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Abstract. In this paper we study the topology of the hyperbolic component of the param-
eter plane for the Newton’s method applied to n-th degree Bring-Jerrard polynomials given
by Pn(z) = zn − cz + 1, c ∈ C. For n = 5, using the Tschirnhaus-Bring-Jerrard nonlinear
transformations, this family controls, at least theoretically, the roots of all quintic polyno-
mials. We also study a bifurcation cascade of the bifurcation locus by considering c ∈ R.
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1. Introduction

The historical seed of complex dynamics goes back to Ernst Schröder and Arthur Cayley
who, at the end of the nineteenth century, investigated the global dynamics of Newton’s
method in C applied to polynomials of degree two (previous studies did not deal with the
complex variable). They were able to see that the two neighbourhoods around each root of the
quadratic polynomial where Newton’s method converges to each root, in fact extend to two
half planes and the separation straight line between them is precisely the bisectrix. In other
words, any Newton map for a quadratic polynomial with two different roots is conformally
conjugate to the map z → z2 in the Riemann sphere (in McMullen language the family is
trivial [15]). With the same aim, Cayley also considered the global dynamics of Newton’s
method applied to cubic polynomials but he was not able to conclude satisfactorily.

Since then, complex dynamics as a whole, that is the study of iterates of holomorphic maps
on the complex plane or the Riemann sphere, has become an important issue in dynamical
systems. The natural space for iterating a rational map f is the Riemann sphere. So, for a
given rational map f , the sphere splits into two complementary domains: the Fatou set F(f)
where the family of iterates {fn(z)}n≥0 is a normal family, and the Julia set J (f) where the
family of iterates fails to be a normal family. The Fatou set, when nonempty, is given by the
union of, possibly, infinitely many open sets in Ĉ, usually called Fatou components. On the
other hand, it is known that the Julia set is a closed, totally invariant, perfect nonempty set,
and coincides with the closure of the set of repelling periodic points. For a deep and helpful
review on iteration of rational maps see [17].

The rational (transcendental meromorphic) family given by the Newton’s map applied to a
polynomial (transcendental entire) family has become a central subject in complex dynamics.
The reason for this special interest is based on the implications of this global analysis on
Newton’s map as a root finding algorithm. It is very difficult, or, possibly, not possible,
to give a short survey on Newton’s method and how a better understanding of the whole
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dynamics gives a better understanding of the Newton’s map as a root finding algorithm. But
we focus on some main observations connected to our work.

A first important observation coming from this global analysis is somehow negative. New-
ton’s method applied to cubic (or higher degree) polynomials Qc(z) = z(z− 1)(z− a), a ∈ C
fails. That is, there are open sets in the a-parameter plane for which there are open sets in the
dynamical plane converging to neither 0, 1 nor a. The reason for this is the existence of a free
critical point that, for certain parameters does its own dynamical behavior independently of
the attracting basins associated to the roots of Qc. A remarkable result due to C. McMullen
[14] goes deeply in this direction by showing that even though we can substitute Newton’s
map for another rational root finding algorithm for which the previous limitation is solved,
the problem is unsolvable for polynomials of higher degree.

A second relevant consideration is, given P , how to use the Newton’s map to find numer-
ically all roots of P ; that is, how to choose the initial seeds to ensure we get all roots of
P . This important question, from the numerical analysis point of view, was solved using a
dynamical system approach in the paper [13], where the authors gave a universal set of initial
conditions, with cardinality depending only on the polynomial degree.

A third remark is a topological question which relates the connectivity of the Julia set,
or equivalently, the simple connectivity of the Fatou components. It is well known that
rational maps, in general, may have non simply connected Fatou components given by either
Herman rings (doubly connected components), basins of attraction or parabolic basins with
(infinitely many) holes or preimages of simply connected components which could be multiple
connected. Przytycki [18] showed that every root of a polynomial P has a simply connected
immediate basin of attraction for its corresponding Newton’s method NP (see below for formal
definitions). Later, Meier [16] proved the connectivity of the Julia set of NP when degP = 3,
and later Tan [22] generalized this result to higher degrees of P . However, the deeper result
in this line is due to Shishikura [21] who proved that the Julia set of NP is connected for any
non-constant polynomial P . In fact, he obtained this result as a corollary of a much more
general theorem for rational functions, namely, the connectedness of the Julia set of rational
functions with exactly one weakly repelling fixed point, that is, a fixed point which is either
repelling or parabolic with multiplier 1.

Similarly, and in most cases strictly related to this, it is important to study the topology
of the hyperbolic components in the parameter plane and, consequently, the structure of the
bifurcation locus. A cornerstone example of this is the paper of P. Roesch [19] were she
used the Yoccoz Puzzles to prove the simple connectivity of hyperbolic components in the
parameter as well as the dynamical plane for the family of cubic polynomials.

The main goal of this paper is to study some topological properties of the parameter plane
of Newton’s method applied to the family

(1) Pn,c := Pc (z) = zn − cz + 1,

where n ≥ 3 (to simplify the notation we will assume, throughout the whole paper, that n is
fixed; so, we erase the dependence on n unless we need to refer to it explicitly). The interest to
consider this family is explained in Section 2 where we show that the general quintic equation
P5(z) = 0 can be transformed (through a strictly nonlinear change of variables) to one of the
form P5,c := z5 − cz + 1 = 0, c ∈ C. Letting n as a parameter in (1) allows us to have a
better understanding of the problems we are dealing with.
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Easily, the expression of the Newton’s map applied to (1) can be written as (see Lemma
4.1):

(2) Nc (z) = z − Pc (z)

P ′c (z)
= z − zn − cz + 1

nzn−1 − c =
(n− 1)zn − 1

nzn−1 − c .

So, the critical points of Nc correspond to the zeroes of Pc, which we denote by αj , j =
0, . . . , n − 1 and z = 0 which is the unique free critical point of Nc of multiplicity n − 2.
We notice that since all critical points except z = 0 coincide with the zeroes of Pc they are
superattracting fixed points; so, their dynamics is fixed for all c ∈ C. Note that for certain
values of n and c, this rational map is not irreducible.

For each root αj(c) := αj , j = 0, . . . , n− 1 we define its basin of attraction, Ac(αj), as the
set of points in the complex plane which tend to αj under the Newton’s map iteration. That
is

Ac(αj) = {z ∈ C, Nk
c (z)→ αj as k →∞}.

In general Ac(αj) may have infinitely many connected components but only one of them,
denoted by A∗c(αj) and called immediate basin of attraction of αj , contains the point z = αj .

To label each root of Pc we observe that, for large values of |c|, there exists a unique root
of Pc, α0, having modulus smaller than one and there exists a unique root of Pc, αj j =
1, . . . , n− 1, inside a disc of radius 1, centered at

wj = |c|1/n−1 exp

(
Arg(c) + 2πj

n− 1
i

)

(see Lemma 3.1 for details). These labeling for the roots of Pc can be extended for all values
of c by analytic continuation of the roots with respect the parameter c (as long as we do not
touch the points for which two roots collapse which are described in Lemma 4.1).

Similarly, the hyperbolic components in the c-parameter plane are the open subsets of C
in which the unique free critical point z = 0 either eventually maps to one of the immediate
basin of attraction corresponding to one of the roots of Pc or it has its own hyperbolic
dynamics associated to an attracting periodic point of period greater than one. Of course,
the bifurcation locus corresponds to the union of all boundaries of those components and
possible accumulating points (see Section 4 for more precise definitions).

