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Abstract. For m = 1, 2, 3, we consider differential systems of the form

x′ = F0(t, x) +
m∑

i=1

εiFi(t, x) + εm+1R(t, x, ε),

where Fi : R×D → Rn, and R : R×D × (−ε0, ε0)→ Rn are Cm+1 functions,
and T–periodic in the first variable, being D an open subset of Rn, and ε a
small parameter. For such system we assume that the unperturbed system
x′ = F0(t, x) has a k–dimensional manifold of periodic solutions with k ≤ n.
We weaken the sufficient assumptions for studying the periodic solutions of the
perturbed system when |ε| > 0 is sufficiently small.

1. Introduction and statement of the main results

The averaging theory for computing periodic solutions of a differential system
is one of the best analytical tools for the study of the periodic solutions, see for
instance the papers [23, 13, 19, 12, 14, 17, 18, 20, 10, 11, 8].

In the analysis of periodic solutions using the averaging theory there are essen-
tially three main theorems. One for studying the periodic solutions of the periodic
differential systems of the form x′ = εF (t, x, ε), with x ∈ Rn (see for instance
[26, 24, 2, 9, 15, 16]), and the other two for studying the periodic solutions of the
periodic differential systems of the form x′ = F0(t, x) + εF (t, x, ε) with x ∈ Rn,
distinguishing when the manifold Z of all periodic solutions of the unperturbed
system x′ = F0(t, x) has dimension n or smaller then n, respectively (see for
instance [21, 22, 3, 4, 9, 15, 16]). The objective of this paper is to weaken the
sufficient assumptions under the last system for studying their periodic solutions
when the dimension of the manifold Z is smaller then n.

Let D be an open set of Rn and ε0 > 0 be a small parameter. For m = 1, 2, 3,
we assume that the Cm+1 functions Fi : R × D → Rn for i = 1, . . . ,m and
R : R × D × (−ε0, ε0) → Rn are T–periodic in the variable t. In what follows
the prime denotes derivative with respect to the time t. Our study is concerned
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about the existence of isolated T–periodic solutions of the differential systems of
the form

(1) x′ = F0(t, x) +
m∑

i=1

εiFi(t, x) + εm+1R(t, x, ε),

when there exists a k–dimensional submanifold Z of D (k ≤ n) such that all
solutions of the unperturbed system

(2) x′ = F0(t, x),

starting in Z are T–periodic. Formally, let β : V → Rn−k be a Cm+1 function,
with V an open and bounded subset of Rk and let Z = {zα = (α, β(α)) : α ∈ V }.
We shall assume that

(H) Z ⊂ D and for each zα ∈ Z the unique solution xα(t) = x(t, zα, 0) of (2)
such that xα(0) = zα is T–periodic.

Here as usual x(·, z, ε) : [0, t(z,ε)) → Rn denotes the solution of system (1) such
that x(0, z, ε) = z.

Let Y (t, z) be a fundamental matrix solution of the linear differential system

(3) y′ =
∂F0

∂x
(t, x(t, z, 0)) y.

For each zα ∈ Z we denote Yα(t) = Y (t, zα). System (3) is the linearization
of system (2) through the solution x(t, z, 0). For a given fundamental matrix
solution Y (t, z) we denote by Γα the upper right corner k × (n − k) matrix of
Yα(0)−1− Yα(T )−1, and by ∆α the lower right corner (n− k)× (n− k) matrix of
Yα(0)−1 − Yα(T )−1.

Malkin [21] and Rosseau [22] have studied this problem up to order 1 in ε.
Buică, Françoise and Llibre gave in [3] a simpler proof of their results when Γα
is a null matrix for every α ∈ Z. Buică, Giné and Llibre in [4] have studied
this problem up to order 2 in ε also assuming that Γα is a null matrix for every
α ∈ Z, and in [5] the same authors provided a nondegeneracy condition assuring
the existence of a fundamental matrix solution Y (t, z) for which Γα is a null
matrix for every α ∈ Z. They also gave the formulae of the averaged function
up to order 2 in ε for this case. In [7] Rhouma and Chicone studied the same
problem when the unperturbed system is autonomous.

