(troN.oT™ =22+ Z o V(o )]i 72"
n>3
is monic. For each j = 0,...,n — 1, we denote by ¢; its corresponding Bottcher map (so
©;(Ne)(2) = ¢j(2)?) such that ¢;(0) =0, ¢(0) = 1. From equation (17) we deduce that
(18) (pjoT)oNe=Dyo(pjor),

where Ds(z) = 22. Hence @j o T is the Bottcher map conjugating N, near «; to 22 to 0.

Before going to the parameter plane we state a result we will use later which allows us to
know when a rational map is the Newton’s method of a certain polynomial. Precisely, we will
use it at the end of the surgery construction in Proposition 4.5.

Lemma 3.4 ([12, 23]). Any rational map R of degree d having d different superattracting fized
points is conjugate by a Mdbius transformation to Np (Newton’s method) for a polynomial P
of degree d. Moreover, if co is not superattracting for R and R fizes oo, then R = Np for
some polynomial P of degree d.

4. HYPERBOLIC COMPONENTS IN THE PARAMETER PLANE OF N,

As we stated in the introduction the hyperbolic components in the parameter plane cor-
respond to open subsets of C in which the unique free critical point z = 0 either eventually
maps to one of the immediate basins of attraction corresponding to one of the roots of P,
(those were denoted by C;“ where j explains the catcher root and k the minimum number of
iterates for which z = 0 reaches A’(«;), or it has its own hyperbolic dynamics associated to
an attracting periodic point of period strictly greater than one (black components in Figure
1). We use the following notation:

H ={c € C, 0 is attracted by an attracting cycle of period p > 2}.
B ={c € C, the Julia set J(N.) does not move continuously (in the Hausdorff topology)

over any neighborhood of ¢}.

The first lemma removes from our parameter plane those c-values for which the roots of
P, are not simple and so the Newton’s method is not a rational map of degree n.

Lemma 4.1. Fix n > 3. The Newton’s map N, is a degree n rational map if and only if

c#cpi= Lﬂ_le%m‘/”, k=0,...,n—1.
(n—1)"n=
Proof. The rational map N, has degree n as long as all roots of P, are simple. Otherwise, the
pair (z,c¢) should be a solution of the polynomial system

P,(z)=2"—cz+1=0,

(19) Pl (z) =nz""1—c=0.
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Solving system (19) we have

2kmi 2k
(Goct) = (e, cexp(ET) ) k=0, -1
where
1 1
n n
(20) (z%,c") = < ) ) e
n—1 (n— 1)T1
denote the positive real values of the corresponding roots. O

In the next lemma we prove that we can focus on a sector in the parameter plane due to
the following symmetries.

Lemma 4.2. Let n > 3. The following symmetries in the c-parameter plane hold:

(a) The maps N.(z) and N;z(z) with ¢ = e%c, are conjugate through the holomorphic
27i

map h(z) =en z.
(b) The maps N.(z) and Nz (z) are conjugate through the anti-holomorphic map
h(z)=z.

Proof. We first prove (a). We take h (z) = e z. Then

27 27 (e%z>n —C (e%z) +1
(hloN.oh)(z) = ! <NC (672>) =ht ey - —— =
27i
n <eTz) —c

27ni n 27
—2mi 2mi en 2t —cen z+4+1
— e n e n 2 — :Né(z)7

2w (n—1)1 1
ne n» 7l —¢

27e

where ¢ = e n c.
To see (b) we take h(z) = Zz and argue as above.

(h‘lONcOh)(z) — h—1<(n—1)zn_1> (n—1z—1

nz"—1 —¢ I
(n—1)z"—-1

nzv1—¢

Nz (2).
]

In the following subsections we describe the topology of the different hyperbolic com-
ponents. In subsection 4.1 we study the capture components CJQ showing that only CJ is
nonempty. Moreover, we show that it is unbounded, it contains the complement of a disc of
radius 4 and it is simply connected (see Proposition 4.3). In subsection 4.2 we investigate the
rest of the capture components showing that every connected component is simply connected
(see Proposition 4.5). Finally, in subsection 4.3 we show that the bifurcation locus for N,
contains quasiconformal copies of the bifurcation locus of the maps 2"~ ! + c.
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(a) The parameter plane for n = 3. (b) Zoom of (a).