If Nk
c (0) ∈ A∗c(αj), k ≥ 0 for some j = 0, . . . n−1 (that is the free critical z = 0 is eventually

trapped by one of the roots of Pc) we say that c is a capture parameter. As we will see, the set
of all capture parameters has infinitely many connected components depending on the first
number k ≥ 0 and the value of j so that Nk

c (0) ∈ A∗c(αj). To distinguish among different
captured hyperbolic components we use the following notation which takes into account the
number of iterates of z = 0 to get into the immediate basin of attraction of one of the roots:

C0
j = {c ∈ C, 0 ∈ A∗c(αj)} and

Ckj = {c ∈ C , Nk
c (0) ∈ A∗c(αj) and Nk−1

c (0) /∈ A∗c(αj), k ≥ 1}.
(3)

We prove, in Section 4, some topological results about those stable subsets of the parameter
plane.

Theorem A. The following statements hold.

(a) C0
0 is connected, simply connected and unbounded.

(b) C0
j , 1 ≤ j ≤ n− 1 are empty.
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(c) C1
j , 0 ≤ j ≤ n− 1 are empty.

(d) Ckj , 0 ≤ j ≤ n− 1 and k ≥ 2 are simply connected as long as they are nonempty.

The proofs of statements (a) and (b) follow directly from Proposition 4.3 while (c) and
(d) follow from Proposition 4.5. Apart from the captured components we also observe the
presence of Generalized Mandelbrot setsMk (the bifurcation locus of the polynomial families
zk + c, c ∈ C). As an application of a result of C. McMullen [15], we can show that for a
fixed n, all non-captured hyperbolic components correspond to n−1 Generalized Mandelbrot
sets. Precisely, we can prove the following result (see Proposition 4.7):

Corollary B. Fix n ≥ 3. The bifurcation locus B(Nn) is nonempty and contains the quasi-
conformal image of ∂Mn−1 and B(Nn) has Hausdorff dimension two. Moreover, small copies
of ∂Mn−1 are dense in B(Nn).

Finally, we turn the attention to real parameters. Because of the symmetries in the pa-
rameter plane, to have a good understanding of real positive values of c is quite important
to describe the bifurcation locus. In Section 5 we show the existence of different sequences
of c-real values tending to 0 corresponding to centers of capture components, preperiodic
parameters and centers of the main cardioids of Mn−1 sets.

Theorem C. Fix n ≥ 3 and let c be a positive real parameter. Denote by c∗ = n/(n− 1)
n−1
n .

The following statements hold:

(a) If c > c∗ then c ∈ C0
0 .

(b) If c < c∗ there are two different decreasing sequences of parameters tending to 0 for
which the free critical point z = 0 is (i) a superattracting periodic point (with increasing
period) or (ii) a preperiodic point (in fact pre-fix, with increasing pre-periodicity).
Moreover,

(b.1) If n is odd, there is a decreasing sequence of parameters tending to 0 for which
the free critical point z = 0 is the center of a capture component Ckj for some j.

(b.2) If n is even, Ckj ∩ R = ∅ for any j = 0, . . . , n− 1 and k ≥ 2.

The proof of statement (a) follows from Lemma 4.4. The rest of the statements follows
from Proposition 5.1.

The paper is organized as follows. In Section 2 we briefly explain the reduction of a
general quintic equation to its Bring-Jerrard form. In section 3.1 we give some results on the
dynamical plane of the Newton’s map Nc. In Section 4 we state and prove the topological
properties of the hyperbolic components in the parameter plane. Finally, in Section 5 we
study real parameters and prove Theorem C.

2. Tschirnhaus’, Bring’s and Jerrard’s transformations

As we have already explained in the introduction we study the Newton’s method applied
to the family of n-degree polynomials (1) defined by

Pn,c (z) = zn − cz + 1.

Easily, any polynomial of degree 5 can be linearly conjugated through η(z) = η1z + η2

to one monic polynomial without 4 -degree term. Using this idea any quadratic polynomial
az2 + bz + c, a, b, c ∈ C can be reduced to a polynomial of the family z2 + λ, λ ∈ C. Of
course, via a linear transformation, we cannot expect to reduce (in the sense of getting a
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conjugacy) all quintic polynomial to a one parameter family, concretely to the family (1), like
in the quadratic case.

However, using nonlinear transformations, it is possible to actually reduce all quintic poly-
nomials (in a weaker sense only preserving certain information of the roots of the original
polynomial) to the family (1) for n = 5. Consequently, the interest of applying Newton’s
method to (1) is due to Tschirnhaus’ (Bring’s and Jerrard’s) transformations applied to 5-
degree polynomials. For a good explanation of all these transformations see the translation
of the original paper of Tschirnhaus [24], the short review in [1] and references therein. For
completeness we give here a brief summary.

In his original paper in 1683, Tschirnhaus proposed a method for solving Pn(z) = 0, where
Pn is a polynomial of degree n, by simplifying it to a polynomial Qn(y) where Qn is a (simpler)
polynomial of degree n with less coefficients (trivially, the linear change of variables allows
to eliminate the coefficient zn−1). His idea was to introduce the new variable y in the form
y = Tk(z) with k < n. Tschirnhaus’ original idea was used later by Bring and Jerrard to
move forward in the simplification process. Although Tschirnhaus’ method works for general
polynomials of degree n, here we present n = 5.

Precisely, we want to reduce the general expression of a quintic equation

(4) z5 + a4z
4 + a3z

3 + a2z
2 + a1z + a0 = 0, ai ∈ C

to one of the form

(5) z5 + c1z + c0 = 0,

in such a way that the roots of (4) can be recuperated once the roots of (5) are obtained. To
do so, we first reduce the general quintic equation to its principal form, that is,

(6) z5 + b2z
2 + b1z + b0 = 0.

The n-th power-sums of the roots, xj ’s of (4) are given by

(7) Sn = Sn(xj) =
5∑

j=1

xnj , n = 1, . . .

which satisfy (Newton’s formulae [10])

Sn = −na5−n −
n−1∑

j=1

Sn−ja5−j

where aj = 0 if j < 0. For equation (4) we have, for instance, S1 = −a4 and S3 = −a3
4 +

3a3a4 − 3a2. The key idea is to assume (and prove) that the roots xj ’s of (4) are related to
the roots yj ’s of (6) through a quadratic (Tschirnhaus) transformation

(8) yj = x2
j + αxj + β, α, β ∈ C.

That is, we want to see that α and β can be expressed algebraically in terms of the coefficients.
From Newton’s formulaes, the power sums for equation (6) give

(9) S1 = S2 = 0, S3 = −3b2, S4 = −4b1, S5 = −5b0.

Hence, from S1 = S2 = 0, we obtain

αa4 − 5β + 2a3 − a2
4 = 0,

a3α
2 − 10β2 + (3a2 − a3a4)α+ 2a1 − 2a2a4 + a2

3 = 0,
(10)
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and from those equations we can solve for α and β, algebraically, in terms of the coefficients
ak’s (indeed the equations are quadratic in α and β and we are free to choose either of the
solutions). In turn, it is an exercise to see (but involve some computations) that from the
three later equations in (9), we may obtain bj , j = 0, 1, 2 as functions of ak’s, α and β.