In this work we give the formulae of the averaged functions up to order 3 in ε
without assuming that Γα is a null matrix. This approach represents a new way
to deal with this kind of problem avoiding a previous treatment of the system.
Moreover, as far as we know, the explicit formulae for the third order averaged
function for systems like (1) are given for the first time in this present paper.

Choosing a system of coordinates where the matrix
∂F0

∂x
(t, xα(t)) is in its Ja-

cobian normal form for every t we obtain a system for which Γα is a null matrix.
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Unfortunately it is not always possible, as we can see in (9). Nevertheless it does
not mean that the matrix Γα is different from zero for every system of coordinates
and for every election of fundamental matrix solution Y (t, z).

Given p and q positive integers let G = (G1, G2, . . . , Gq) : Rp → Rq be a
smooth function, and consider the vectors u = (u1, u2, · · · , up) ∈ Rp and vi =
(vi1, v

i
2, · · · , vip) ∈ Rp for i = 1, 2, 3. Thus for each t ∈ R and u ∈ Rp we define

(4)

∂2G

∂u2
(t, u)v1v2 =

(
p∑

i,j=1

∂2G1

∂ui∂uj
(t, u)v1i v

2
j , · · · ,

p∑

i,j=1

∂2Gq

∂ui∂uj
(t, u)v1i v

2
j

)
,

∂3G

∂u3
(t, u)v1v2v3 =

(
p∑

i,j,k=1

∂2G1

∂ui∂uj∂uk
(t, u)v1i v

2
j v

3
k , · · · ,

p∑

i,j=1

∂2Gq

∂ui∂uj∂uk
(t, u)v1i v

2
j v

3
k

)
.

We note that for each t ∈ R and u ∈ Rp,
∂2G

∂u2
(t, u) : Rp × Rp → Rq is a 2–linear

map and
∂3G

∂u3
(t, u) : Rp × Rp × Rp → Rq is a 3–linear map.

In what follows the functions π : Rk×Rn−k → Rk and π⊥ : Rk×Rn−k → Rn−k

will denote the projections onto the first k coordinates and onto the last n − k
coordinates, respectively. For a point z ∈ D we also consider z = (a, b) ∈
Rk × Rn−k.

We define the averaged functions f1, f2, f3 : V → Rk as

(5)

f1(α) = Γαγ1(α) + πg1(zα),

f2(α) =
1

2
Γαγ2(α) +

1

2

∂2πg0
∂b2

(zα)γ1(α)2 +
∂πg1
∂b

(zα)γ1(α) + πg2(zα),

f3(α) =
1

6
Γα(zα)γ3(α) +

1

6

∂3πg0
∂b3

(zα)γ1(α)3 +
1

2

∂2πg0
∂b2

(zα)γ1(α)γ2(α)

+
1

2

∂2πg1
∂b2

(zα)γ1(α)2 +
1

2

∂πg1
∂b

(zα)γ2(α) +
∂πg2
∂b

(zα)γ1(α)

+πg3(zα),
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where

(6)

γ1(α) = −∆−1α π⊥g1(zα),

γ2(α) = −∆−1α

(
∂2π⊥g0
∂b2

(zα)γ1(α)2 + 2
∂π⊥g1
∂b

(zα)γ1(α) + 2π⊥g2(zα)

)
,

γ3(α) = −∆−1α

(
∂3π⊥g0
∂b3

(zα)γ1(α)3 + 3
∂2π⊥g0
∂b2

(zα)γ1(α)γ2(α)

+3
∂2π⊥g1
∂b2

(zα)γ1(α)2 + 2
∂π⊥g1
∂b

(zα)γ2(α) + 6
∂π⊥g2
∂b

(zα)γ1(α)