(c) The parameter plane for n = 4. (d) Zoom of (c).

(e) The parameter plane for n = 7. (f) Zoom of (e).

FIGURE 1. Different parameter planes as n varies. From these pictures we can easily
see the symmetries rigorously proven in Lemma 4.2 .

4.1. The hyperbolic components C? for 0 < j < n —1. The first result determines that
one of the roots, «y, is playing a differentiated role, since for all ¢ outside a certain ball around
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the origin the free critical point z = 0 lies in its immediate basin of attraction. This is due to
the fact that the free critical point is z = 0 for all n > 3 and for all ¢ in the parameter space.
As a consequence, any other capture component should be bounded (see Figure 1), which in
turn implies that C?, j=1,...,n—1 are empty.

Proposition 4.3. Fizn € N.

(a) CJ is unbounded. In fact we have C§ D {c € C,|c| > 4}.
(b) CY is connected and simply connected.
(c) C) =0 forall j > 1.

Proof. We first prove that there is an unbounded connected component of CJ. Let us denote
by B = B(0,1/2) the closed ball of radius 1/2 centered at z = 0. We claim that if |¢| > 4,
the map N, maps B strictly inside itself. Hence, the Denjoy-Wolf Theorem implies that there
must be a unique point € B such that for all z € B N'(z) — n as n — oo (in other words B
belongs to the immediate basin of attraction of the fixed point n). In particular we have that
N(0) — nas n — oo. Of course n must be one of the roots «; of P.. Since for ¢ large enough
we know that oy € B, we use continuity of the roots of P. with respect to the parameter c to
conclude 7 = ag and hence ¢ € C8 .
To see the claim we notice that if |c| > 4 the following inequalities follow easily:

(n—l)z”—1‘<(n—l)\z|"+1<(n—l)(l/Q)"—i—l n—142"

N, =
IN(2)] nz"~l—¢ le| —n(1/2)n1 2n+2 — 2n

<1/2,

el = 2"

for all n > 3.

We secondly prove that CJ is conformally a disc. Since N, has a superattracting fixed point
at ag, we can use the Bottcher coordinate near the origin to define a suitable representation
map in Cj. The idea is the same as in the uniformization of the complement of the Mandelbrot
set for the quadratic family, see [7, 8] for the original construction. Using a suitable linear
change of variables we obtain a new family of maps, so that the superattracting fixed point
is now located at z = 0 and the functions can be written as 22 + O(z?%), and thus having a
preferred Bottcher coordinate in this region (see equation 17).

It is well known that the Bottcher map cannot be analytically continued to the whole
immediate basin of attraction of g since the critical point 0, by assumption, belongs to it.
However, as in the parametrization of the cubics maps given in [6] by Branner and Hubbard
we can use the co-critical point. Observe that N, is a rational map of degree n, with n
critical points of degree 1 located at o; and the critical point of degree n — 2 located at
0. So, there exists a unique point, denoted by w, and called the co-critical point, such that
Nc(we) = N¢(0). Indeed a computation shows that w. = (nfl)c and

Using this co-critical point we define

1) ®: ¢) —»C\D

21 e n -1
c = [¢0 (N é 0)((n—1)0 — ozo))}

where g is the Bottcher coordinate defined in the immediate basin of attraction of z = 0 for
Y Né’(aj)(
2

the monic map N, = 70 N. o 77! where 7(z) = zZ — aj).
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We claim that ® is a proper analytic map from C8 onto the exterior of the unit disc. In
fact, it is a covering of degree n with a ramified point at co. To see the claim we mimic the
Douady-Hubbard technique [7, 8] for the uniformization of the exterior of the Mandelbrot
set.