Once we have reduced the general equation (4) into its principal form (6) we also want to
eliminate the quadratic coefficient b2 of the later expression to get its Bring-Jerrard form (5).
A first attempt (the one Tschirnhaus had in mind) may be to impose the cubic equation (so
getting an extra parameter)

(11) rj = y3
j + αy2

j + βyj + γ, α, β, γ ∈ C

for the roots of (5), denoted by rj ’s, and the roots yj ’s of (6). If we argue as before, Newton’s
formulae for the power sums for equation (5) gives

(12) S1 = S2 = S3 = 0, S4 = −4c1, S5 = −5c0.

However to determine α, β and γ using S1 = S2 = S3 = 0 one gets a sixth degree polynomial
for α, so not being solvable by radicals.

The new ingredient introduced by Bring and Jerrard was to add an extra parameter so
that equation (11) becomes

(13) rj = y4
j + αy3

j + βy2
j + γyj + δ, α, β, γ, δ ∈ C.

Using the three first equations in (12), equation (13) and Newton’s formulaes applied to the
principal form (6) we get three new equations from which it is possible to write α, β, γ and
δ as algebraic functions of the bj ’s coefficients. From the first of those equation we obtain vb

δ =
1

5
(4b1 + 3αb2),

which we substitute in the second equation to get

−10αβb0 − 4β2b1 +
4

5
b21 + 8b0b2 +

46

5
αb1b2 +

6

5
α2b22 + 6βb22 − 2γ (5b0 + 4αb1 + 3βb2) = 0

If we (cleverly) choose β to cancel out the γ coefficient in the above equation, the expression
becomes quadratic in α, so algebraically solvable. Finally, substituting δ, β and α in the third
of those mentioned equations we obtain a cubic equation for the later coefficient γ. As a final
step in this process we use the fourth and fifth equations in (12) to determine (linearly) the
coefficients c0 and c1 in terms of the bj ’s.

All this process allows to reduce the original equation (4) to the simpler equation (5).
Assuming you know the five solutions of the equation (5) you should invert the process to
find out the solutions of your original equation (4). Since the transformations you have applied
are nonlinear, what happens is that you have twenty candidates for the five zeroes of (4). As
far as we know, there are no non-numerical tests to determine which ones are the correct ones,
but theoretically you could write the solutions of (4) in terms of the solutions of (5).

On the other hand it is easy to show that the Newton’s method applied to the polynomial

(14) P (z) = z5 + c1z + c2, c1, c2 ∈ C

is either conjugated to the Newton’s method applied to qa(z) = z5 + az (which in turn is
conjugate to either the Newton’s method applied to q−(z) = z(z4−1), or the Newton’s method
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applied to q+(z) = z(z4 + 1) or conjugate to the Newton’s method applied to q0(z) = z5), or
conjugate to one of the family

Pc(z) = z5 − cz + 1, c ∈ C.
Consequently there is a formal connection between the use of Newton’s method for the general
quintic equation and its Bring-Jerrard form.

3. Dynamical plane: Distribution of the roots and attracting basins

In this section we prove some estimates, that we will need in next sections, for the relative
distribution of the roots αj , j = 0, . . . n− 1 of the polynomials in family (1), assuming they
are all different roots.

Fix c ∈ C and denote by D(z0, r) the disc centered at z = z0 of radius r > 0. Let wj :=
wj(c), j = 0, . . . , n − 1 be the n different solutions of z(zn−1 − c) = 0. In particular, we set
w0 = 0. Next lemma shows that if |c| is large enough we have αj ∈ D(wj , 1), j = 0, . . . , n−1.
In particular if |c| is large enough we set α0 to be the root of the corresponding polynomial
such that α0 ∈ D(0, 1) and αj , j = 1, . . . n−1 to be the root of the corresponding polynomial
such that αj ∈ D(wj , 1). That is to say, the root α0 is always inside a disc of radius 1 centered
at 0 and the other roots αj , j = 1, . . . , n− 1 are inside discs centered at wj . As we see in the
following, α0 behaves as 1

c for c large enough.

Lemma 3.1. The following statements hold:

(a) For all c in the parameter space, the roots α0, . . . , αn−1 of (1) belong to the set

D =
n−1⋃

j=0

D(wj , 1)

(b) Let c ∈ C such that

(15) |c| > max {2n−1,
1

sinn−1
(

π
n−1

)}.

Then, D(wj , 1) ∩ D(wk, 1) = ∅, j 6= k. Moreover, each D(wj , 1) contains one and
only one of the roots of (1).

(c) If c is large enough, there exists M := M(n) > 0 such that

(16) |α0 −Nc(0)| < M |c|−(n+1).

Proof. Let α be any of the solutions of the equation zn − cz + 1 = 0 (that is α = αj for some
j = 0, . . . , n− 1). Easily α should satisfy |α| · |αn−1 − c| = |α| · |α−w1| · . . . · |α−wn−1| = 1.
If α /∈ D we have that |α| · |α−w1| · . . . · |α−wn−1| > 1, a contradiction. Thus, statement (a)
is proved.

By definition, the set D is formed by n discs of radius 1 and centered at wj , j = 0, . . . n−1.
Notice that the wj , j = 1, . . . , n−1 are the vertices of a regular polygon of n−1 sides centered

at 0 (lying on the circle centered at the origin and radius |c| 1
n−1 ) and hence the distance

between two consecutive vertices is exactly 2|c| 1
n−1 sin ( π

n−1) while the distance from each of

them to the origin is |c| 1
n−1 .

In order to prove that these discs are disjoint we only need to check that the distance
between any pair of centers is bigger that 2. Taking into account the previous discussion this
happens precisely if (15) is satisfied.
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To finish the proof of statement (b) we should show that if the discs are disjoint each of
them contains a unique root of (1). Fix c satisfying (15) or in other words, so that D is formed
by n disjoint discs of radius 1 and centered at wj , j = 0, . . . , n−1. Define h1(z) = z(zn−1−c)
and h2(z) ≡ 1. We claim that |h2(z)| < |h1(z)| for all z ∈ ∂D(wj , 1), j = 0, . . . , n − 1. So,
Rouche’s Theorem implies that h1(z) and h1(z) + h2(z) = zn− cz+ 1 have the same number
of zeroes in each D(wj , 1). But clearly h1(z) has one and only one zero in each of the discs.

To see the claim we observe that

|h1(z)| = |z(zn−1 − c)| = |z − w0| · |z − w1| · . . . · |z − wn−1|.
If z ∈ ∂D(wj , 1) the factor |z−wj | is equal to 1 and the rest of the factors are bigger than 1,
since by assumption D is formed by n disjoint discs. We thus obtain that |h1(z)| > 1 = |h2(z)|
when z ∈ ∂D(wj , 1) for j = 0, . . . , n− 1.

Finally, we prove statement (c). Easily we have that Nc(0) = 1/c. Fix again c large enough
so that D is formed by n disjoint discs, in particular we have that α0 is in D(0, 1). Notice that
since cα0 = 1+αn0 we have |cα0| = |1+αn0 | ≤ 1+ |α0|n ≤ 2 and so |cα0|n ≤ 2n. Consequently,

|α0 −
1

c
| = 1

|c| |cα0 − 1| = 1

|c| |α
n
0 | =

1

|c|n+1
|cα0|n ≤ 2n

1

|c|n+1
.

�

In particular, for a fixed n, as c goes to infinity the small root of (1) tends to 1/c (expo-
nentially) faster than c approaches infinity. As we will state in Section 4.1, statement (c) of
Lemma 3.1 is equivalent to say that for c outside a certain disc in the parameter plane, the
free critical point z = 0 always belongs to the same immediate basin of attraction, the one of
α0 ∼ 1/c.