+6π⊥g3(zα)

)
,

and

(7) gi(z) = Y (T, z)−1
yi(T, z)

i!
,

for i = 0, 1, 2, 3, being

(8)

y0(t, z) = x(t, z, 0)− z,

y1(t, z) = Y (t, z)

∫ t

0

Y (τ, z)−1F1(τ, x(τ, z, 0))dτ,

y2(t, z) = Y (t, z)

∫ t

0

Y (τ, z)−1
[

2F2(τ, x(τ, z, 0)) + 2
∂F1

∂x
(τ, x(τ, z, 0))

·y1(τ, z) +
∂2F0

∂x2
(τ, x(τ, z, 0))y1(τ, z)2

]
dτ,

y3(t, z) = Y (t, z)

∫ t

0

Y (τ, z)−1
[

6F3(τ, x(τ, z, 0))

+6
∂F2

∂x
(τ, x(τ, z, 0))y1(τ, z) + 3

∂2F1

∂x2
(τ, x(τ, z, 0))y1(τ, z)2

+3
∂F1

∂x
(τ, x(τ, z, 0)) y2(τ, z) + 3

∂2F0

∂x2
(τ, x(τ, z, 0))y1(τ, z)

·y2(τ, z) +
∂3F0

∂x3
(τ, x(τ, z, 0))y1(τ, z)3

]
dτ.
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Following the notation (4) the expression
∂2πg0
∂b2

(zα)γ1(α)2 in (5), is obtained

taking p = n−k, q = k, u = b, u = β(α), G : b 7→ πg0(α, b), and v1 = v2 = γ1(α).
The similar expressions (6) and (8) are obtained analogously.

Our main result is given in the following theorem.

Theorem 1. In addition to hypothesis (H) we assume that for each zα ∈ Z,
there exists a fundamental matrix solution of (3) such that det(∆α) 6= 0 for every
α ∈ V . So the following statements hold.

(a) Take m=1. If there exists α∗ ∈ V with f1(α
∗) = 0 and det(Df1(α

∗)) 6= 0,
then there exists a T–periodic solution ϕ(t, ε) of system (1) such that
ϕ(0, ε)→ zα∗ when ε→ 0.

(b) Take m=2 and assume that f1(α) ≡ 0. If there exists α∗ ∈ V with
f2(α

∗) = 0 and det(Df2(α
∗)) 6= 0, then there exists a T–periodic solu-

tion ϕ(t, ε) of system (1) such that ϕ(0, ε)→ zα∗ when ε→ 0.
(c) Take m=3 and assume that f1(α) ≡ f2(α) ≡ 0. If there exists α∗ ∈ V with

f3(α
∗) = 0 and det(Df3(α

∗)) 6= 0, then there exists a T–periodic solution
ϕ(t, ε) of system (1) such that ϕ(0, ε)→ zα∗ when ε→ 0.

Theorem extends the main results of [4, 5], and it is proved in section 2.

As an application of Theorem 1 we consider the following quadratic polynomial
non–autonomous system of differential equations:

(9)

u′ = w + ε µ v2 sin t+ ε2ν,

v′ = w + ε η v2 sin t+ ε2ν,

w′ = (1 + cos t)w + ε2ν + ε3ξ sin t.

Let

A0(t) =

∫ t

0

es+sin sds, and A1(t) =

∫ t

0

e−s−sin sA0(s) sin s ds.

We assume that

(10) ν =
2π(e2π − 1) ν

(e2π − 1)A1(2π)− A0(2π)A0(−2π)
≈ 0.775 ν.

We note that for ε = 0 the linear part of system (9) is given by the matrix

(11)




0 0 1

0 0 1

0 0 1 + cos t


 .
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For t 6= π the Jacobian normal form of (11) is given by

(12)




0 0 0

0 0 0

0 0 1 + cos t


 .