A brief computation shows that

P!(ap) _ n(n—1)ag~

N// — —
C (O{O) Pc/(OéO) nag,—l —c

Using now that ag = 2 + O(1/|c|"™1) (see Lemma 3.1) we have that

N" () n _ nc(::21)+0(|c\211—2) n 1.0 1
2 <("*1)C B ao) N Cn%l("—c")'i‘o(wz%) <(”71)C et (|C|”le ))
- Cn%rko(wz%) _ n+O0(m)
N cn%(n—c")'i'o(mzﬁ) T 2(n—c")+0(gm)

_ n 1 _ n 1
= S (1 + O(W)) = gy T Oligw)-

As mentioned before, ¢'(0) = 1 (or, equivalently lim,_,o po(2)/z = 1). So, as ¢ — oo we

obtain that
N"(av) n n 1
0 ( 2 ((n —1)e @) | ~ 2(n — ) * O(ICP")'

Thus, the map ¢ — ®(c) is holomorphic and |®(c)| > 1, while [®(c)| — 1 as ¢ — IC{.
Therefore, ® is a proper map ramified at oo and the above computations show that ®(c) ~
K"+ 0O(|¢*), K € C.

To prove that C8 is formed by the unique unbounded connected component (the one we
just proved it exists), we argue by contradiction. If there were another component U, by the
arguments above, would be bounded. When approaching its center, we would have ag(c) — 0,
a contradiction since this only can happen if ¢ — co. In fact, the same argument also shows
that C’? is empty for all j > 1. Observe that if there were any (bounded) component C]Q its
center should satisfy that o;(c) — 0, but this implies j = 0 and ¢ — oo again. So, the lemma
is proved. [l

In the next lemma we show that there exist some semi straight lines in the parameter plane
joining ¢ = 0 (excluding this value) to infinity for which the Newton map has an invariant
straight line in the dynamical plane. Once this is proven it is easy to conclude that, for those
parameters, z = 0 belongs to the immediate basin of attraction of ag or equivalently those
semi straight lines in parameter plane belong to CJ. We also show that all real parameters
¢ > c* also belong to C§.

We denote by L = {|w|e?, |w| > 0} and by Ly = L} U Ly, - U{0} U {oo}.

Lemma 4.4. Fixzn > 3.

a) Ifce LT, then c € CY. Moreover L_,, is a forward invariant straight line for the
w/n 0 /

map N, with
i -z +1 _;
22 N /Y (n— wi/n
( ) C(|Z’€ ) n‘z|n_1 + |C| 9
(b) If c € L{ with ¢ > ¢* == ———— then c € C§.
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Remark 1. Tuking into account the symmetries described in Lemma 4.2 it is clear that the
previous lemma also applies to the corresponding lines of the parameter plane after applying
the symmetry.

Proof. We first prove statement (a). When ¢ € L, we have that ¢ = |c|e™/™. Hence (2)
becomes
(n—1)z" -1

nzn—1 _ ’c|e7ri/n ’

(23) Nc(z) =

First we assume z € Lfﬂ/n. Hence (23) can be written as:

Nc(|z|e—7ri/n) _ (n_l)‘z|n?7m'_1 B _(n_l)’z‘n_l 1 _ (n_1)|z|n+1 —7i/n
n‘z|n7167(n71)7r7,/n _ |C‘€7”/n —7’L|Z|”_1 _ |C| emi/n n’z‘n—l + |C‘
So Lfﬂ/n C L_5/, is forward invariant. Secondly, we take z € L[tﬂ/n+7r] = L[Jgnil)/n]w.
Calculating as above we have
NC(|Z|€nT_1m) _ (n - l)lzlnf(nil)m - 1' _ (n — 1)‘Z‘nelnm' +1 —Wi/n’
n|z|n71€(n71) /nmi _ |c|€m/n n’Z’n—lenﬂ'z _ ‘C’
and so
=D o—7i/n i is even

e nlz["=1—|c| ‘

(24) Ne(|zle ™) =

—(m=D[z["+1 —mi/n ; :
=TT © if n is odd.