The following quite general topological properties of the basins of attraction and hyper-
bolic components of the Julia set are well known (see, for instance, [13], where they studied
Newton’s method for a general polynomial, and Shishikura [20]).

Proposition 3.2. The following statements hold:

(a) A∗c(αj) is unbounded.
(b) The number of accesses to infinity of A∗n,c(αj) is either 1 or n− 1.
(d) J (Nc) is connected. So, any connected component of the Fatou set is simply connected.

The classical Böttcher Theorem provides a tool related to the behavior of holomorphic
maps near a superattracting fixed point [4], which we apply to make a detailed description of
the superattracting basin of each simple root αj for j = 0, . . . , n− 1 of Nc.

Theorem 3.3. Suppose that f is an holomorphic map, defined in some neighborhood U of 0,
having a superattracting fixed point at 0, i.e.,

f(z) = am z
m + am+1 z

m+1 + · · · where m ≥ 2 and am 6= 0.

Then, there exists a local conformal change of coordinate w = ϕ(z), called Böttcher coordinate
at 0 (or Böttcher map), such that ϕ◦f◦ϕ−1 is the map w → wm throughout some neighborhood
of ϕ(0) = 0. Furthermore, ϕ is unique up to multiplication by an (m− 1)-st root of unity.

Assume that αj is one of the simple roots of Nc for j = 0, . . . , n− 1. Applying Böttcher’s
Theorem near αj the map Nc is conformally conjugate to z → z2 near the origin and we
notice that this Böttcher map is unique since m = 2. As explained before, we will use a linear
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change of coordinates in order to have a monic expansion of Nc near αj . Near αj we have
that

Nc(z) = αj +
N ′′c (αj)

2!
(z − αj)2 +

N ′′′c (αj)

3!
(z − αj)3 + . . .

Using the conformal map τ(z) =
N ′′c (αj)

2 (z − αj) we obtain that the map

(17) N̂c(z) = (τ ◦Nc ◦ τ−1)(z) = z2 +
∑

n≥3

2n−1

n!
· N (n)(αj)

[N ′′(αj)]n−1
· zn

is monic. For each j = 0, . . . , n − 1, we denote by ϕj its corresponding Böttcher map (so

ϕj(N̂c)(z) = ϕj(z)
2) such that ϕj(0) = 0, ϕ′j(0) = 1. From equation (17) we deduce that

(18) (ϕj ◦ τ) ◦Nc = D2 ◦ (ϕj ◦ τ) ,

where D2(z) = z2. Hence ϕj ◦ τ is the Böttcher map conjugating Nc near αj to z2 to 0.
Before going to the parameter plane we state a result we will use later which allows us to

know when a rational map is the Newton’s method of a certain polynomial. Precisely, we will
use it at the end of the surgery construction in Proposition 4.5.

Lemma 3.4 ([12, 23]). Any rational map R of degree d having d different superattracting fixed
points is conjugate by a Möbius transformation to NP (Newton’s method) for a polynomial P
of degree d. Moreover, if ∞ is not superattracting for R and R fixes ∞, then R = NP for
some polynomial P of degree d.

4. Hyperbolic components in the parameter plane of Nc

As we stated in the introduction the hyperbolic components in the parameter plane cor-
respond to open subsets of C in which the unique free critical point z = 0 either eventually
maps to one of the immediate basins of attraction corresponding to one of the roots of Pc
(those were denoted by Ckj where j explains the catcher root and k the minimum number of

iterates for which z = 0 reaches A∗c(αj), or it has its own hyperbolic dynamics associated to
an attracting periodic point of period strictly greater than one (black components in Figure
1). We use the following notation:

H ={c ∈ C, 0 is attracted by an attracting cycle of period p ≥ 2}.
B ={c ∈ C , the Julia set J (Nc) does not move continuously (in the Hausdorff topology)

over any neighborhood of c}.
The first lemma removes from our parameter plane those c-values for which the roots of

Pc are not simple and so the Newton’s method is not a rational map of degree n.

Lemma 4.1. Fix n ≥ 3. The Newton’s map Nc is a degree n rational map if and only if

c 6= c∗k :=
n

(n− 1)
n−1
n

e2kπi/n, k = 0, . . . , n− 1.

Proof. The rational map Nc has degree n as long as all roots of Pc are simple. Otherwise, the
pair (z, c) should be a solution of the polynomial system

(19)
Pn (z) = zn − cz + 1 = 0,
P ′n (z) = nzn−1 − c = 0.
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Solving system (19) we have

(z∗k, c
∗
k) =

(
z∗exp(

2kπi

n
), c∗exp(

2kπi

n
)

)
, k = 0 . . . , n− 1.

where

(20) (z∗, c∗) =

((
1

n− 1

) 1
n

,
n

(n− 1)
n−1
n

)

denote the positive real values of the corresponding roots. �

In the next lemma we prove that we can focus on a sector in the parameter plane due to
the following symmetries.

Lemma 4.2. Let n ≥ 3. The following symmetries in the c-parameter plane hold:

(a) The maps Nc (z) and Nĉ (z) with ĉ = e
2πi
n c, are conjugate through the holomorphic

map h (z) = e
2πi
n z.

(b) The maps Nc (z) and Nc̄ (z) are conjugate through the anti–holomorphic map
h (z) = z̄.

Proof. We first prove (a). We take h (z) = e
2πi
n z. Then

(
h−1 ◦Nc ◦ h

)
(z) = h−1

(
Nc

(
e

2πi
n z
))

= h−1


e

2πi
n z −

(
e

2πi
n z
)n
− c

(
e

2πi
n z
)

+ 1

n
(
e

2πi
n z
)n−1

− c


 =

= e
−2πi
n

(
e

2πi
n z − e

2πni
n zn − ce 2πi

n z + 1

ne
2π(n−1)i

n zn−1 − c

)
= Nĉ (z) ,

where ĉ = e
2πi
n c.

To see (b) we take h(z) = z̄ and argue as above.

(
h−1 ◦Nc ◦ h

)
(z) = h−1

(
(n− 1)z̄n − 1

nz̄n−1 − c

)
=

(n− 1)z̄n − 1

nz̄n−1 − c

=
(n− 1)zn − 1

nzn−1 − c̄ = Nc̄ (z) .

�

In the following subsections we describe the topology of the different hyperbolic com-
ponents. In subsection 4.1 we study the capture components C0

j showing that only C0
0 is

nonempty. Moreover, we show that it is unbounded, it contains the complement of a disc of
radius 4 and it is simply connected (see Proposition 4.3). In subsection 4.2 we investigate the
rest of the capture components showing that every connected component is simply connected
(see Proposition 4.5). Finally, in subsection 4.3 we show that the bifurcation locus for Nc

contains quasiconformal copies of the bifurcation locus of the maps zn−1 + c.
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(a) The parameter plane for n = 3. (b) Zoom of (a).

(c) The parameter plane for n = 4. (d) Zoom of (c).

(e) The parameter plane for n = 7. (f) Zoom of (e).

Figure 1. Different parameter planes as n varies. From these pictures we can easily
see the symmetries rigorously proven in Lemma 4.2 .

4.1. The hyperbolic components C0
j for 0 ≤ j ≤ n− 1. The first result determines that

one of the roots, α0, is playing a differentiated role, since for all c outside a certain ball around
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the origin the free critical point z = 0 lies in its immediate basin of attraction. This is due to
the fact that the free critical point is z = 0 for all n ≥ 3 and for all c in the parameter space.
As a consequence, any other capture component should be bounded (see Figure 1), which in
turn implies that C0

j , j = 1, . . . , n− 1 are empty.

