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Abstract. In this paper we consider analytic planar differential systems having a first integral of the
form H(x, y) = A(x) + B(x)y + C(x)y2 and an integrating factor κ(x) not depending on y. Our aim
is to provide tools to study the period function of the centers of this type of differential system and
to this end we prove three results. Theorem A gives a characterization of isochronicity, a criterion to
bound the number of critical periods and a necessary condition for the period function to be monotone.
Theorem B is intended for being applied in combination with Theorem A in an algebraic setting that we
shall specify. Finally, Theorem C is devoted to study the number of critical periods bifurcating from the
period annulus of an isochrone perturbed linearly inside a family of centers. Four different applications
are given to illustrate these results.

1 Introduction

The present paper is concerned with the period function of centers. A critical point p of a planar differential
system is a center if it has a punctured neighbourhood that consists entirely of periodic orbits surrounding p.
The largest punctured neighbourhood with this property is called the period annulus of the center and, in
what follows, it will be denoted by P. The period function of the center assigns to each periodic orbit in P
its period. If the period function is constant, then the center is said to be isochronous. Since the period
function is defined on the set of periodic orbits in P, in order to study its qualitative properties usually
the first step is to parameterize this set. This can be done, for instance, by taking a transversal section
on P or, in case that the differential system has global a first integral, by using the energy level of the
periodic orbits. If {γs}s∈(0,1) is such a parameterization, then s 7−→ T (s) :={period of γs} is a smooth map
that provides the qualitative properties of the period function that we are concerned about. In particular
the existence of critical periods, which are isolated critical points of this function, i.e., ŝ ∈ (0, 1) such that
T ′(s) = α(s − ŝ)k + o

(
(s − ŝ)k

)
with α 6= 0 and k > 1. In this case we shall say that γŝ is a critical

periodic orbit of multiplicity k of the center. One can readily see that the number, character (maximum or
minimum) and distribution of the critical periods do not depend on the particular parameterization of the
set of periodic orbits used.

Questions related to the behaviour of the period function have been extensively studied. Let us quote,
for instance, the problems of isochronicity (see [9, 11, 25]), monotonicity (see [5, 33, 34]) or bifurcation of
critical periods (see [6, 10, 20]). These are in fact subproblems of a more general question that asks for a
bound (if any) on the number of critical periods that a given a family of centers can have. In this regard
the most studied family is the quadratic one. According to Chicone’s conjecture, see [6, 7], if a quadratic
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system has a center with a non monotonic period function then, by an affine transformation and a constant
rescaling of time, it can be transformed to the Loud normal form and, in this case, it has at most two
critical periods. This conjecture is the analogue for the period function of the second part of Hilbert’s 16th
problem for quadratic systems (see [31]), which asks for a bound on the number of limit cycles that these
systems can have. This similarity is not only conceptual but also in the techniques used and in the degree
of difficulty. Chicone’s conjecture has attracted interest of many authors (see [8, 12, 14, 16, 23, 24, 27, 34, 35]
and references therein) and there is much analytic evidence that it is true. The majority of the results are
concerned about monotonicity because there is a lack of tools to investigate centers with non monotonic
period function. To our knowledge the only exception to this are [23, 24, 36, 37], which succeed in studying
quadratic centers with non monotonic period function by showing that it verifies a Picard-Fuchs equation.
The problem with this approach is that we must have a rational first integral to begin with.

The goal of the present paper is to provide tools to bound the number of critical periods of a center.
Thus, Theorem A can be viewed as the continuation of the results in [29], where similar tools are developed
for potential systems. We generalize them to consider a wider class of differential systems, which includes
the ones in Loud normal form. The second result that we obtain, Theorem B, is addressed to an algebraic
setting where Theorem A is particularly useful. Finally, Theorem C is devoted to bound the number of
critical periods bifurcating from the period annulus of an isochronous center. Let us note in this regard that
in our opinion it is lacking an accurate definition of this notion in the literature. In this paper we propose
one, see Definition 2.3, which is in fact more general because it can also be applied to the critical periods
bifurcating from a center or a polycycle.

The organization of the paper is as follows. Section 2 is devoted to introduce the definitions of the
notions used henceforth and to state the main results. Then, after proving some preliminary lemmas,
we show Theorems A, B and C in Section 3. In Section 4 we give four different applications of these
results. More precisely, Proposition 4.1 constitutes a new result, whereas in Propositions 4.2, 4.3 and 4.4 we
revisit already known results with the aim of showing the simplicity of our tools in relation to the previous
approaches.

2 Definitions and statement of the results

Throughout the present paper we understand an analytic planar differential system

{
ẋ = p(x, y),

ẏ = q(x, y,
(1)

to be given and that it satisfies the following standing hypothesis:

(H)
The differential system (1) has a center at the origin and an analytic first integral
of the form H(x, y) = A(x) + B(x)y + C(x)y2 with A(0) = 0. In addition its
integrating factor, say κ, depends only on x.

Let us point out that the center at the origin can be degenerate or not. Moreover, for the sake of simplicity
in the exposition, we suppose that the differential system (1) is defined on the whole plane, although with
the obvious modifications the results also hold in case that it is defined on a neighbourhood of the origin.

Our first result, Theorem A, extends the results obtained in [29] for potential systems to systems verifying
hypothesis (H). Note in this regard that the potential systems correspond to B ≡ 0 and constant C and κ.
In order to state it some additional definitions are needed. Henceforth (x`, xr) will be the interval obtained
by projecting on the x-axis the period annulus P of the center at the origin of the differential system (1).
Note then that 0 ∈ (x`, xr). Moreover we define

M :=
4AC −B2

4|C| . (2)
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The hypothesis (H) implies, see Lemma 3.1, that M is a well defined analytic function on (x`, xr) with
M(0) = 0 and xM ′(x) > 0 for all x ∈ (x`, xr) \ {0}. Accordingly there exist a unique analytic function σ on
(x`, xr) with σ(x) = −x+ o(x) such that M = M ◦ σ. Note that σ is an involution with σ(0) = 0. (Recall
that a mapping σ is said to be an involution if σ ◦ σ = Id and σ 6= Id.) Given an analytic function f on
(x`, xr) \ {0} we define its σ-balance to be

Bσ

(
f
)
(x) :=

f(x)− f
(
σ(x)

)

2
.

Taking these definitions into account, the first result of the present paper is the following:

Theorem A. Suppose that the analytic differential system (1) satisfies the hypothesis (H). Setting µ0 = −1,
define recursively

µi :=

(
1

2
+

1

2i− 3

)
µi−1 +

√
|C|M

(2i− 3)κ

(
κµi−1√
|C|M ′

)′
and `i :=

κµi√
|C|M ′

for i > 1.

Then the center at the origin verifies the following:

(a) It is isochronous if, and only if, Bσ(`1) ≡ 0, which in turn is equivalent to Bσ(`i) ≡ 0 for all i > 1.

(b) If the number of zeros of Bσ(`i) on (0, xr), counted with multiplicities, is n > 0 and it holds that i > n,
then the number of critical periods of the center, counted with multiplicities, is at most n.

(c) If the period function is monotone, then Bσ(g) is monotone on (0, xr), where

g(x) :=
1√
M(x)

∫ x

0

κ(s) ds√
|C(s)|

.