From the formulae it is easy to see that in both cases (n even and n odd) a point z € L[’Zn_l) Jnjn

maps to one point in L_,/,. Hence, altogether we conclude that L_, /, is a forward invariant
straight line for the map N..

To see that in fact ¢ € CJ we write (22) as a map F, from the positive real line to itself
such that
(n — 1)na"—2
(nan=t + |ef)®
From those formulaes and knowing that F, is the restriction of a Newton map on an invariant
straight line, we easily get that F(0) = 1/|c|, F(z) ~ 2Lz as z — oo, there exists a unique
positive fixed point 0 < #, < 1/|c| of F, such that F/(2.) = 0 and F/(z) < 0 for all z € (0, ).
Therefore, it is clear that [0,2.] belongs to the immediate basin of attraction of #.. Using
the continuous dependence of #. with respect to ¢ (notice that ¢ > ¢* and so the roots of P,
may not collapse) we know that 7, tends to 0 as |¢| tends to co. Going back to the map N,

we deduce that Z.e~™/" is one of the ajj-roots of P, and that the segment joining z = 0 and
—7i/n

(n—1)z"+1 ,
m and Fc(l') =

F.(x) = (" + |c|lz = 1).

Z = Ze€ belongs to its immediate basin of attraction. Since x}e*”i/ " should tend to 0 as
¢ — 0o we conclude that #.e~™/™ = o and that ¢ € C8 , as desired.
Now we prove statement (b). Let ¢ € Rt and ¢ > ¢*. The restriction of the Newton map
in R, which is forward invariant, can be written as
(n—1)z" -1 .
NC(I') = W, ceR™.
Easily, N.(0) = 1/¢, Ne(z) = 0if and only if x = {/1/(n — 1) and N, has a vertical asymptote
at © = "\/c/n. Moreover, the map N, is an analytic function on the interval [0, "\/c/n).
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We claim that if ¢ > ¢* then there is a unique z* € (0, "\/¢/n) such that N.(z*) = z* and
Nl(z*)=0.

To see the claim we show first that the unique positive zero of N, happens to be before the
asymptote if and only if the condition of the statement is satisfied.

V1/(n—1) < "Ve/n = 1/ n1< R (n—l) = c*.

From Bolzano’s Theorem we conclude that N, has (at least) one fixed point (which of course
satisfies the equation 2" — cx + 1 = 0) on the interval (0, "{/¢/n), but since N, is the
restriction of a Newton map we know it is unique. We denote it by x§. On the other hand
differentiating we obtain

n(n — 1)z 2
(nan—1 —¢)?

An easy computation shows that N/ is positive in (0,z§) and N.(0) = N/(z§) = 0. So, N,
is increasing on the interval (0,z§). From this we see that the closed interval [0, z§], and in
particular z = 0, belongs to the immediate basin of attraction of zf.

Finally, we observe that 5 — 0 as ¢ — oo and so z{; = ag for large c. Continuity of the
roots of a polynomial with respect to the parameter (again remember that for ¢ > ¢* there
are no collisions of the roots) concludes statement (b).

Nl(z) = (2" —cx +1).

O

This section gives a deep understanding of the main hyperbolic component in the parameter
space given by the immediate basin of attraction of the special root ag. As a corollary we
obtain that the rest of hyperbolic components are all bounded. In next section we prove that
if they are not empty then they are all simply connected.

4.2. The capture components: Cf, for 0 <j<n-—1, k> 1. In the next proposition we
prove the main topological properties of the capture components C;-“ for 0<j<n-1, k>1.
These open sets in the parameter plane contain all the parameters such that the critical point
z = 0 is attracted by one the roots of p, see equation (1), but the critical point does not
belong to the immediate basin of attraction. Precisely, the index k counts the number of
iterates that the origin needs to arrive to the immediate basin of attraction.