Proposition 4.3. Fix n ∈ N.

(a) C0
0 is unbounded. In fact we have C0

0 ⊃ {c ∈ C , |c| > 4}.
(b) C0

0 is connected and simply connected.
(c) C0

j = ∅ for all j ≥ 1.

Proof. We first prove that there is an unbounded connected component of C0
0 . Let us denote

by B = B (0, 1/2) the closed ball of radius 1/2 centered at z = 0. We claim that if |c| > 4,
the map Nc maps B strictly inside itself. Hence, the Denjoy-Wolf Theorem implies that there
must be a unique point η ∈ B such that for all z ∈ B Nn

c (z)→ η as n→∞ (in other words B
belongs to the immediate basin of attraction of the fixed point η). In particular we have that
Nn
c (0)→ η as n→∞. Of course η must be one of the roots αj of Pc. Since for c large enough

we know that α0 ∈ B, we use continuity of the roots of Pc with respect to the parameter c to
conclude η = α0 and hence c ∈ C0

0 .
To see the claim we notice that if |c| > 4 the following inequalities follow easily:

|Nc(z)| =
∣∣∣∣
(n− 1) zn − 1

nzn−1 − c

∣∣∣∣ <
(n− 1) |z|n + 1∣∣∣|c| − n |z|n−1

∣∣∣
<

(n− 1) (1/2)n + 1

|c| − n(1/2)n−1
<
n− 1 + 2n

2n+2 − 2n
< 1/2,

for all n ≥ 3.
We secondly prove that C0

0 is conformally a disc. Since Nc has a superattracting fixed point
at α0, we can use the Böttcher coordinate near the origin to define a suitable representation
map in C0

0 . The idea is the same as in the uniformization of the complement of the Mandelbrot
set for the quadratic family, see [7, 8] for the original construction. Using a suitable linear
change of variables we obtain a new family of maps, so that the superattracting fixed point
is now located at z = 0 and the functions can be written as z2 + O(z3), and thus having a
preferred Böttcher coordinate in this region (see equation 17).

It is well known that the Böttcher map cannot be analytically continued to the whole
immediate basin of attraction of α0 since the critical point 0, by assumption, belongs to it.
However, as in the parametrization of the cubics maps given in [6] by Branner and Hubbard
we can use the co-critical point. Observe that Nc is a rational map of degree n, with n
critical points of degree 1 located at αj and the critical point of degree n − 2 located at
0. So, there exists a unique point, denoted by wc and called the co-critical point, such that
Nc(wc) = Nc(0). Indeed a computation shows that wc = n

(n−1)c and

Nc(0) = Nc(
n

(n− 1)c
) =

1

c
.

Using this co-critical point we define

(21)
Φ : C0

0 → C \ D
c →

[
ϕ0

(
N ′′(α0)

2 ( n
(n−1)c − α0)

)]−1

where ϕ0 is the Böttcher coordinate defined in the immediate basin of attraction of z = 0 for

the monic map N̂c = τ ◦Nc ◦ τ−1 where τ(z) =
N ′′c (αj)

2 (z − αj).
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We claim that Φ is a proper analytic map from C0
0 onto the exterior of the unit disc. In

fact, it is a covering of degree n with a ramified point at ∞. To see the claim we mimic the
Douady-Hubbard technique [7, 8] for the uniformization of the exterior of the Mandelbrot
set.

A brief computation shows that

N ′′c (α0) =
P ′′c (α0)

P ′c(α0)
=
n(n− 1)αn−2

0

nαn−1
0 − c

.

Using now that α0 = 1
c +O(1/|c|n+1) (see Lemma 3.1) we have that

N ′′(α0)
2

(
n

(n−1)c − α0

)
=

n(n−1)

cn−2 +O( 1
|c|2n−2 )

2
cn−1 (n−cn)+O( 1

|c|2n−1 )

(
n

(n−1)c − 1
c +O( 1

|c|n+1 )
)

=
n

cn−1 +O( 1
|c|2n−1 )

2
cn−1 (n−cn)+O( 1

|c|2n−1 )
=

n+O( 1
|c|n )

2(n−cn)+O( 1
|c|n )

= n
2(n−cn)

(
1 +O( 1

|c|n )
)

= n
2(n−cn) +O( 1

|c|2n ).

As mentioned before, ϕ′(0) = 1 (or, equivalently limz→0 ϕ0(z)/z = 1). So, as c → ∞ we
obtain that

ϕ0

(
N ′′(α0)

2
(

n

(n− 1)c
− α0)

)
≈ n

2(n− cn)
+O(

1

|c|2n ).

Thus, the map c → Φ(c) is holomorphic and |Φ(c)| > 1, while |Φ(c)| → 1 as c → ∂C0
0 .

Therefore, Φ is a proper map ramified at ∞ and the above computations show that Φ(c) ≈
Kcn +O(|c|2n), K ∈ C.

To prove that C0
0 is formed by the unique unbounded connected component (the one we

just proved it exists), we argue by contradiction. If there were another component U , by the
arguments above, would be bounded. When approaching its center, we would have α0(c)→ 0,
a contradiction since this only can happen if c→∞. In fact, the same argument also shows
that C0

j is empty for all j ≥ 1. Observe that if there were any (bounded) component C0
j its

center should satisfy that αj(c)→ 0, but this implies j = 0 and c→∞ again. So, the lemma
is proved. �

In the next lemma we show that there exist some semi straight lines in the parameter plane
joining c = 0 (excluding this value) to infinity for which the Newton map has an invariant
straight line in the dynamical plane. Once this is proven it is easy to conclude that, for those
parameters, z = 0 belongs to the immediate basin of attraction of α0 or equivalently those
semi straight lines in parameter plane belong to C0

0 . We also show that all real parameters
c > c∗ also belong to C0

0 .
We denote by L+

θ = {|w|eiθ, |w| > 0} and by Lθ = L+
θ ∪ L+

θ+π ∪ {0} ∪ {∞}.
Lemma 4.4. Fix n ≥ 3.

(a) If c ∈ L+
π/n then c ∈ C0

0 . Moreover L−π/n is a forward invariant straight line for the

map Nc with

(22) Nc(|z|e−πi/n) =
(n− 1)|z|n + 1

n|z|n−1 + |c| e
−πi/n,

(b) If c ∈ L+
0 with c > c? := n

n
√

(n−1)n−1
then c ∈ C0

0 .
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Remark 1. Taking into account the symmetries described in Lemma 4.2 it is clear that the
previous lemma also applies to the corresponding lines of the parameter plane after applying
the symmetry.

Proof. We first prove statement (a). When c ∈ L+
π/n we have that c = |c|eπi/n. Hence (2)

becomes

(23) Nc(z) =
(n− 1)zn − 1

nzn−1 − |c|eπi/n .

First we assume z ∈ L+
−π/n. Hence (23) can be written as:

Nc(|z|e−πi/n) =
(n− 1)|z|ne−πi − 1

n|z|n−1e−(n−1)πi/n − |c|eπi/n =
−(n− 1)|z|n − 1

−n|z|n−1 − |c|
1

eπi/n
=

(n− 1)|z|n + 1

n|z|n−1 + |c| e
−πi/n.

So L+
−π/n ⊂ L−π/n is forward invariant. Secondly, we take z ∈ L+

[−π/n+π] = L+
[(n−1)/n]π.