We stress that the statement in (b) can be used to show monotonicity, which corresponds to take n = 0.
Let us advance that the proof of Theorem A has two main ingredients. The first one is Lemma 3.2, which
provides a coordinate transformation that conjugates any differential system verifying hypothesis (H) with
a potential system. The second ingredient is of course the results obtained in [29].

Remark 2.1. Since Bσ(f◦ σ) = −Bσ(f) for any function f and σ maps the interval (0, xr) to (x`, 0), one
can replace (0, xr) by (x`, 0) in the statement of Theorem A. �

The main difficulty to apply Theorem A is that in general it is not possible to compute the involution σ
explicitly. If σ and `i are algebraic functions, then one can bypass this inconvenience by taking advantage
of the multipolynomial resultant (see [3, 13]). This was already used in the applications that appear in [29]
without taking the multiplicity into account. Our second result goes futher in this approach. More concretely
we prove the following:

Theorem B. Let σ be an analytic involution on (x`, xr) with σ(0) = 0 and let ` be an analytic function on
(x`, xr)\{0}. Assume that ` and σ are algebraic, i.e., that there exists L, S ∈ C[x, y] such that L

(
x, `(x)

)
≡ 0

and S
(
x, σ(x)

)
≡ 0. Let us define T (x, y) := Resz

(
L(x, z), L(y, z)

)
and R(x) := Resy

(
S(x, y), T (x, y)

)
.

Finally let s(x) and t(x) be, respectively, the leading coefficients of S(x, y) and T (x, y) with respect to y.
Then the following hold:

(a) If Bσ

(
`
)
(x0) = 0 for some x0 ∈ (x`, xr) \ {0}, then R(x0) = 0.

(b) If s(x) and t(x) do not vanish simultaneously at x0, then the multiplicity of Bσ

(
`
)

at x0 is not greater
than the multiplicity of R at x0.
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Although Theorem B is conceived to be used in combination with Theorem A, it can also be useful
in other situations where studying the zeros of some σ-balance is needed. This is the case for instance of
the criterions proved in [19, 30], that give sufficient conditions for a collection of Abelian integrals to have
some kind of Chebyshev property. One can also take the following remark into account when applying
Theorem B.

Remark 2.2. Since Res(fg, h) = Res(f, h) Res(g, h), we can factorize T = T1T2 . . . Tk, cross out any Ti
such that Ti

(
x, σ(x)

)
6= 0 for all x ∈ (x`, xr) and apply Theorem B with the resulting polynomial. Moreover,

a sufficient condition for σ to be algebraic is that the function M such that M = M ◦σ is algebraic. Indeed,
if P

(
x,M(x)

)
≡ 0 with P ∈ C[x, y], then it turns out that S(x, y) := Resz

(
P (x, z), P (y, z)

)
is a polynomial

verifying S
(
x, σ(x)

)
≡ 0. �

Let us turn now to the statement of our last result, which is concerned with the bifurcation of critical
periods from the period annulus of an isochrone. Since in our opinion it is lacking an accurate definition of
this notion in the literature, we begin by proposing one. As a matter of fact, with the aim of applying it in
other problems, this definition is addressed to a more general setting. So consider a family Xν of analytic
planar vector fields that depend analytically on a parameter ν ∈ Rn. Suppose in addition that the origin is
a center of Xν for all ν.

Definition 2.3. Let L be an invariant set of Xν̄ . We define the criticality of the pair (L,Xν̄) with respect
to the deformation Xν to be

Crit
(
(L,Xν̄), Xν

)
:= sup

{
NK : K ⊂ L,K is a compact invariant set of Xν̄

}

where, for such a K, NK is the smallest integer having the property that there exists a neighbourhood V
of K and δ > 0 such that, for every ν with ‖ν − ν̄‖ < δ, the vector field Xν has no more than NK critical
periodic orbits contained in V. �

In other words, what we call the criticality Crit
(
(L,Xν̄), Xν

)
is the maximal number of critical periodic

orbits that tend to L as ν → ν̄. The easiest situation is when L is the center itself because then the criticality
can be computed by studying the ideal generated by the period constants (see [6] for instance). We point
out that Definition 2.3 is a verbatim adaptation to our setting of the notion of cyclicity that L. Gavrilov
introduces in [17] to study the number of limit cycles that bifurcate from an open period annulus. In what
follows we shall assume that the center of Xν̄ is isochronous and we will be concerned about the criticality
of L = P, its period annulus. To state our result we need an additional definition.

Definition 2.4. Let f1, f2, . . . , fn be analytic functions on an interval I of R. We say that {f1, f2, . . . , fn}
is an extended Chebyshev system on I if any nontrivial linear combination α1f1 + α2f2 + . . .+ αnfn has at
most n− 1 zeros on I counted with multiplicities. �

It is well-known that a sufficient condition for {f1, f2, . . . , fn} to be an extended Chebyshev system on I is
that none of the leading principal minors of its Wronskian vanishes on I, see for instance [22].

In our last result we will suppose that the family {Xν , ν ∈ Rn} verifies the hypothesis (H), meaning
that the functions A, B, C and κ depend analytically on ν. Therefore, for each ν, the function M( . ; ν)
defines an involution σ( . ; ν) and, by applying Theorem A, we obtain `i( . ; ν) for i > 1. Then, using also the
notation ν = (ν1, ν2, . . . , νn), we prove the following:

Theorem C. Let {Xν , ν ∈ Rn} be an analytic family of vector fields verifying hypothesis (H). Assume
that the center at the origin is isochronous for ν = ν̄ and let (x`, xr) be the projection on the x-axis of its
period annulus P. Let us define ξ := limx→xr

M(x; ν̄), g(x) := sgn(x)
√
M(x; ν̄) and, for k = 1, 2, . . . , n,

Lk(x) :=
L̂k
(√
x
)
− L̂k

(
−√x

)
√
x

, where L̂k :=

(
∂`n( . ; ν̄)

∂νk
− `′n( . ; ν̄)

M ′( . ; ν̄)

∂M( . ; ν̄)

∂νk

)
◦ g−1.
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If {L1, L2, . . . , Ln} is an extended Chebyshev system on [ 0, ξ), then the criticality of the pair (P, Xν̄) with
respect to any one-parameter regular deformation Xν(ε) with ν(0) = ν̄ is at most n− 1.