Proposition 4.5. Fizx n.
(a) le =0 forallj=0,...,n—1.
(b) If CJI? # 0, its connected components are simply connected.

Proof. To prove statement (a) assume otherwise. Let ¢ € le- and consider its corresponding
dynamical plane. We claim that f: f~1A%(a;)) — A%(;) has degree n + 1, a contradiction
since the map has global degree n. To see the claim we notice that by assumption the (simply
connected) Fatou component of z = 0 maps to A%(a;) with degree n — 1 (the number of
critical points counting multiplicity plus one) and A} («;) maps to itself with degree 2.

To prove statement (b) we use a quasiconformal surgery construction (see [2, 5]). Let U
be a connected component of Cf, j=2,....,n—1, k> 1. We consider the following map

dy: U —D
¢ =i (NHH0))
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where 1); . denotes the Bottcher map conjugating N, near o to z — 22 near the origin (see
equation (18)). As in Proposition 4.3 (b), the map ®; is a proper mapping and we will prove
that it is a local homeomorphism.

Let ¢p € U and zg = ®y(cp). The idea of this surgery construction is the following: for any
point z near zp we can build a map N, such that ®(c(z)) = 2, or in other words, we can
build the inverse map of .

We denote by W, the connected component of A, (c;j) containing N¥(0), preimage of
Aj (aj). Let Ve, be a small open neighborhood of N¥+1(0) contained in A7 (;) and let
Be, C We, be the preimage of V;, containing NS¥(0).

For any 0 < € < min{|zg|,1 — |20|} and any z € D(zp,€), we choose a diffeomorphism
0, : Bey = Vi, with the following properties:

L4 520 = Nco;
e . coincides with N, in a neighborhood of 0B, for any z;
o 5.(N:F(0)) = ¥ 0 (2)-

We consider, for any z € D(zo, €), the following mapping G, : C — C:

| 6(x) it z € B,
G.(z) = { Ne, (z) if 2 ¢ Be,.

We proceed to construct an invariant almost complex structure, o, with bounded dilatation
ratio. Let o¢ be the standard complex structure of C. We define a new almost complex
structure o, in C.

(0;)*cp  on By,
o, =1 (NZ)o onN_"(B)foralln>1

co

a0 on @\UnZI Neg" (Bey)-

By construction o is G,-invariant, i.e., (G;)*o = o, and it has bounded distortion since 4,
is a diffeomorphism and N, is holomorphic. If we apply the Measurable Riemann Mapping
Theorem (see Section 1.4 in [5]) we obtain a quasiconformal map ¢, : C — C such that
¢ integrates the complex structure o, i.e., (¢.)*0 = ¢, normalized so that ¢(0) = 0 and
$(c0) = co. Finally, we define R, = ¢,0G,0¢; !, which is analytic, hence a rational function.

We claim that this resulting mapping R, is the Newton’s method applied to the polynomial
P,(z) = 2" — ¢(z)x + 1. By construction R, is a rational map of degree n with n distinct
superattracting fixed points and fixing oo, hence from Lemma 3.4 we can conclude that R, is
the Newton’s method for a polynomial Q(z) of degree n. Moreover, 0 is a critical point of R,
with multiplicity n — 2 and simple computations show that critical points of R, are zeroes of
Q and the zeroes of Q. Hence we have that the only zero of Q" is = 0. Obtaining, perhaps
after a conjugation with a Mobius transformation, that R, (z) = %

By construction, ¢,, is the identity for z = zp; then, there exists a continuous function
z € D(zp,€) — ¢(z) € U such that

c(20) = z0 and N,y = ¢, 0G0 o7t

Moreover, ¢. is holomorphic on A7 (c;) conjugating Neym and N ,,,. Hence, from the
following commutative diagram



NEWTON’S METHOD ON BRING-JERRARD POLYNOMIALS 17

o]
A ()~ A% ()
c(z)\7J c(z)\77

we have that ¥; ..y = ¥j.¢, o¢, ! is the Béttcher coordinate of AZ(z) (cyj). Finally, we conclude
that

D0 (e(2)) = 30 (N (0)) = 2
snce NETH0) = 6.0 G210 621(0) = 62 0 G0 = 62 0 Go(NE(0) = 02 0 (2) =
r,op;lo @/;;C(Z)(z) = w;c(z)(z). .