Calculating as above we have

Nc(|z|e
n−1
n
πi) =

(n− 1)|z|ne(n−1)πi − 1

n|z|n−1e(n−1)2/nπi − |c|eπi/n = −(n− 1)|z|nenπi + 1

n|z|n−1enπi − |c| e
−πi/n,

and so

(24) Nc(|z|e
n−1
n
πi) =





− (n−1)|z|n+1
n|z|n−1−|c| e

−πi/n if n is even.

−(n−1)|z|n+1
n|z|n−1+|c| e

−πi/n if n is odd.

From the formulae it is easy to see that in both cases (n even and n odd) a point z ∈ L+
[(n−1)/n]π

maps to one point in L−π/n. Hence, altogether we conclude that L−π/n is a forward invariant
straight line for the map Nc.

To see that in fact c ∈ C0
0 we write (22) as a map Fc from the positive real line to itself

such that

Fc(x) =
(n− 1)xn + 1

nxn−1 + |c| and F ′c(x) =
(n− 1)nxn−2

(nxn−1 + |c|)2 (xn + |c|x− 1).

From those formulaes and knowing that Fc is the restriction of a Newton map on an invariant
straight line, we easily get that F (0) = 1/|c|, F (x) ∼ n−1

n x as x → ∞, there exists a unique
positive fixed point 0 < x̂c < 1/|c| of Fc such that F ′c(x̂c) = 0 and F ′c(x) < 0 for all x ∈ (0, x̂c).
Therefore, it is clear that [0, x̂c] belongs to the immediate basin of attraction of x̂c. Using
the continuous dependence of x̂c with respect to c (notice that c > c∗ and so the roots of Pc
may not collapse) we know that x̂c tends to 0 as |c| tends to ∞. Going back to the map Nc

we deduce that x̂ce
−πi/n is one of the αj-roots of Pc and that the segment joining z = 0 and

z = x̂ce
−πi/n belongs to its immediate basin of attraction. Since x̂ce

−πi/n should tend to 0 as
c→∞ we conclude that x̂ce

−πi/n = α0 and that c ∈ C0
0 , as desired.

Now we prove statement (b). Let c ∈ R+ and c > c∗. The restriction of the Newton map
in R, which is forward invariant, can be written as

Nc(x) =
(n− 1)xn − 1

nxn−1 − c , c ∈ R+.

Easily, Nc(0) = 1/c, Nc(x) = 0 if and only if x = n
√

1/(n− 1) and Nc has a vertical asymptote

at x = n−1
√
c/n. Moreover, the map Nc is an analytic function on the interval [0, n−1

√
c/n).
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We claim that if c > c∗ then there is a unique x∗ ∈ (0, n−1
√
c/n) such that Nc(x

∗) = x∗ and
N ′c(x

∗) = 0.
To see the claim we show first that the unique positive zero of Nc happens to be before the

asymptote if and only if the condition of the statement is satisfied.

n
√

1/(n− 1) < n−1
√
c/n ⇐⇒ n

√
(

1

n− 1
)n−1 <

c

n
⇐⇒ c >

n
n
√

(n− 1)n−1
:= c∗.

From Bolzano’s Theorem we conclude that Nc has (at least) one fixed point (which of course

satisfies the equation xn − cx + 1 = 0) on the interval (0, n−1
√
c/n), but since Nc is the

restriction of a Newton map we know it is unique. We denote it by xc0. On the other hand
differentiating we obtain

N ′c(x) =
n(n− 1)xn−2

(nxn−1 − c)2
(xn − cx+ 1).

An easy computation shows that N ′c is positive in (0, xc0) and N ′c(0) = N ′c(x
c
0) = 0. So, Nc

is increasing on the interval (0, xc0). From this we see that the closed interval [0, xc0], and in
particular x = 0, belongs to the immediate basin of attraction of xc0.

Finally, we observe that xc0 → 0 as c → ∞ and so xc0 = α0 for large c. Continuity of the
roots of a polynomial with respect to the parameter (again remember that for c > c∗ there
are no collisions of the roots) concludes statement (b).

�

This section gives a deep understanding of the main hyperbolic component in the parameter
space given by the immediate basin of attraction of the special root α0. As a corollary we
obtain that the rest of hyperbolic components are all bounded. In next section we prove that
if they are not empty then they are all simply connected.

4.2. The capture components: Ckj , for 0 ≤ j ≤ n−1, k ≥ 1. In the next proposition we

prove the main topological properties of the capture components Ckj for 0 ≤ j ≤ n−1, k ≥ 1.
These open sets in the parameter plane contain all the parameters such that the critical point
z = 0 is attracted by one the roots of p, see equation (1), but the critical point does not
belong to the immediate basin of attraction. Precisely, the index k counts the number of
iterates that the origin needs to arrive to the immediate basin of attraction.

Proposition 4.5. Fix n.

(a) C1
j = ∅ for all j = 0, . . . , n− 1.

(b) If Ckj 6= ∅, its connected components are simply connected.

Proof. To prove statement (a) assume otherwise. Let c ∈ C1
j and consider its corresponding

dynamical plane. We claim that f : f−1A∗c(αj))→ A∗c(αj) has degree n+ 1, a contradiction
since the map has global degree n. To see the claim we notice that by assumption the (simply
connected) Fatou component of z = 0 maps to A∗c(αj) with degree n − 1 (the number of
critical points counting multiplicity plus one) and A∗c(αj) maps to itself with degree 2.

To prove statement (b) we use a quasiconformal surgery construction (see [2, 5]). Let U
be a connected component of Ckj , j = 2, . . . , n− 1, k ≥ 1. We consider the following map

ΦU : U → D
c → ψj,c

(
N◦k+1
c (0)

)
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where ψj,c denotes the Böttcher map conjugating Nc near αj to z → z2 near the origin (see
equation (18)). As in Proposition 4.3 (b), the map ΦU is a proper mapping and we will prove
that it is a local homeomorphism.

Let c0 ∈ U and z0 = ΦU (c0). The idea of this surgery construction is the following: for any
point z near z0 we can build a map Nc(z) such that Φ(c(z)) = z, or in other words, we can
build the inverse map of Φ.

We denote by Wc0 the connected component of Ac0(αj) containing N◦kc0 (0), preimage of

A∗c0(αj). Let Vc0 be a small open neighborhood of N◦k+1
c0 (0) contained in A∗c0(αj) and let

Bc0 ⊂Wc0 be the preimage of Vc0 containing N◦kc0 (0).
For any 0 < ε < min{|z0|, 1 − |z0|} and any z ∈ D(z0, ε), we choose a diffeomorphism

δz : Bc0 → Vc0 with the following properties:

• δz0 = Nc0 ;
• δz coincides with Nc0 in a neighborhood of ∂Bc0 for any z;
• δz(N◦kc0 (0)) = ψ−1

j,c0
(z).

We consider, for any z ∈ D(z0, ε), the following mapping Gz : Ĉ→ Ĉ:

Gz(x) =

{
δz(x) if x ∈ Bc0
Nc0(x) if x /∈ Bc0 .

We proceed to construct an invariant almost complex structure, σz, with bounded dilatation
ratio. Let σ0 be the standard complex structure of Ĉ. We define a new almost complex
structure σz in Ĉ.

σz :=





(δz)
∗σ0 on Bc0

(Nn
c0)∗σ on N−nc0 (Bc0) for all n ≥ 1

σ0 on Ĉ \⋃n≥1N
−n
c0 (Bc0).