Nevertheless the Jacobian normal form of (11) when t = π is given by

(13)




0 0 0

0 0 1

0 0 0


 .

Hence there is no continuous change of variables which transforms the matrix
(11) into (12).

In the next proposition we give sufficient conditions for the existence of an
isolated periodic solution of system (9) when |ε| > 0 is sufficiently small.

Proposition 2. If µ η ν 6= 0, then for |ε| > 0 sufficiently small there exist an
isolate periodic solution ϕ(t, ε) of system (9) such that ϕ(0, ε) → (u∗, v∗, 0) ∈ D
where

(u∗, v∗) = k

(
ξ

η ν
,
ξ

µ ν

)
and k ≈ 2.952.

2. Proofs of Theorem 1 and Proposition 2

We shall need the next lemma to prove our main result. Lemma 3 extends
Theorem 4 of [4] which is a particular case of the Lyapunov–Schmidt reduction
method for finite dimensional function (see for instance [6]).

Lemma 3. Assume that k ≤ n are positive integers. Let D and V be open
subsets of Rn and Rk, respectively. For m = 1, 2, 3, let gi(z) for i = 0, 1, . . . ,m
and β : V → Rn−k be Cm+1 functions and take g : D × (−ε0, ε0)→ Rn such that

(14) g(z, ε) = g0(z) +
m∑

i=1

εigi(z) +O(εm+1),

and Z = {zα = (α, β(α)) : α ∈ V } ⊂ D. We denote by Γα the upper right corner
k× (n−k) matrix of D g0(zα), and by ∆α the lower right corner (n−k)× (n−k)
matrix of D g0(zα). Assume that for each zα ∈ Z, det(∆α) 6= 0 and g0(zα) = 0.
We consider the functions f1, f2, f3 : V → Rk defined in (5). Then the following
statements hold.

(a) Take m = 1. If there exists α∗ ∈ V with f1(α
∗) = 0 and det(Df1(α

∗)) 6=
0, then there exists αε such that g(zαε , ε) = 0 and zαε → zα∗ when ε→ 0.
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(b) Take m = 2 and assume that f1(α) ≡ 0. If there exists α∗ ∈ V with
f2(α

∗) = 0 and det(Df2(α
∗)) 6= 0, then there exists αε such that g(zαε , ε) =

0 and zαε → zα∗ when ε→ 0.
(c) Take m = 3 and assume that f1(α) ≡ f2(α) ≡ 0. If there exists α∗ ∈ V

with f3(α
∗) = 0 and det(Df3(α

∗)) 6= 0, then there exists αε such that
g(zαε , ε) = 0 and zαε → zα∗ when ε→ 0.

Note that in the Lemma 3 the functions gi for i = 0, 1, 2, 3, which appear in
the expression of (5) and (6) are the ones of the function (14), instead of the
functions which appear in (7).

Proof of Lemma 3. First of all we consider g = (πg, π⊥g), gi = (πgi, π
⊥gi) for

i = 0, 1, 2, and z = (a, b) ∈ Rk × Rn−k for z ∈ D. So

∂g

∂z
(zα, 0) = D g0(zα) =




∂πg0
∂a

(zα)
∂πg0
∂b

(zα)

∂π⊥g0
∂a

(zα)
∂π⊥g0
∂b

(zα)


 .

We note that Γα =
∂πg0
∂b

(zα) and ∆α =
∂π⊥g0
∂b

(zα).

From the hypotheses we have π⊥g(α, β(α), 0) = π⊥g0(zα) = 0 and

det

(
∂π⊥g

∂b
(α, β(α), 0)

)
= det

(
∂π⊥g0
∂b

(zα)

)
= det (∆α) 6= 0.