4.3. Other hyperbolic components and the bifurcation locus. The theory of polynomial-
like maps, developed by Douady and Hubbard [9], explains why pieces of the dynamical and
parameter planes of some families of rational, entire or meromorphic maps are so similar to
the dynamical and parameter plane of the family of polynomials of the form z* + ¢, ¢ € C.
Indeed, McMullen [15] showed that small generalized Mandelbrot sets are dense in the bi-
furcation locus for any holomorphic family of rational maps. For a fixed value of k > 2 the
Generalized Mandelbrot set is defined as

My ={ceC, j(zk + ¢) is connected}.

We define a holomorphic family of rational maps over the unit disc D as a holomorphic
map

f:DX@—)C.

Notice that for each (parameter) ¢t € D, the map f; : C — C is a rational map. We also
require that deg(f;) > 2. The Bifurcation locus B(f) is defined as the set of parameters ¢
such that the Julia set J(f;) does not move continuously (in the Hausdorff topology) over
any neighbourhood of ¢. It is known that B(f) is a closed and nowhere dense subset of D
and its complement is also called the J-stable set. In Figure 2 we show the parameter plane
of 2F 4 ¢ for k = 2,3 and 6. The complement of M, is called the Cantor set locus and the
bifurcation locus is O M.

The universality of the Mandelbrot set is shown in [15]. The precise statement is as follows:

Theorem 4.6 ([15]). For any holomorphic family of rational maps over the unit disc, the
bifurcation B(f) is either empty or contains the quasiconformal image of OMy, for some k and
B(f) has Hausdorff dimension two. Moreover, small Generalized Mandelbrot sets are dense

in B(f).

Applying the above result to our family of rational maps N.(z) =
quite interesting result.

(n—1)z"—1

= we obtain this
nz —C
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(a) The parameter plane of 22 +c. (b) The parameter plane of 23 + c. (c) The parameter plane of 26 + c.

FIGURE 2. Mandelbrot sets of degree 2, 3 and 6.

Proposition 4.7. Fiz n > 3. The bifurcation locus B(N,,) is nonempty and contains the
quasiconformal image of OM,,—1 and B(N,,) has Hausdorff dimension two. Moreover, small
copies of OMy—1 are dense in B(Ny,).

Proof. With rare exceptions the bifurcation locus of a holomorphic family of rational maps is
nonempty. One of this exceptions occurs when the family is trivial, or in other words, when
all the members in the family are conformally conjugate. This is the case, for example, for
the Newton’s method applied to polynomials of degree two. For this case all the members in
the family are conformally conjugate to the map z — 22. In our case it is easy to see that
B(N,,) is nonempty, since, for example, we have plenty of preperiodic parameters (see Section
5).
The critical points of N, are aj, j =0,...,n—1 (all simple) and 0 (with multiplicity n —2)
since P”(z) = n(n —1)2"~2. Thus, if U is a sufficiently small neighbourhood of the origin the
degree of Ny . : U — Ny (U) is n — 1. Hence, in any polynomial-like construction involving
the free critical point located at zero we always obtain a member of the family 2" 1 + c.
Therefore, applying Theorem 4.6 we obtain that the bifurcation locus of N, for a certain n
contains the quasiconformal image of OM,,_;. O

5. REAL POLYNOMIALS

Fix n € N and ¢ € R. We notice that we can restrict to parameters ¢ € RT; if n is odd,
from the symmetry properties of the parameter plane (Lemmas 4.2 and 4.4), we have that
R~\ {0} C CJ, and when n is even N,, with ¢ € R, is conformally conjugate to N_. (Lemma
4.2).