By construction σ is Gz-invariant, i.e., (Gz)
∗σ = σ, and it has bounded distortion since δz

is a diffeomorphism and Nc0 is holomorphic. If we apply the Measurable Riemann Mapping

Theorem (see Section 1.4 in [5]) we obtain a quasiconformal map φz : Ĉ → Ĉ such that
φz integrates the complex structure σz, i.e., (φz)

∗σ = σ0, normalized so that φ(0) = 0 and
φ(∞) =∞. Finally, we define Rz = φz ◦Gz ◦φ−1

z , which is analytic, hence a rational function.
We claim that this resulting mapping Rz is the Newton’s method applied to the polynomial

Pn(x) = xn − c(z)x + 1. By construction Rz is a rational map of degree n with n distinct
superattracting fixed points and fixing ∞, hence from Lemma 3.4 we can conclude that Rz is
the Newton’s method for a polynomial Q(z) of degree n. Moreover, 0 is a critical point of Rz
with multiplicity n− 2 and simple computations show that critical points of Rz are zeroes of
Q and the zeroes of Q′′. Hence we have that the only zero of Q′′ is x = 0. Obtaining, perhaps

after a conjugation with a Möbius transformation, that Rz(x) = (n−1)xn−1
nxn−1−c(z) .

By construction, φz0 is the identity for z = z0; then, there exists a continuous function
z ∈ D(z0, ε) 7→ c(z) ∈ U such that

c(z0) = z0 and Nc(z) = φz ◦Gz ◦ φ−1
z .

Moreover, φz is holomorphic on A∗c0(αj) conjugating Nc0,m and Nc(z),m. Hence, from the
following commutative diagram
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D z2−−−−→ D

ψj,c0

y
yψj,c0

A∗c0(αj)
Nc0−−−−→ A∗c0(αj)

φz

x
xφz

A∗c(z)(αj)
Nc(z)−−−−→ A∗c(z)(αj)

we have that ψj,c(z) = ψj,c0 ◦φ−1
z is the Böttcher coordinate of A∗c(z)(αj). Finally, we conclude

that

ΦU (c(z)) = ψj,c(z)(N
◦k+1
c(z) (0)) = z

since N◦k+1
c(z) (0) = φz ◦ G◦k+1

z ◦ φ−1
z (0) = φz ◦ G◦k+1

z (0) = φz ◦ Gz(N◦kc0 (0)) = φz ◦ ψ−1
j,c0

(z) =

τz ◦ φ−1
z ◦ ψ−1

j,c(z)(z) = ψ−1
j,c(z)(z).

�

4.3. Other hyperbolic components and the bifurcation locus. The theory of polynomial-
like maps, developed by Douady and Hubbard [9], explains why pieces of the dynamical and
parameter planes of some families of rational, entire or meromorphic maps are so similar to
the dynamical and parameter plane of the family of polynomials of the form zk + c, c ∈ C.
Indeed, McMullen [15] showed that small generalized Mandelbrot sets are dense in the bi-
furcation locus for any holomorphic family of rational maps. For a fixed value of k ≥ 2 the
Generalized Mandelbrot set is defined as

Mk = {c ∈ C ,J (zk + c) is connected}.
We define a holomorphic family of rational maps over the unit disc D as a holomorphic

map

f : D× Ĉ→ Ĉ.

Notice that for each (parameter) t ∈ D, the map ft : Ĉ → Ĉ is a rational map. We also
require that deg(ft) ≥ 2. The Bifurcation locus B(f) is defined as the set of parameters t
such that the Julia set J (ft) does not move continuously (in the Hausdorff topology) over
any neighbourhood of t. It is known that B(f) is a closed and nowhere dense subset of D
and its complement is also called the J-stable set. In Figure 2 we show the parameter plane
of zk + c for k = 2, 3 and 6. The complement of Mk is called the Cantor set locus and the
bifurcation locus is ∂Mk.

The universality of the Mandelbrot set is shown in [15]. The precise statement is as follows:

Theorem 4.6 ([15]). For any holomorphic family of rational maps over the unit disc, the
bifurcation B(f) is either empty or contains the quasiconformal image of ∂Mk for some k and
B(f) has Hausdorff dimension two. Moreover, small Generalized Mandelbrot sets are dense
in B(f).

Applying the above result to our family of rational maps Nc(z) = (n−1)zn−1
nzn−1−c we obtain this

quite interesting result.
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(a) The parameter plane of z2 + c. (b) The parameter plane of z3 + c. (c) The parameter plane of z6 + c.

Figure 2. Mandelbrot sets of degree 2, 3 and 6.

Proposition 4.7. Fix n ≥ 3. The bifurcation locus B(Nn) is nonempty and contains the
quasiconformal image of ∂Mn−1 and B(Nn) has Hausdorff dimension two. Moreover, small
copies of ∂Mn−1 are dense in B(Nn).

Proof. With rare exceptions the bifurcation locus of a holomorphic family of rational maps is
nonempty. One of this exceptions occurs when the family is trivial, or in other words, when
all the members in the family are conformally conjugate. This is the case, for example, for
the Newton’s method applied to polynomials of degree two. For this case all the members in
the family are conformally conjugate to the map z → z2. In our case it is easy to see that
B(Nn) is nonempty, since, for example, we have plenty of preperiodic parameters (see Section
5).

The critical points of Nc are αj , j = 0, . . . , n−1 (all simple) and 0 (with multiplicity n−2)
since P ′′c (z) = n(n− 1)zn−2. Thus, if U is a sufficiently small neighbourhood of the origin the
degree of Nn,c : U → Nn,c(U) is n− 1. Hence, in any polynomial-like construction involving
the free critical point located at zero we always obtain a member of the family zn−1 + c.
Therefore, applying Theorem 4.6 we obtain that the bifurcation locus of Nc for a certain n
contains the quasiconformal image of ∂Mn−1. �

5. Real polynomials

Fix n ∈ N and c ∈ R. We notice that we can restrict to parameters c ∈ R+; if n is odd,
from the symmetry properties of the parameter plane (Lemmas 4.2 and 4.4), we have that
R− \{0} ⊂ C0

0 , and when n is even Nc, with c ∈ R−, is conformally conjugate to N−c (Lemma
4.2).

Because of Lemma 4.4, we only need to deal with 0 < c < c∗ since otherwise c ∈ C0
0 . Of

course, again, the results we prove for c real also apply to complex parameters after applying
the symmetry explained in Lemma 4.2(a). In [11, 3] the authors studied this problem from
the real analysis point of view. They characterize the possible combinatorial orbits of z = 0
using symbolic dynamics.

We introduce two parameters which will play an important role defining those bifurcations:

0 < c′ := n
√
n− 1 < c := n

√
n < c∗.
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Proposition 5.1. For every n, there exists a strictly decreasing sequence of real c-parameters
{αk}k≥1 such that αk → 0, 0 < αk < α1 := n

√
n− 1 and each of those parameters is the center

of a free (not captured) hyperbolic component Dk for which the free critical point x = 0 is a
super attracting periodic point of period k + 1 (main black pseudo cardioids for positive real
parameters). Moreover

(1) If n is odd there also exists a strictly decreasing sequence of real c-parameters{βk}k≥1

such that βk → 0, α1 = c′ < β1 < c∗, αk < βk < αk−1 for all k ≥ 2 and each of those
parameters is the center of a captured hyperbolic component Ckj for some fixed j.

(2) If n is even Ckj ∩ R = ∅ for any j = 0, . . . , n− 1 and k > 0.