By a one-parameter regular deformation we mean to take a germ of analytic curve ε 7−→ ν(ε) which is
regular at ν(0) = ν̄, i.e., such that ν′(0) 6= 0. We stress that it is not known whether the maximal number
of critical periodic orbits bifurcating from P under a given multi-parameter deformation Xν is achieved
by some one-parameter deformation Xν(ε). However it constitutes an easier problem that gives information

about the criticality Crit
(
(L,Xν̄), Xν

)
. For reader’s convenience, we recall the standard approach to study

one-parameter deformations. To this end let ζ : (0, 1) −→ R2 be an analytic transversal section to Xν̄ on P
and, for each s ∈ (0, 1), let T (s; ν) be the period of the periodic orbit of Xν passing through ζ(s). Then
one considers the Taylor development of T (s; ν(ε)) at ε = 0, say T (s; ν(ε)) =

∑
i>0 Ti(s)ε

i. Note that T0

is constant because by assumption the center is isochronous for ε = 0. Hence, if the center of Xν(ε) is
non-isochronous for ε 6= 0, there exists some ` > 1 such that

T ′(s; ν(ε)) = T ′`(s)ε
` + o(ε`),

where T ′` is not identically zero and the remainder is uniform in s on each compact subinterval of (0, 1).
In this case one can readily show, by applying the Weierstrass Preparation Theorem, that the number
of zeros of T ′`(s) for s ∈ (0, 1), counted with multiplicities, is an upper bound for the number of critical
periods that bifurcate from P. A lower bound is given by the number of simple zeros of T ′`(s) in (0, 1)
by using the Implicit Function Theorem. To our knowledge all the previous papers addressed to this issue
(see [4, 10, 15, 16, 20]) follow this approach after computing a formula for T ′1 and T ′2. Note in this regard
that T ′1 6≡ 0 only in case that the deformation is regular, so that as a matter of fact this assumption is
implicitly required in those papers as well. This approach is similar to the use of the so called Melnikov
functions for studying the bifurcation of limit cycles arising from the perturbation of an integrable center.
In the present paper we tackle the problem in a different way, instead of expanding the period function
in ε, we expand the “test function” Bσ(`i) given by Theorem A. This lead us to introduce the notion of
criticality, see Definition 2.3, which is more general than the one used in the papers quoted above, even
for the case L = P. Indeed, the latter is addressed to one-parameter deformations only and, in this case,
it is defined to be the number of simple zeros of T ′` . Besides the novelty in our approach, the interest of
Theorem C lies in the fact that it is extremely easy to apply in comparison with the results appearing in
the previous papers. We illustrate this with Proposition 4.3, that reproves a result appearing in [15].

Let us conclude this section with an open problem concerning Definition 2.3. Is it true that the criticality
of (P, Xν̄) under a given multi-parameter analytic deformation Xν can be achieved by an appropriate one-
parameter analytic deformation Xν(ε), provided that this criticality is finite? L. Gavrilov proves in [18] the
analogue property for the cyclicity of an open period annulus by using techniques that seem feasible to be
adapted to the problem for critical periods.

3 Proof of the main results

Our first result shows that the function M , as introduced in (2), defines an involution σ on (x`, xr).

Lemma 3.1. If the analytic differential system (1) satisfies the hypothesis (H), then

(a) κ and C are nonvanishing on (x`, xr).

(b) M is an analytic function on (x`, xr) with M(0) = 0 and xM ′(x) > 0 for all x 6= 0.

Proof. Let us fix some x̄ ∈ (x`, xr). Since there are periodic orbits in P intersecting twice the straight-line
x = x̄ and H is constant on the integral curves of (1), there exist y1, y2 ∈ R with y1 < y2 such that
H(x̄, y1) = H(x̄, y2). Due to H(x̄, y) = A(x̄) +B(x̄)y+C(x̄)y2, it follows that (x̄, y) ∈P for all y ∈ [y1, y2]
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and C(x̄) 6= 0. This, on account of the analyticity of p(x, y) = −B(x)+2C(x)y
κ(x) implies that κ(x̄) 6= 0. This

proves (a). We claim that H(p) 6= 0 for all p ∈P. To show this let us note that H(0, 0) = 0 and

∇H(x, y) = κ(x)
(
q(x, y),−p(x, y)

)
. (3)

By contradiction, suppose that there exists p̂ ∈ P such that H(p̂) = 0. Let γ̂ be the periodic orbit of (1)
passing through p̂ and note that H(p) = 0 for all p ∈ γ̂. Let U be the bounded component of R2 \ {γ̂}.
By compactness, H takes the maximum and minimum on Ū . Since H vanishes on γ̂ and the origin, this
implies that there exists at least one point (x0, y0) ∈ U \ {(0, 0)} such that ∇H(x0, y0) = (0, 0). This is not
possible because, on account of (3) and κ(x0) 6= 0, then (x0, y0) would be a critical point of (1) inside P.
So the claim is true.

In what follows we suppose, without lost of generality, that H is positive on P. In order to show (b) note
first that M(0) = 0 because B(0) = 0, due to q(0, 0) = 0, and A(0) = 0. In addition, since H(0, y) = C(0)y2,
we have that C is positive on (x`, xr). Consider now any x̄ ∈ (x`, xr) \ {0} and take y1, y2 ∈ R with y1 < y2

verifying that H(x̄, y1) = H(x̄, y2) > 0 and (x̄, y) ∈ P for all y ∈ [y1, y2]. If there exits ȳ ∈ R such that
H(x̄, ȳ) = 0 then, due to C(x̄) > 0, it would follow that ȳ ∈ (y1, y2). However this is not possible because
then (x̄, ȳ) ∈P with H(x̄, ȳ) = 0, contradicting the previous claim. Thus A(x̄) +B(x̄)y + C(x̄)y2 = 0 has
no real solutions, which yields (B2 − 4AC)(x̄) < 0. Consequently M(x̄) > 0. Since x̄ is arbitrary, (b) will
follow once we show that M ′(x̄) 6= 0. To this end note that H(x̄, y1) = H(x̄, y2) implies that there exists
ỹ ∈ (y1, y2) such that Hy(x̄, ỹ) = 0. Then Hx(x̄, ỹ) 6= 0, otherwise (x̄, ỹ) ∈P would be a critical point due
to (3). Since ỹ = −

(
B
2C

)
(x̄) and an easy computation shows that

Hx

(
x̄,−

(
B

2C

)
(x̄)

)
= −M

′(x̄)

2
,

we get M ′(x̄) 6= 0. This proves the validity of the result.

The proof of the next result is a straightforward computation that for the sake of shortness is omitted.
The interested reader is referred to [14, Lemma 5] for the idea behind the coordinate transformation used.

Lemma 3.2. Suppose that the analytic differential system (1) satisfies the hypothesis (H). Then

u = f(x) :=

∫ x

0

κ(s) ds√
2|C(s)|

and v =
√

2|C(x)| y +
B(x)√
2|C(x)|

is an analytic change of variables on P that brings system (1) to the potential system {u̇ = −v, v̇ = V ′(u)},
where V (u) =

(
M ◦f−1

)
(u).

The proof of Theorem A strongly relies on the results in [29], which show its validity in the particular
case that (1) is a potential system (i.e., for B ≡ 0, C ≡ 1/2 and κ ≡ 1). For reader’s convenience we restate
these results according to the notation used in the present paper. So let us suppose that the origin is a
center for the potential system {

u̇ = −v,
v̇ = V ′(u),

(4)

where V is an analytic function with V (0) = 0. Let (u`, ur) be the projection on the u-axis of its period
annulus and consider moreover the involution σ̂ defined by V = V ◦ σ̂, which is analytic on (u`, ur). The
following proposition collects the results in [29] that we shall need.

Proposition 3.3. Setting µ̂0 = −1, define recursively

µ̂i :=

(
1

2
+

1

2i− 3

)
µ̂i−1 +

V

2i− 3

(
µ̂i−1

V ′

)′
and ˆ̀

i :=
µ̂i
V ′

for i > 1.