Thus applying the Implicit Function Theorem (see for instance [25]) it follows
that there exists an open neighbourhood U × (−ε1, ε1) of V × {0} with ε1 ≤ ε0,
and a Cm+1 function β : U × (−ε1, ε1)→ Rn−k such that π⊥g(a, β(a, ε), ε) = 0 for
each (a, ε) ∈ U × (−ε1, ε1) and β(α, 0) = β(α) for every α ∈ V . Here the value
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of m depends on the statement (a), (b) or (c) we are proving. So we compute

(15)

∂β

∂ε
(α, 0) = −∆−1α π⊥g1(zα) = γ1(α),

∂2β

∂ε2
(α, 0) = −∆−1α

(
∂2π⊥g0
∂b2

(zα)γ1(α)2

+2
∂π⊥g1
∂b

(zα)γ1(α) + 2π⊥g2(zα)

)
= γ2(α),

∂3β

∂ε2
(α, 0) = −∆−1α

(
∂3π⊥g0
∂b3

(zα)γ1(α)3 + 3
∂2π⊥g0
∂b2

(zα)γ1(α)γ2(α)

+3
∂2π⊥g1
∂b2

(zα)γ1(α)2 + 2
∂π⊥g1
∂b

(zα)γ2(α)

+6
∂π⊥g2
∂b

(zα)γ1(α) + 6π⊥g3(zα)

)
= γ3(α).

Now for each α ∈ V we consider the Cm+1 function δ : ε 7→ πg(α, β(α, ε), ε) ∈
Rk. We know that

(16) δ(α, ε) = δ(α, 0) + ε
∂δ

∂ε
(α, 0) + ε2

1

2

∂2δ

∂ε2
(α, 0) + ε3

1

6

∂3δ

∂ε3
(α, 0) +O(ε4).

We observe that the above expression is written assuming that m = 3. If m = 2
it must be truncated in O(ε2), and if m = 1 it must be truncated in O(ε2).

We compute

∂δ

∂ε
(α, ε) =

∂πg

∂b
(α, β(α, ε), ε)

∂β

∂ε
(α, ε) +

∂πg

∂ε
(α, β(α, ε), ε),

∂2δ

∂ε2
(α, ε) =

∂2πg

∂b2
(α, β(α, ε), ε)

(
∂β

∂ε
(α, ε)

)2

+2
∂2πg

∂ε∂b
(α, β(α, ε), ε)

∂β

∂ε
(α, ε) +

∂πg

∂b
(α, β(α, ε), ε)

∂2β

∂ε2
(α, ε)

+
∂2πg

∂ε2
(α, β(α, ε), ε),
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∂3δ

∂3ε
(α, ε) =

∂3πg

∂b3
(α, β(α, ε), ε)

(
∂β

∂ε
(α, ε)

)3

+ 3
∂2πg

∂b2
(α, β(α, ε), ε)

∂β

∂ε
(α, ε)

·∂
2β

∂ε2
(α, ε) +

∂πg

∂b
(α, β(α, ε), ε)

∂3β

∂ε3
(α, ε)

+3
∂3πg

∂ε∂b2
(α, β(α, ε), ε)

(
∂β

∂ε
(α, ε)

)2

+ 3
∂2πg

∂ε∂b
(α, β(α, ε), ε)

·∂
2β

∂ε2
(α, ε) + 3

∂3πg

∂ε2∂b
(α, β(α, ε), ε)

∂β

∂ε
(α, ε)

+
∂3πg

∂ε3
(α, β(α, ε), ε).