Proof. We will only consider c ∈ (0, c∗). The qualitative graph of the Newton’s map Nc

is represented in Figure 3. From those pictures it is easy to deduce that c′ corresponds to
the parameter for which the free critical value 1/c is equal to the positive zero 1

n√n−1
while

c corresponds to the parameter for which 1/c is equal to the positive vertical asymptote
n−1
√
c/n. We define Gk(c) = Nk

c (1/c) , k > 0, that is Gk is a function of c giving the k−th
iterate, for the corresponding Newton’s map Nc, of the free critical value 1/c.

-2 -1 1 2

-6

-4

-2

2

4

6

(a) Nc for n even.
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-4

-2

2

4

6

(b) Nc for n odd.

Figure 3. The qualitative graph of Nc. The left picture corresponds to n = 8 and
c ≈ 0.4373 and the right one corresponds to n = 7 and c ≈ 0.4521. For all c ∈ (0, c∗)
and for all n ≥ 3 it has a unique (positive) zero at 1

n
√
n−1 (in particular x ≈ 0.7841

for n = 8 and x ≈ 0.7742 for n = 7) and a unique (positive) vertical asymptote at
n−1
√
c/n (in particular x ≈ 0.6602 for n = 8 and x ≈ 0.6334 for n = 7). Moreover,

x = 0 is a minimum for n odd and an inflection point for n even.

From this notation it is clear that the centers of the non captured hyperbolic components
(intersecting the real line) are given by the solutions of the equation Gk(c) = 0, k > 0
((k+ 1) determine the number of iterates used by the critical point 0 to come back to itself).
In particular, α1 = n

√
n− 1 is the center of a free hyperbolic component of period 2 since

G1(α1) = 0 (that is 0 is back to itself after two iterates of the map Nα1). Moreover, it is an
exercise to check that G1 is a (differentiable) strictly decreasing function of c in the interval
[0, α1] whose range is [0,∞) (notice that, formally, G1(0) = ∞ and G1(α1) = 0). Hence,
we claim that there exists a (unique) real parameter, α2, in the interval [0, α1] such that
G2(α2) = 0. To see the claim observe that, on the one hand, G2(c) = N2

c (1/c) = Nc(G1(c))
and, on the other hand, Nc(

1
n√n−1

) = 0 and there exist a unique α2 ∈ (0, α1) such that

G1(α2) = 1
n√n−1

. Clearly for the parameter α2, the critical point 0 is back to itself after three

iterates of the map Nα2 .
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We repeat the process once again. The map G2 is a (differentiable) strictly decreasing
function of c in the interval [0, α2] whose range is [0,∞) (notice that, again, G2(0) =∞ and
G2(α2) = 0). Hence, as before, we claim that there must exists a (unique) real parameter,
α3, in the interval [0, α2] such that G3(α2) = 0. To see the claim observe that, on the one
hand, G3(c) = N3

c (1/c) = Nc(G2(c)) and, on the other hand, Nc(
1

n√n−1
) = 0 and there exist

a unique α3 ∈ (0, α2) such that G2(α3) = 1
n√n−1

. Clearly, for the parameter α3, the critical

point 0 is back to itself after four iterates of the map Nα3 . Similarly, we may construct the
whole sequence {αk}k>0 as desired.

We observe that by a similar argument to the one used to produce the parameter sequence
{αk}k>0, we claim there exists another (auxiliary) sequence of parameters {δk}k≥0 such that

Gk(δk) = n−1
√
δk/n, k ≥ 0. To see the claim we observe first that δ0 is given by the solution

of 1/c = n−1
√
c/n, so δ0 = n

√
n and δ0 > α1. Secondly, the map F (c) = n−1

√
c/n is a

(differentiable) strictly increasing function of c in [0, c∗] such that F (0) = 0. So, each of the
graphs of the maps Gk, k ≥ 1, on the interval (0, αk), crosses one and only one time F (c)
producing the desired sequence of δk’s. Moreover, we have δ0 > α1 > δ1 > α2 > δ2 > . . ..

Now we turn the attention to n odd to prove statement (1). We construct the sequence βk of
centers of capture parameters using basically the same argument. Those centers, distinguished
by the parameters c = βk, should be solutions of the equation Gk(c) = xc where xc is the
unique negative real solution of Nc(x) = x, or, equivalently, of Pc(x) = 0.

Clearly x = n
√
n is a pole of the map N n√n, while G1(α1) = 0.

Hence, G1 is a (differentiable) strictly decreasing function of c in the interval [α1, δ0] whose
range is (−∞, 0) (notice that G1(α1) = 0 and, formally, G1(δ0) = −∞). On the other
hand, for c ∈ [α1, δ0] the value of xc moves continuously in a compact interval [a, b] where
−∞ < a < b < 0. So, there must be one point β1 ∈ (α1, δ0) such that G1(β1) = xβ1 . We
repeat the argument once again. The map G2 is a (differentiable) strictly decreasing function
of c in the interval [δ1, α1] whose range is (−∞, 0) (notice that G1(δ1) = −∞ and G2(α1) = 0);
so, there must be one point β2 ∈ (δ1, α1) such that G2(β2) = xβ2 . And so on. So (1) is proved.

Now we turn the attention to n even to prove statement (2). Since c is real, the real line is
invariant by the Newton map. Hence proving that Pn,c(x) := xn − cx+ 1 has no real zeroes

as long as n is even and c ∈ (0, c∗) implies that Ckj ∩R = ∅ for any j = 0, . . . , n− 1 and k > 0,
as stated.

Assume otherwise. Then, Pn,c has at least two real roots. As Pn,c = 0 implies xn + 1 =
cx, the zeroes must be positive. Then, we have two positive roots and one minimum at
xc = n−1

√
c
n . Thus Pn,c(xc) < 0. But, easy computations show that for 0 < c < c∗ we get

Pn,c(xc) > 0, a contradiction.
�

It is worthwhile noticing that taking into account that the bifurcation locus intersects the
real line, the above result is not at all surprising since we expect to have all kind of bifurcation
parameters. However, we also notice that it would be nice to have a better understanding of
this bifurcation cascade in the light of McMullen results in [15]. There it is proved the existence
of sequences of mini-generalized Mandelbrot sets approaching Misiurewicz parameters and its
size in parameter plane. Our result reproves their existence and shows its relative location
in the real line as we approach c = 0. However, a deeper study to have a more detailed
knowledge of how those cascades are organized is a challenging problem itself.



NEWTON’S METHOD ON BRING-JERRARD POLYNOMIALS 21

References

1. Victor S. Adamchik and David J. Jeffrey, Polynomial transformations of Tschirnhaus, Bring and Jerrad,
SIGSAM Bull. 137 (2003), no. 3, 90–93.

2. Lars V. Ahlfors, Lectures on quasiconformal mappings, second ed., University Lecture Series, vol. 38,
American Mathematical Society, Providence, RI, 2006, With supplemental chapters by C. J. Earle, I. Kra,
M. Shishikura and J. H. Hubbard. MR 2241787 (2009d:30001)

3. F. Balibrea, J. Orlando Freitas, and J. Sousa Ramos, Newton maps for quintic polynomials,
arXiv:math/0501327v1, 2005.
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Castelló de la Plana, Spain

E-mail address: campos@mat.uji.es

Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007
Tarragona, Catalonia, Spain

E-mail address: antonio.garijo@urv.cat
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Departament de Matemàtiques, Universitat Jaume I, Av. de Vicent Sos Baynat, s/n 12071
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