Then the center at the origin of the potential system (4) verifies the following:
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(a) It is isochronous if, and only if, Bσ̂

(
ˆ̀
1

)
≡ 0, which in turn is equivalent to Bσ̂

(
ˆ̀
i

)
≡ 0 for all i > 1.

(b) If the number of zeros of Bσ̂

(
ˆ̀
i

)
on (0, ur), counted with multiplicities, is n > 0 and it holds that i > n,

then the number of critical periods of the center of (4), counted with multiplicities, is at most n.

(c) If the period function is monotone, then Bσ̂

(
Id√
V

)
is monotone on (0, ur).

Proof. Let γh be the periodic orbit of (4) inside the energy level
{

1
2v

2 + V (u) = h
}

and let T (h) be its
period. Then [29, Theorem A] shows that

T ′(h) =
1

hi

∫

γh

µ̂i(u) v2i−3du for all i > 1.

Let the projection of γh on the u-axis be the interval (u−h , u
+
h ). Then V (u±h ) = h, so that σ̂(u+

h ) = u−h , and
0 ∈ (u−h , u

+
h ) for all h. Taking this into account we get

hiT ′(h) = 4

∫ u+
h

0

Pσ̂

(
µ̂i
)
(u)
(
2h− 2V (u)

) 2i−3
2 du, where Pσ̂

(
µ̂i
)
(u) :=

µ̂i(u)− µ̂i
(
σ̂(u)

)
σ̂′(u)

2
.

In order to prove (a) let us suppose first that the center is isochronous. Then, since only non-degenerate
centers can be isochronous, V (0) = V ′(0) = 0 and V ′′(0) 6= 0. One can easily prove by induction that this

implies µ̂i(0) = 0 for all i > 1 and, accordingly, the functions ˆ̀
i are analytic at u = 0. Therefore Pσ̂

(
µ̂i
)

is analytic at u = 0 for all i > 1. Taking this into account and the fact that u±h −→ 0 as h tends to 0, it is
clear from the above expression that T ′ ≡ 0 implies Pσ̂

(
µ̂i
)
≡ 0. This shows that the isochronicity of the

center implies that Bσ̂

(
ˆ̀
i

)
≡ 0 for all i > 1 because, due to V ′(u) = V ′

(
σ̂(u)

)
σ̂′(u), we have that

Bσ̂

(
ˆ̀
i

)
= Bσ̂

(
µ̂i
V ′

)
= V ′Pσ̂

(
µ̂i
)
.

Since the reverse implication is obvious, (a) is proved. The assertion in (b) follows from the above equality as

well because [29, Theorem A] shows that if for some i the number of zeros of Pσ̂

(
ˆ̀
i

)
on (0, ur), counted with

multiplicities, is n < i then the number of critical periods of the center of (4), counted with multiplicities,
is at most n. Finally (c) follows straightforward from [29, Theorem 2.6].

Proof of Theorem A. By applying Lemma 3.2 we know that the coordinate transformation

u = f(x) :=

∫ x

0

κ(s) ds√
2|C(s)|

and v =
√

2|C(x)| y +
B(x)√
2|C(x)|

brings system (1) to the potential system (4) with V := M ◦ f−1. The period annulus of the center of
the latter system is the image of P by the above coordinate transformation and (u`, ur) = f

(
(x`, xr)

)
.

Moreover the involution defined by V is σ̂ := f ◦ σ ◦ f−1, where recall that σ is the one defined by M.
Indeed, the equality V (u) = V

(
σ̂(u)

)
writes as

(
M ◦f−1

)
(u) =

(
M ◦f−1

)(
σ̂(u)

)
, which is equivalent to

M
(
f−1(u)

)
=
(
M ◦ σ

)(
f−1(u)

)
, and this is true because M = M ◦ σ by definition.

We apply Proposition 3.3 to this potential system and we thus obtain the functions µ̂i and ˆ̀
i defined in

its statement in terms of V = M ◦f−1 and σ̂ = f ◦ σ ◦ f−1. We claim that µ̂i = µi ◦f−1 for all i > 0. We
prove this by induction. The base case i = 0 is obvious because µ0 = µ̂0 = −1. To show the inductive step
we note that

f ′ =
κ√
2|C|

and V ′ =
M ′

f ′
◦ f−1 =

√
2|C|M ′
κ

◦ f−1. (5)
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Thus, since µ̂i−1 = µi−1 ◦f−1 by the inductive hypothesis, we obtain

µ̂i =

(
1

2
+

1

2i− 3

)
µ̂i−1 +

V

2i− 3

(
µ̂i−1

V ′

)′

=

(
1

2
+

1

2i− 3

)
µi−1 ◦f−1 +

M ◦ f−1

2i− 3

(
κµi−1√
2|C|M ′

◦f−1

)′

=

(
1

2
+

1

2i− 3

)
µi−1 ◦f−1 +

( √
|C|M

(2i− 3)κ

(
κµi−1√
|C|M ′

)′)
◦f−1.

Hence µ̂i = µi ◦f−1, and so the claim is true. Consequently we get that

Bσ̂

(
ˆ̀
i

)
(u) = Bσ̂

(
µ̂i
V ′

)
(u) = Bσ̂

(
κµi√
2|C|M ′

◦f−1

)
(u)

=

(
κµi√
2|C|M ′

)
(
f−1(u)

)
−
(

κµi√
2|C|M ′

)
(
f−1(σ̂(u))

)

=

(
κµi√
2|C|M ′

)
(
f−1(u)

)
−
(

κµi√
2|C|M ′

)
(
σ(f−1(u))

)

= Bσ

(
κµi√
2|C|M ′

)
(
f−1(u)

)
=

Bσ

(
`i
)(
f−1(u)

)
√

2
.

The first equality above follows from the definition of ˆ̀
i, the second one taking (5) and µ̂i = µi ◦f−1 into

account, while in the third one we use the definition of σ̂-balance. We obtain the fourth equality using that
σ̂ = f ◦ σ ◦ f−1 and, finally, we get the fifth and sixth equalities from the definitions of σ-balance and `i,
respectively. Accordingly Bσ

(
`i
)

=
√

2 Bσ̂

(
ˆ̀
i

)
◦f and, since f maps diffeomorphically (x`, xr) to (u`, ur)

with f(0) = 0, it is clear that (a) and (b) follow, respectively, by applying (a) and (b) in Proposition 3.3.

Finally, in order to prove (c) we note that

Bσ̂

(
Id√
V

)
(u) =

u√
V (u)

− σ̂(u)√
V
(
σ̂(u)

) =

(
f ◦ f−1

)
(u)√(

M ◦f−1
)
(u)
− σ̂(u)√(

M ◦f−1
)(
σ̂(u)

)

=

(
f ◦ f−1

)
(u)√(

M ◦f−1
)
(u)
−

(
f ◦ σ ◦ f−1

)
(u)√(

M ◦ σ ◦f−1
)
(u)

= Bσ

(
f√
M

)(
f−1(u)

)
.

Therefore Bσ̂

(
Id√
V

)
◦f = Bσ

(
f√
M

)
and so the assertion in (c) follows by applying (c) in Proposition 3.3

because f is a diffeomorphism. This proves the result.