Thus

δ(α, 0) = 0,

∂δ

∂ε
(α, 0) =

∂πg0
∂b

(zα)
∂β

∂ε
(α, 0) + πg1(zα)

= Γαγ1(α) + πg1(zα) = f1(α),

∂2δ

∂ε2
(α, 0) =

∂2πg0
∂b2

(zα)

(
∂β

∂ε
(α, 0)

)2

+ 2
∂πg1
∂b

(zα)
∂β

∂ε
(α, 0)

+
∂πg0
∂b

(zα)
∂2β

∂ε2
(α, 0) + 2πg2(zα)

= Γαγ2(α) +
∂2πg0
∂b2

(zα)γ1(α)2 + 2
∂πg1
∂b

(zα)γ1(α)

+2πg2(zα) = 2f2(α),

∂3δ

∂3ε
(α, ε) =

∂3πg0
∂b3

(zα)

(
∂β

∂ε
(α, ε)

)3

+ 3
∂2πg0
∂b2

(zα)
∂β

∂ε
(α, ε)

∂2β

∂ε2
(α, ε)

+
∂πg0
∂b

(zα)
∂3β

∂ε3
(α, ε) + 3

∂2πg1
∂b2

(zα)

(
∂β

∂ε
(α, ε)

)2

+ 3
∂πg1
∂b

(zα)

·∂
2β

∂ε2
(α, ε) + 6

∂πg2
∂b

(zα)
∂β

∂ε
(α, ε) + 6πg3(zα)
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= Γα(zα)γ3(α) +
∂3πg0
∂b3

(zα)γ1(α)3 + 3
∂2πg0
∂b2

(zα)γ1(α)γ2(α)

+3
∂2πg1
∂b2

(zα)γ1(α)2 + 3
∂πg1
∂b

(zα)γ2(α) + 6
∂πg2
∂b

(zα)γ1(α)

+6πg3(zα) = 6f3(α).

If m = 1 and f1(α) 6≡ 0, then the Implicit Function Theorem, applied to the
function δ(α, ε)/ε for |ε| > 0 sufficiently small, guarantees the existence of α(ε)
such that α(0) = α∗ and δ(α(ε), ε) = 0. Denoting zαε = (α(ε), β(α(ε)), ε) we
have f(zαε , ε) = 0. So statement (a) is proved.

If m = 2 and f1(α) ≡ 0, then the Implicit Function Theorem, applied to the
function δ(α, ε)/ε2 for |ε| > 0 sufficiently small, guarantees the existence of α(ε)
such that α(0) = α∗ and δ(α(ε), ε) = 0. Denoting zαε = (α(ε), β(α(ε)), ε) we
have f(zαε , ε) = 0. So statement (b) is proved.

Finally If m = 3 and f1(α) ≡ f2(α) ≡ 0, then the Implicit Function Theorem,
applied to the function δ(α, ε)/ε3 for |ε| > 0 sufficiently small, guarantees the
existence of α(ε) such that α(0) = α∗ and δ(α(ε), ε) = 0. Denoting zαε =
(α(ε), β(α(ε)), ε) we have f(zαε , ε) = 0. So statement (c) is proved. �

Proof of Theorem 1. For z ∈ D we consider x(·, z, ε) : [0, t(z,ε))→ Rn the solution
of (1) such that x(0, z, ε) = z. From hypothesis (H), t(zα,0) > T for every α ∈ V .
So as a consequence of Theorem 8.3 of [1] there exists a neighborhood of U of Z
and 0 < ε2 < ε1 such that, for all (z, ε) ∈ U × (−ε2, ε2), t(z,ε) > T . Hence we can
consider the function f : U × (−ε2, ε2)→ Rn, given by

(17) f(z, ε) = x(T, z, ε)− z.

It is easy to see that system (1) for ε = ε̄ ∈ (−ε2, ε2) has a periodic solution
passing through z̄ ∈ U if and only if f(z̄, ε̄) = 0.

To study the zeros of (17) is equivalent to study the zeros of the Cm+1 function

(18) g(z, ε) = Y (T, z)−1f(z, ε).