Because of Lemma 4.4, we only need to deal with 0 < ¢ < ¢* since otherwise ¢ € CJ. Of
course, again, the results we prove for ¢ real also apply to complex parameters after applying
the symmetry explained in Lemma 4.2(a). In [11, 3] the authors studied this problem from
the real analysis point of view. They characterize the possible combinatorial orbits of z = 0
using symbolic dynamics.

We introduce two parameters which will play an important role defining those bifurcations:

0<d:=VYn—-1<c:=¥n<c".
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Proposition 5.1. For every n, there exists a strictly decreasing sequence of real c-parameters
{ag }k>1 such that o, = 0, 0 < oy, < a1 == Yn — 1 and each of those parameters is the center
of a free (not captured) hyperbolic component Dy, for which the free critical point x = 0 is a
super attracting periodic point of period k + 1 (main black pseudo cardioids for positive real
parameters). Moreover

(1) Ifn is odd there also exists a strictly decreasing sequence of real c-parameters{fj}r>1
such that By — 0, ay = < 1 <, ag < Br < ag_1 for all k > 2 and each of those
parameters is the center of a captured hyperbolic component C;-“ for some fized j.

(2) If n is evenC]]?ﬂR:@forcmyj:0,...,n—1 and k > 0.

Proof. We will only consider ¢ € (0,c*). The qualitative graph of the Newton’s map N,
is represented in Figure 3. From those pictures it is easy to deduce that ¢’ corresponds to

the parameter for which the free critical value 1/c is equal to the positive zero W% while

¢ corresponds to the parameter for which 1/c is equal to the positive vertical asymptote
"~{/c/n. We define G(c) = N¥(1/c), k > 0, that is G, is a function of ¢ giving the k—th
iterate, for the corresponding Newton’s map N, of the free critical value 1/c.

6 ‘\ 6F [
1 e
"’r \\ 4+ "’
/_T - \%J/
‘ ‘ . ‘ -
2 ///j/ /1 2 3 / g ‘ ‘/'( ‘ 2
= -2 J /<\ _2f (
| \
_al ‘ \‘ 4L
| | |
6L | 6l
(a) Nc for n even. (b) N for n odd.

FIGURE 3. The qualitative graph of N.. The left picture corresponds to n = 8 and
¢ ~ 0.4373 and the right one corresponds to n = 7 and ¢ =~ 0.4521. For all ¢ € (0, c¢*)
and for all n > 3 it has a unique (positive) zero at (7% (in particular z ~ 0.7841
for n = 8 and z ~ 0.7742 for n = 7) and a unique (positive) vertical asymptote at
"~{/c/n (in particular = = 0.6602 for n = 8 and z =~ 0.6334 for n = 7). Moreover,

x = 0 is a minimum for n odd and an inflection point for n even.

From this notation it is clear that the centers of the non captured hyperbolic components
(intersecting the real line) are given by the solutions of the equation Gi(c) = 0, k > 0
((k+1) determine the number of iterates used by the critical point 0 to come back to itself).
In particular, a; = /n — 1 is the center of a free hyperbolic component of period 2 since
G1(aq) = 0 (that is 0 is back to itself after two iterates of the map N,,). Moreover, it is an
exercise to check that G is a (differentiable) strictly decreasing function of ¢ in the interval
[0, 1] whose range is [0,00) (notice that, formally, G1(0) = oo and Gi(a1) = 0). Hence,
we claim that there exists a (unique) real parameter, ao, in the interval [0, ;] such that
Go(ag) = 0. To see the claim observe that, on the one hand, Go(c) = N2(1/c) = N.(G1(c))

and, on the other hand, NC(V%) = 0 and there exist a unique as € (0,c;) such that
G1 (042) =

T\L/%. Clearly for the parameter aw, the critical point 0 is back to itself after three
iterates of the map No,.