Proof of Theorem B. By a well-known property of the resultant, see [3, Chapter 3], T (x, y) is inside the
ideal generated by L(x, z) and L(y, z) in C[x, y, z]. Therefore

T (x, y) = a(x, y, z)L(x, z) + b(x, y, z)L(y, z) for some a, b ∈ C[x, y, z]. (6)

This implies that T (x̄, ȳ) = 0 at any point such that `(x̄) = `(ȳ). Indeed, this follows by evaluating the
above equality at (x̄, ȳ, z̄), where z̄ = `(x̄) = `(ȳ), and using that, by hypothesis, L

(
x, `(x)

)
≡ 0. Thus

S(x, y) = 0 if y = σ(x) and T (x, y) = 0 if `(x) = `(y). (7)
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Suppose that Bσ

(
`
)
(x) = `(x) − `

(
σ(x)

)
has a zero at x0 ∈ (x`, xr) \ {0}. Let us define y0 := σ(x0) and

p0 := (x0, y0). Then, on account of (7), the algebraic curves S = 0 and T = 0 intersect at p0 ∈ R2. Hence,
due to R(x) = Resy

(
S(x, y), T (x, y)

)
, this shows that R(x0) = 0 and so (a) follows.

Let us turn now to the proof of (b). In what follows C{x, y} will denote the ring of convergent power
series. Recall, see [21, §3.2] for instance, that if g ∈ C{x, y} is irreducible then the intersection multiplicity
of any f ∈ C{x, y} with g is given by

i0(f, g) := ordt f
(
x(t), y(t)

)
= sup

{
m ∈ N : tm divides f

(
x(t), y(t)

)}
,

where t 7−→
(
x(t), y(t)

)
is a parametrization for the plane curve germ defined by g. In case that g = g1g2 . . . gs

with gi irreducible, then i0(f, g) := i0(f, g1) + . . . + i0(f, gs). For convenience we translate p0 = (x0, y0) to
the origin by setting Ŝ(x, y) := S(x+x0, y+ y0) and T̂ (x, y) := T (x+x0, y+ y0). The polynomial Ŝ may be
irreducible or not in C{x, y} but, since the intersection multiplicity is additive with respect to the branches
and Ŝ

(
t, σ(t+ x0)− y0

)
= 0 for all t ≈ 0, we have that

ip0(S, T ) = i0(Ŝ, T̂ ) > ordt T̂
(
t, σ(t+ x0)− y0

)
= ordt T

(
t+ x0, σ(t+ x0)

)
. (8)

Let us set L̂(x, z) := L
(
x+ x0, z+ `(x0)

)
. Then, on account of L̂(x, z) = 0 for z = `(x+ x0)− `(x0) and the

fact that x 7−→ `(x+x0)− `(x0) is analytic at x = 0, the Weierstrass Division Theorem, see [1, pp. 238–339]
or [21, Theorem 1.8], easily implies that z − `(x+ x0) + `(x0) divides L̂(x, z) as elements of C{x, z}. Hence
L̂(x, z) = U (x, z)

(
z − `(x+ x0) + `(x0)

)
with U ∈ C{x, z}. Accordingly

L(x, z) = U
(
x− x0, z − `(x0)

)(
z − `(x)

)
for x ≈ x0 and z ≈ `(x0).

Since `(x0) = `(y0), we can evaluate the above expression at z = `(y) with y ≈ y0. In doing so we obtain

L
(
x, `(y)

)
= U

(
x− x0, `(y)− `(x0)

)(
`(y)− `(x)

)
for (x, y) ≈ (x0, y0).

Therefore, on account of L
(
y, `(y)

)
≡ 0, from (6) we get that if (x, y) ≈ (x0, y0) then

T (x, y) = a
(
x, y, `(y)

)
L
(
x, `(y)

)
= a

(
x, y, `(y)

)
U
(
x− x0, `(y)− `(x0)

)(
`(y)− `(x)

)
.

Due to y0 = σ(x0), we can evaluate this expression at x = t+x0 and y = σ(t+x0) with t ≈ 0 and conclude
that ordt T

(
t+ x0, σ(t+ x0)

)
> ordt

{
`(t+ x0)− `

(
σ(t+ x0)

)}
= mult

(
Bσ(`), x0

)
. Thus, from (8),

mult
(
Bσ(`), x0

)
6 ip0(S, T ). (9)

Let us suppose finally that {(x0, y) ∈ C2 : S(x0, y) = T (x0, y) = 0} = {p0, p1, . . . , pd}. Then, taking into
account that R(x) = Resy

(
S(x, y), T (x, y)

)
, we get

mult(R, x0) =
d∑

k=0

ipk(S, T ) > ip0(S, T ). (10)

The first equality above is a well-known result on intersection theory (see [2, Proposition 5] or [13, §1.6])
and it is here where the assumption that s(x) and t(x) do not vanish simultaneously at x = x0 is needed.
Thus (b) follows because (9) and (10) imply that mult

(
Bσ(`), x0

)
6 mult(R, x0), as desired. This finishes

the proof of the result.

The next result is a “local version” of the assertion (b) in Theorem A. In its statement, and in what
follows, for a given periodic orbit γ̄, Int (γ̄) stands for the bounded connected component of R2 \ {γ̄}.
Lemma 3.4. Following the notation in Theorem A, suppose that the number of zeros, counted with multi-
plicities, of Bσ(`i) on (0, x̄), where x̄ < xr, is n > 0 and that it holds i > n. Then system (1) has at most
n− 1 critical periodic orbits in Int (γ̄), where γ̄ is the periodic orbit inside the level curve {H = M(x̄)}.
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Proof. To show this it suffices to note that the discriminant of A(x)+B(x)y+C(x)y2 = M(x̄) with respect
to y is M(x)−M(x̄), so that the projection of γ̄ on the x-axis is

(
σ(x̄), x̄

)
, and then the result follows by

applying (b) in Theorem A to the “period annulus” Int (γ̄) \ {(0, 0)}.

Proof of Theorem C. Let ε 7−→ ν(ε) be a germ of analytic curve regular at ν = ν̄, i.e., such that
ν(ε) = ν̄ + ν̂ε + o(ε) with ν̂ ∈ Rn \ {0}, and consider the one-parameter family of centers Xν(ε), which by

assumption verifies the hypothesis (H). Then, by (b) in Lemma 3.1, M
(
x; ν(ε)

)
= a(ε)x2k + o(x2k) with

a(ε) > 0 and k ∈ N. Since the center at the origin is isochronous for ε = 0, and only non-degenerated centers
can be isochronous, we have that k = 1. Hence

gε(x) := sgn(x)
√
M(x; ν(ε)) = x

√
M(x; ν(ε))

x2

is an analytic diffeomorphism on the projection of the period annulus of Xν(ε) on the x-axis. Note moreover

that gε(0) = 0 and σ(x; ν(ε)) = g−1
ε

(
−gε(x)

)
, where recall that σ( . ; ν) is the involution defined by M( . ; ν).