On the other hand, we have that

(19) x(t, z, ε) = x(t, z, 0) + εy1(t, z) + ε2
y2(t, z)

2
+ ε3

y3(t, z)

6
+O(ε4),
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where y1, y2 and y3 are given in (8). For more details on these expression (19)
see Lemma 1 of [15, 16]. Thus
(20)

g(z, ε) = Y (T, z)−1(x(t, z, 0)− z) + εY (T, z)−1y1(T, z) + ε2Y (T, z)−1
y2(T, z)

2

+ε3Y (T, z)−1
y3(t, z)

6
+O(ε4)

= g0(z) + εg1(z) + ε2g2(z) + ε3g3(z) +O(ε4).

The same observation made about the value of m for the expression (16) is applied
for the expressions (19) and (20).

In order to apply Lemma 3 to function (18) we compute

g0(zα) = Yα(T )−1(x(T, zα, 0)− zα) = 0,

and
∂g0
∂z

(zα) = Yα(T )−1
(
∂x

∂z
(T, zα, 0)− Id

)

= Yα(T )−1
(
Yα(T )Yα(0)−1 − Id

)

= Yα(0)−1 − Yα(T )−1,

because (∂x/∂z)(t, z, 0) is solution of (3) such that (∂x/∂z)(0, z, 0) = Id, which
implies that (∂x/∂z)(t, z, 0) = Y (t, z)Y (0, z)−1.

From here the proof follows applying Lemma 3. �

Proof of Proposition 2. First of all we define the following functions,

A0(t) =

∫ t

0

es+sin sds, A1(t) =

∫ t

0

e−s−sin sA0(s) ds, A2(t) =

∫ t

0

A0(s) sin s ds,

A3(t) =

∫ t

0

A0(s)
2 sin s ds, A4(t) =

∫ t

0

A0(s) cos s sin s ds,

A5(t) =

∫ t

0

A0(s)A2(s) sin s ds, A6(t) =

∫ t

0

A0(s)A3(s) sin s ds,

A7(t) =

∫ t

0

A2(s) sin s ds, A8(t) =

∫ t

0

A3(s) sin s ds,

A9(t) =

∫ t

0

A0(s)A0(−s) sin s ds, A10(t) =

∫ t

0

e−s−sin sA0(s) sin2 s ds,

A11(t) =

∫ t

0

A1(s) sin2 s ds, A12(t) =

∫ t

0

e−s−sin s sin2 s ds.
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Now we shall describe the different elements which appear in the statement of
Theorem 1 in the particular case of the differential system (9). Firstly, T = 2π,
D = R3, x = (u, v, w), F0(t, x) = (w , w , (1 + cos t)w), F1(t, x) = (µ v2 sin t , η u2

sin t , 0), F2(t, x) = (ν , ν , ν), and F3(t, x) = (0 , 0 , ξ sin t). The solution of the
unperturbed system starting in z = (u0, v0, w0) is given by

x(t, z, 0) =
(
u0 + w0A0(t) , v0 + w0A0(t) , w0 e

t+sin t
)
.

Thus for w0 = 0, x(t, u0, v0, 0, 0) = (u0 , v0 , 0) is a T–periodic solution. So
α = (u0, v0), β(α) ≡ 0, k = 2 and n = 3. Now we take the parameters r1 > 0 and
r2 > 0 arbitrarily small and arbitrarily large, respectively. Let V be the open
and bounded subset of the plane w0 = 0 given by

V = {(u0, v0, 0) ∈ R3 : r1 <
√
u20 + v20 < r2}.

Therefore, in our case the set

Z =
{
zα = (α, β(α)) , α ∈ V

}
= {(u0, v0, 0) ∈ R3 : r1 ≤

√
u20 + v20 ≤ r2}.

Taking Yα(t) =
∂x

∂z
(t, zα, 0) we obtain that

Yα(0)−1 − Yα(2π)−1 =




0 0 e−2πA0(2π)

0 0 e−2πA0(2π)

0 0 1− e2π


 .

So

Γα =


 e−2πA0(2π)

e−2πA0(2π)


 and ∆α = 1− e2π.

We note that Γα and ∆α do not depend on α, and it is easy to check that they
are not null matrices.