20 BEATRIZ CAMPOS, ANTONIO GARIJO, XAVIER JARQUE, AND PURA VINDEL

We repeat the process once again. The map Gy is a (differentiable) strictly decreasing
function of ¢ in the interval [0, ap] whose range is [0, 00) (notice that, again, G2(0) = oo and
G2(ag) = 0). Hence, as before, we claim that there must exists a (unique) real parameter,
ag, in the interval [0, aa] such that Gg(az) = 0. To see the claim observe that, on the one
hand, G3(c) = N2(1/c) = N.(Ga(c)) and, on the other hand, Nc(,\z/%) = 0 and there exist

a unique a3 € (0, az) such that Ga(ag) = 7\7% Clearly, for the parameter ag, the critical

point 0 is back to itself after four iterates of the map N,,. Similarly, we may construct the
whole sequence {ay}r~o as desired.

We observe that by a similar argument to the one used to produce the parameter sequence
{a }k>0, we claim there exists another (auxiliary) sequence of parameters {0y }>0 such that
Gr(0r) = "/Or/n, k> 0. To see the claim we observe first that dy is given by the solution
of 1/c = "R/e/n, so §p = {Yn and dy > «a1. Secondly, the map F(c) = "/c¢/n is a
(differentiable) strictly increasing function of ¢ in [0, ¢*] such that F'(0) = 0. So, each of the
graphs of the maps G, k > 1, on the interval (0, ay), crosses one and only one time F'(c)
producing the desired sequence of d;’s. Moreover, we have dg > a1 > 01 > a9 > 09 > .. ..

Now we turn the attention to n odd to prove statement (1). We construct the sequence Sy, of
centers of capture parameters using basically the same argument. Those centers, distinguished
by the parameters ¢ = f, should be solutions of the equation Gi(c) = T, where T. is the
unique negative real solution of N.(x) = z, or, equivalently, of P.(z) = 0.

Clearly z = {/n is a pole of the map Ny, while Gi(ai) =0.

Hence, G is a (differentiable) strictly decreasing function of ¢ in the interval [aq, dg] whose
range is (—o00,0) (notice that Gi(a1) = 0 and, formally, Gi(d9) = —o0). On the other
hand, for ¢ € [aq,d0] the value of T. moves continuously in a compact interval [a,b] where
—00 < a < b < 0. So, there must be one point 3; € (a1,6dp) such that G1(51) = zg,. We
repeat the argument once again. The map Gy is a (differentiable) strictly decreasing function
of ¢ in the interval [d1, a1] whose range is (—o0, 0) (notice that G1(d1) = —oo and Ga(a;1) = 0);
so, there must be one point 3 € (61, 1) such that Go(82) = Z,. And so on. So (1) is proved.

Now we turn the attention to n even to prove statement (2). Since c is real, the real line is
invariant by the Newton map. Hence proving that P, .(z) := 2™ — cx + 1 has no real zeroes
as long as n is even and ¢ € (0, ¢*) implies that C;“QR =@ forany j=0,...,n—1and k > 0,
as stated.

Assume otherwise. Then, P, . has at least two real roots. As P, . = 0 implies 2" 4+ 1 =
cx, the zeroes must be positive. Then, we have two positive roots and one minimum at
Te = "*\1/%. Thus P, .(z.) < 0. But, easy computations show that for 0 < ¢ < ¢* we get
Py.c(z:) > 0, a contradiction.

O

It is worthwhile noticing that taking into account that the bifurcation locus intersects the
real line, the above result is not at all surprising since we expect to have all kind of bifurcation
parameters. However, we also notice that it would be nice to have a better understanding of
this bifurcation cascade in the light of McMullen results in [15]. There it is proved the existence
of sequences of mini-generalized Mandelbrot sets approaching Misiurewicz parameters and its
size in parameter plane. Our result reproves their existence and shows its relative location
in the real line as we approach ¢ = 0. However, a deeper study to have a more detailed
knowledge of how those cascades are organized is a challenging problem itself.
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