Therefore, if we define

F (x; ν) := `n(x; ν)− `n
(
σ(x; ν); ν

)
,

then x 7−→ F
(
g−1
ε (x); ν(ε)

)
is an odd function, so that

F
(
g−1
ε (
√
x ); ν(ε)

)
√
x

=
`n
(
g−1
ε (
√
x ); ν(ε)

)
− `n

(
g−1
ε (−√x ); ν(ε)

)
√
x

is analytic at x = 0. Since, by (a) in Theorem A, F (x; ν(0)) = 0 for all x, it follows that

∂

∂ε

F
(
g−1
ε (
√
x ); ν(ε)

)
√
x

∣∣∣∣∣
ε=0

=
1√
x

n∑

k=1

ν̂k
∂F
(
g−1

0 (
√
x ); ν(0)

)

∂νk
,

where we write the perturbative direction as ν̂ = (ν̂1, ν̂2, . . . , ν̂n). In order to compute the partial derivative
Fνk( . ; ν̄) we first note that F (x; ν̄) ≡ 0 implies `′n

(
x; ν̄
)
− `′n

(
σ(x; ν̄); ν̄

)
σ′(x; ν̄) = 0 for all x. Consequently

`′n
(
σ(x; ν̄); ν̄

)
=
`′n(x; ν̄)

σ′(x; ν̄)
. (11)

Similarly, M(x; ν) = M
(
σ(x; ν); ν

)
for all x and ν, implies

M ′
(
σ(x; ν̄); ν̄

)
=
M ′(x; ν̄)

σ′(x; ν̄)
(12)

and Mνk(x; ν̄) = M ′
(
σ(x; ν̄); ν̄

)
σνk(x; ν̄) +Mνk

(
σ(x; ν̄); ν̄

)
. The combination of these two equalities yields

σνk(x; ν̄)

σ′(x; ν̄)
=
Mνk(x; ν̄)−Mνk

(
σ(x; ν̄); ν̄

)

M ′(x; ν̄)
=

Bσ̄

(
Mνk( . ; ν̄)

)
(x)

M ′(x; ν̄)
, (13)

where recall that σ̄ = σ( . ; ν̄). Note in addition that, from (11) and (12), we obtain

`′n
(
σ̄(x); ν̄

)

M ′
(
σ̄(x); ν̄

) =
`′n
(
x; ν̄
)

M ′
(
x; ν̄
) . (14)
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By using these identities we get that

∂F (x; ν̄)

∂νk
=
∂`n(x; ν̄)

∂νk
− ∂`n

(
σ(x; ν̄); ν̄

)

∂νk
− `′n

(
σ(x; ν̄); ν̄

)∂σ(x; ν̄)

∂νk

= Bσ̄

(
∂`n( . ; ν̄)

∂νk

)
(x)− `′n(x; ν̄)

σ′(x; ν̄)

∂σ(x; ν̄)

∂νk

= Bσ̄

(
∂`n( . ; ν̄)

∂νk

)
(x)− `′n(x; ν̄)

M ′(x; ν̄)
Bσ̄

(
∂M( . ; ν̄)

∂νk

)
(x)

= Bσ̄

(
∂`n( . ; ν̄)

∂νk
− `′n( . ; ν̄)

M ′( . ; ν̄)

∂M( . ; ν̄)

∂νk

)
(x).

To be more precise, in the first equality above we take the definition of F into account, whereas the second
and third equalities follow by using (11) and (13), respectively. Finally the fourth equality follows from (14).
Hence, on account of the definition of L̂k, we have proved that

∂F (x; ν̄)

∂νk
= Bσ̄

(
L̂k◦ g0

)
(x) = L̂k

(
g0(x)

)
− L̂k

(
−g0(x)

)
,

where in the last equality we take σ̄(x) = g−1
0

(
−g0(x)

)
into account. Consequently

1√
x

∂F
(
g−1

0 (
√
x ); ν(0)

)

∂νk
=
L̂k(
√
x )− L̂k(−√x )√

x
= Lk(x).

Accordingly, since F
(
. ; ν(0)

)
= 0, we can assert that

F
(
g−1
ε (
√
x ); ν(ε)

)
√
x

= ε

n∑

k=1

ν̂kLk
(
x
)

+ o(ε).

Recall at this point that, by hypothesis, {L1, L2, . . . , Ln} is an extended Chebyshev system on [0, ξ).
Define hα := ξ−α2 if ξ is finite and hα := 1/α2 otherwise. Then ν̂1L1 + ν̂2L2 + . . .+ ν̂nLn has at most n−1
zeros on [0, hα], counted with multiplicities, for any α ≈ 0. By the Weierstrass Preparation Theorem and an
easy compactness argument, there exits ε0 > 0 such that if ε ∈ (−ε0, ε0)\{0}, then x 7−→ F

(
g−1
ε (
√
x ); ν(ε)

)

has at most n− 1 zeros for x ∈ [0, hα], counted with multiplicities. Next we perform the change of variable
u = g−1

ε (
√
x ), which satisfies M

(
u; ν(ε)

)
= x and, for ε = 0, maps the interval (0, ξ) to (0, xr). In doing

so, due to hα −→ ξ as α tends to zero, we can assert that for all δ > 0 there exists ε0 > 0 such that if
ε ∈ (−ε0, ε0) \ {0}, then

F
(
u; ν(ε)

)
= `n

(
u; ν(ε)

)
− `n

(
σ(u; ν(ε)); ν(ε)

)

has at most n − 1 zeros for u ∈ (0, xr − δ), counted with multiplicities. (Here, and in what follows, we
assume xr < +∞. The case xr = +∞ follows exactly the same way replacing xr−δ by 1/δ with the obvious
modifications.) Note at this point that F

(
. ; ν(ε)

)
is precisely the σ

(
. ; ν(ε)

)
-balance of `n

(
. ; ν(ε)

)
.

We claim that the criticality of (P, Xν̄) with respect to Xν(ε) is at most n−1. By contradiction, suppose
that it is greater. Then, see Definition 2.3, there exists a compact invariant set Kc of Xν(0) inside P with
the property that, for any neighbourhood V of Kc and any η > 0, there exists some ρ ∈ (−η, η) such
that Xν(ρ) has at least n critical periodic orbits contained in V. Let Vc be one of these neighbourhoods
verifying that V̄c is compact and inside P. For the sake of clarity we split the proof of the claim:

1. Let δ̄ > 0 be small enough such that the periodic orbit of Xν(0) inside the level curve

{
(x, y) ∈P : H

(
x, y; ν(0)

)
= M

(
xr − δ̄; ν(0)

)}
,

say γ0, satisfies that V̄c ⊂ Int (γ0).
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Figure 1: Sketch of the argument in the proof of Theorem C to show by contradiction
that the criticality of the pair (P, Xν̄) with respect to Xν(ε) is at most n− 1.

2. By continuity, we can take ε̄1 > 0 small enough such that if ε ∈ (−ε̄1, ε̄1), then the periodic orbit
of Xν(ε) inside the level curve

{
(x, y) ∈P : H

(
x, y; ν(ε)

)
= M

(
xr − δ̄; ν(ε)

)}
,

say γε, still verifies that V̄c ⊂ Int (γε).