Using the formulae (7) and (8) we compute

g0(u, v, w) =
(
e−2πwA0(2π) , e−2πwA0(2π) , w

(
1− e−2π

))

and

y1(t, z) =
(
µ
(
2vwA2(t) + w2A3(t) + v2(1− cos t)

)
, η
(
2uwA2(t)

+w2A3(t) + u2(1− cos t)
)
, 0
)
.

So

g1(z) =
(
µw
(
2vA2(2π) + wA3(2π)

)
, η w

(
2uA2(2π) + wA3(2π)

)
, 0
)
.
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Using the formulae (5) and (6) we obtain that γ1(u, v) = 0 and f1(u, v) = (0, 0).
In this case the expressions of γ2 and f1 become simpler.

(21) f2(α) =
1

2
Γαγ2(α) + πg2(zα) and γ2(α) = −2∆−1α π⊥g2(zα).

Again from (8) we compute y2(t, z) = (y12(t, z) , y22(t, z) , y32(t, z)) where

y12(t, z) = ν t− ν(A0(t)A0(−t) + A1(t)) + 4µν u2v sin4 t

2
+ 2µη w

(
u2(A2(t)

−A4(t)) + 2uwA5(t) + w2A6(t) + 2uvA7(t) + tvwA8(t)
)
,

y12(t, z) = ν t− ν(A0(t)A0(−t) + A1(t)) + 4µν u v2 sin4 t

2
+ 2µη w

(
v2(A2(t)

−A4(t)) + 2vwA5(t) + w2A6(t) + 2uvA7(t) + tuwA8(t)
)
,

y32(t, z) = −νet+sin tA0(−t).

So from (7)

g2(z) =

(
ν π − ν

2
A1(2π) + µη w

(
u2(A2(2π)− A4(2π)) + 2uwA5(2π)

+w2A6(2π) + 2uvA7(2π) + 2πvwA8(2π)
)
, ν π − ν

2
A1(2π)

+µη w
(
v2(A2(2π)− A4(2π)) + 2vwA5(2π) + w2A6(2π)

+2uvA7(2π) + 2πuwA8(2π)
)
, −ν

2
A0(−2π)

)
.

Using now the formulae (21) we obtain

γ2(u, v) =
νA0(−2π)

1− e−2π ,

and

f2(u, v) =

(
πν +

νA0(2π)A0(−2π)

2(e2π − 1)
− νA1(2π)

2
,

πν +
νA0(2π)A0(−2π)

2(e2π − 1)
− νA1(2π)

2

)
= (0 , 0).

The last equality was obtained by substituting the value of ν given in (10).
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Now using the formulae (8) and (6) we compute, respectively,

g3(u, v, 0) =
(
− ξA10(2π)− µ v(2πν + ν(A9(2π) + A11(2π)) , −ξA10(2π)

−µu(2πν + ν(A9(2π) + A11(2π)) , ξA12(2π)
)
,

γ3(u, v) =
6ξA12(2π)

e−2π − 1
.

So from (5) we obtain

f3(u, v) = M


 u

v


− ξ χ,

where

M =


 0 2πµν K

2πην K 0


 , χ =




A10(2π) +
A0(2π)A12(2π)

e2π − 1

A10(2π) +
A0(2π)A12(2π)

e2π − 1


 ≈




4.178

4.178


 ,

and

K =
(e2π − 1)(A1(2π) + A9(2π) + A11(2π))− (A0(2π) + e2πA2(2π))A0(−2π)

A0(2π)A0(2π) + (e2π − 1)A1(2π)

≈ 0.225.

From the hypotheses we have that detM 6= 0. Hence there exists a solution
(u∗, v∗) of the linear system f3(u, v) = 0 such that det(Df3(u

∗, v∗)) 6= 0. The
proof follows by computing (u∗, v∗) = M−1χ and applying Theorem (1). �
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