3. Let ε̄2 > 0 small enough such that, taking any ε with 0 < |ε| < ε̄2, then F
(
x; ν(ε)

)
has at most n− 1

zeros for x ∈ (0, xr − δ̄), counted with multiplicities.

4. Define ε̄3 := min(ε̄1, ε̄2). Then, if ε ∈ (−ε̄3, ε̄3) \ {0}, by applying Lemma 3.4 it follows that Xν(ε) has
at most n− 1 critical periodic orbits inside Int (γε) and, on the other hand, V̄c ⊂ Int (γε). Clearly this
contradicts the fact that, by construction, there exists ρ ∈ (−ε̄3, ε̄3) such that Xν(ρ) has at least n
critical periodic orbits contained in Vc.

This shows the validity of the claim and concludes the proof of the result.

Remark 3.5. It is worth pointing out that in fact we have proved that the criticality of
(
P ∪{(0, 0)}, Xν̄

)

with respect to Xν(ε) is at most n − 1. In other words, the result also applies to the critical periods that
bifurcate from the center. �

4 Applications

The family of the so-called Loud’s dehomogenized centers {Xν , ν ∈ R2}, where ν := (D,F ) and

Xν

{
ẋ = −y + xy,

ẏ = x+Dx2 + Fy2,
(15)

constitutes an appropriate testing ground for the tools developed in the present paper because it is perhaps
the most studied one from the point of view of the period function (see [8,10,14,16,23,24,26–28,34,36,37]
and references therein). This family verifies the hypothesis (H) since κ(x) = (1−x)−2F−1 is an integrating
factor with first integral given by H(x, y) = A(x) + C(x)y2, where

A(x) =

∫ x

0

(s+Ds2)κ(s)ds and C(x) =
1

2
(1− x)−2F .

12



Figure 2: Numerical drawing of the region D in Proposition 4.1.

In fact a computation shows that if F /∈ {0, 1
2 , 1} then A(x) = (1− x)−2F q(x)− q(0), where

q(x) := D
2(F−1) x

2 − D−F+1
(F−1)(2F−1) x+ D−F+1

2F (F−1)(2F−1) . (16)

Our first application concerns with some lower bounds for the number of critical periods of the differential
system (15) established in [27]. To be more precise, Theorem 5.2 in that paper determines a region U in the
parameter plane where the corresponding center has at least two critical periods. We determine a region D
with the same property that, although intersects U , verifies that D\U is nonempty. Accordingly we provide
a new region with at least two critical periods. Figure 2 displays a numerical drawing of D in light grey.
(The dotted line in this figure, which is a component of ∂U , splits D in two regions and D \U is the smallest
one.) In order to state our result we note that the first period constant of the center at the origin of (15) is
given by ∆(ν) := 4F 2−5F+10DF−D+10D2+1, see [27]. Setting U := {ν ∈ R2 : F > 2, F+D > 0, D < 0},
let us define D := {ν ∈ U : ∆(ν) > 0 and L(ν) < 4}, where

L(ν) :=

√
2 (1− ρ)−F

F
√
−q(0)

with ρ :=
F (1 +D − F ) +

√
F (F − 1)(D + F )(F − 1−D)

DF (2F − 1)
.

Taking this notation into account we prove the following:

Proposition 4.1. If ν0 ∈ D then the center at the origin of Xν0 has at least two critical periods.

Proof. First we will show that the period function is not monotone by applying (c) in Theorem A. With
this end in view recall that the involution z = σ(x) is defined by means of M(x) = M(z), which in this case
writes as (1 − x)−2F q(x) = (1 − z)−2F q(z), where q is the second degree polynomial in (16). The implicit
derivation of this equality yields

z = σ(x) = −x− 2

3
(1 +D + 2F )x2 − 4

9
(1 +D + 2F )2x3 + o(x3). (17)

On the other hand an easy computation shows that

g(x) =
1√
M(x)

∫ x

0

κ(s) ds√
|C(s)|

=

√
2

F

(1− x)−F − 1√
(1− x)−2F q(x)− q(0)

and then from (17) it follows that Bσ

(
g
)
(x) = g(x)−g

(
σ(x)

)
= 4+ ∆

9 x
2 +o(x2), where ∆ is the first period

constant of the center. Thus Bσ

(
g
)

is increasing at x = 0 by assumption. If ν ∈ U then, see [27, §3.1], the
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projection on the x-axis of the period annulus of the center of Xν is (−∞, xr) with xr being the smallest
root of q(x) = 0, which one can check it is x = ρ. Thus σ(x) −→ −∞ as x tends to xr = ρ and

lim
x−→xr

Bσ

(
g
)
(x) = lim

x−→xr

(
g(x)− g

(
σ(x)

))
=

√
2

F

(
(1− ρ)−F − 1√

−q(0)
− −1√

−q(0)

)
=

√
2 (1− ρ)−F

F
√
−q(0)

= L,

where in the second equality we used that q(ρ) = 0 with ρ ∈ (0, 1) and that, on account of F > 2, we have
(1 − x)−2F q(x) −→ 0 as x tends to −∞. Clearly Bσ

(
g
)

can not be monotone on (0, xr) in case that it is
increasing at x = 0 and

lim
x−→xr

Bσ

(
g
)
(x) < Bσ

(
g
)
(0).

These conditions are given by ∆ > 0 and L < 4, respectively, and so by (c) in Theorem A we can assert
that the period function is not monotone for ν ∈ U verifying both inequalities. We take now advantage
of [27, Theorem A], which shows that if F > 2 then the period function is increasing near the outer boundary
of P. On the other hand the period function is increasing near the center as well because ∆ > 0. Therefore
if ν0 ∈ D then Xν0 must have at least two critical periods, and this shows the validity of the result.

Part (b) in Theorem A provides a criterion to bound the number of critical periods of a center. Our aim
with the next result is to illustrate its applicability in combination with Theorem B. To this end we reprove
partially the main result in [36], which is devoted to study the period function of system (15) with F = 2.
The author proves that the center is isochronous for D = − 1

2 , it has one critical period for D ∈ (−2,− 7
5 )

and a monotone period function for all the other values. The proof relies upon obtaining a Picard-Fuchs
equation for the period function and it is technically non-trivial. In the next result we use Bσ

(
`2
)

to study

D ∈ (−2, 0). We restrict to this interval for the sake of shortness but one could use Bσ

(
`1
)

similarly to
show the monotonicity for D /∈ (−2, 0).

Proposition 4.2. Consider the center at the origin of system (15) with F = 2 and D ∈ (−2, 0). Then it is
isochronous for D = − 1

2 and it has at most one critical period for D 6= − 1
2 .

Proof. For F = 2 and D ∈ (−2, 0), the projection of P on the x-axis is (−∞, ρ) where x = ρ is the smallest
zero of the second degree polynomial q in (16), see [27, §3.1]. One can also verify that

M(x) =
6x2 + 4(D − 1)x3 − (D − 1)x4

12(1− x)4
and `2(x) =

√
2 (1 + 2D) (x− 1)3 p(x)

144 (1 +Dx)5
,

with p(x) = D(D−1)2x5−2(D−2)(D−1)2x4+(D−1)
(
(10D2−9D+23)x3+60x

)
+(52−56D+40D2)x2+36.

By applying (a) in Theorem A this shows that the center is isochronous for D = − 1
2 .

Consider next the case D 6= − 1
2 . Following (b) in Theorem A, we shall study the zeros of Bσ(`2). To

this end we note that M and `2 are algebraic because P
(
x,M(x)

)
≡ 0 and L

(
x, `2(x)

)
≡ 0 with

P (x, y) = 6x2 + 4(D − 1)x3 − (D − 1)x4 − 12(1− x)4y

and

L(x, y) =
√

2 (1 + 2D) (x− 1)3 p(x)− 144(1 +Dx)5y.

For convenience, see Remark 2.1, we shall prove that Bσ(`2) has at most one root, counted with multiplicity,
on (−∞, 0). One can check that Resz

(
P (x, z), P (y, z)

)
= 12(x− y)S(x, y), where

S(x, y) =
(
6− 17(D − 1)xy − 6Dx2y2

)
(x+ y)

+ (D − 1)
(
4 (1 + xy)(x2 + y2)− x3 − y3

)
+ 4 (7D − 1)(xy − 1)xy,
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so that S
(
x, σ(x)

)
≡ 0. Taking S and L we can thus apply Theorem B to bound the multiplicity of the

zeros of Bσ(`2). Some computations show that T (x, y) := Resz
(
L(x, z), L(y, z)

)
= (1 + 2D)(x− y) T̂ (x, y),

where T̂ is a polynomial of degree 12 with coefficients in R[D]. By Remark 2.2 we can apply Theorem B
taking T̂ instead of T. In doing so we obtain

R(x) := Resy
(
S(x, y), T̂ (x, y)

)
= (D + 1)5(x− 1)6(1 +Dx)4 r̂(x),

where r̂ is a polynomial of degree 30 with coefficients in R[D]. Let us also note that the leading coeffi-
cients of S(x, y) and T̂ (x, y) with respect to y, say s(x) and t(x), do not vanish simultaneously because
Resx

(
s(x), t(x)

)
= −D7(D − 1)4(D + 2)5(D + 1)5 6= 0 for all D ∈ (−2, 0).

We claim that R has at most one zero on (−∞, 0) counted with multiplicity. To show this, for each
D ∈ (−2, 0), denote by Z(D) the number of zeros of r̂ on (−∞, 0), counted with multiplicities. One can check
that r̂(0) = −7776(5D+7)(16D3+24D2+21D+11)(2D+1)2(D−1)3 and that 36D11(D+2)5(D−1)6 is the
leading coefficient of r̂(x). The roots of these two polynomials on (−2, 0) are D = − 7

5 , D = − 1
2 and D = D1

where D1 ≈ −0.8925 is the real zero of 16D3 + 24D2 + 21D + 11. In addition, the discriminant of r̂(x)
with respect to x, say D(D), is a polynomial of degree 1102 in D. After factorizing it, a careful analysis by
applying Sturm’s theorem shows that the only roots of D on (−2, 0) are D ∈ {− 7

5 ,−1,− 1
2 , D2, D3, D4, D5},

with D2 ≈ −1.031, D3 ≈ −0.712, D4 ≈ −0.281 and D5 ≈ −0.037. It is clear therefore that Z(D) for
D ∈ (−2, 0) can only change atD ∈ {− 7

5 ,−1,− 1
2 , D1, D2, D3, D4, D5}. These values split the interval (−2, 0)

into several subintervals, taking a parameter in each one and applying Sturm’s theorem repeatedly we can
assert that Z(D) = 1 for D ∈ (−2,− 7

5 )∪(D1, 0) and Z(D) = 0 for D ∈ (− 7
5 , D1). Accordingly R has at most

one zero on (−∞, 0) counted with multiplicity. Thus, by Theorem B, it follows that if D ∈ (−2, 0) \ {− 1
2}

then Bσ(`2) has at most one zero, counted with multiplicity, on (−∞, 0). On account of (b) in Theorem A,
this proves that the center has at most one critical period for D ∈ (−2, 0) \ {− 1

2}, as desired.

The authors of [15] give a formula in Theorem 2 to study the bifurcation of critical periods from the period
annulus of an isochrone perturbed linearly inside a family of centers. They apply it, see [15, Theorem 3],
to the perturbation of the four quadratic isochrones inside the family of Loud’s dehomogenized centers
{Xν , ν ∈ R2}. To use the mentioned formula, a normalizer and the explicit solution of the isochronous
center are needed. Then the proof of Theorem 3 follows after long and very complicated computations.
In case of centers verifying the hypothesis (H), as the family of Loud’s dehomogenized centers does, the
application of Theorem C simplifies the problem a lot. To illustrate this we reprove the following result,
which corresponds to the case (d) in [15, Theorem 3]. Let us mention that the proof in [15] is particularly
difficult for this case because it involves the complete elliptic integrals of the first and second kinds.

Proposition 4.3. Any one-parameter regular deformation of the isochrone at ν̄ = (− 1
2 , 2) inside the family

{Xν , ν ∈ R2} in (15) gives rise to at most one critical periodic orbit bifurcating from its period annulus.

Proof. For consistency we keep the notation of Theorem C, thus we set ν1 = D and ν2 = F. Some easy

computations show that M(x; ν̄) = x2(x−2)2

8(x−1)4
and that the projection of P on the x-axis is (−∞, 1− 1/

√
2).

Hence xr = 1− 1/
√

2. Moreover, on account of g(x)2 = M(x; ν̄), we get that g−1(x) = 1−
(
1 + 2

√
2x
)−1/2

.
Since one can verify that `2( . ; ν̄) = 0,

∂`2(x; ν̄)

∂ν1
=

(x− 1)3

√
2

and
∂`2(x; ν̄)

∂ν1
=

(x− 1)4

2
√

2
,

some computations show that L̂1(x) = −1√
2

(
1 + 2

√
2x
)−3/2

and L̂2(x) = −1
2
√

2

(
1 + 2

√
2x
)−2

. Accordingly

L1(x) =

(
1− 2

√
2x
)−3/2 −

(
1 + 2

√
2x
)−3/2

√
2x

and L2(x) =
4

(1− 8x)2
.
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A straightforward exercise shows that L′1L2−L1L
′
2 is non-vanishing on [0, xr). Since this is obvious for L2, we

have that L1

L2
is a smooth monotone function on [0, xr), which trivially implies that {L1, L2} is an extended

Chebyshev system there. Now the result follows by applying Theorem C.

We point out that if n = 2, i.e., ν ∈ R2, then the proof of Theorem C also gives the perturbative direction
in order that a critical period bifurcates. For instance, in the previous result we have that {L1, L2} is an
extended Chebyshev system on [0, xr) because L1

L2
is monotone there. Since

(
L1

L2

)
(0) = 3

2 and
(
L1

L2

)
(xr) = 0,

the image of (0, xr) by L1

L2
is (0, 3

2 ). Then it readily follows that the critical period can only appear in case

that the perturbation is given by ν(ε) = ν̄ + εν̂ + o(ε) with ν̂ = (ν̂1, ν̂2) such that − ν̂1ν̂2 ∈ (0, 3
2 ).

Our last application is to illustrate the isochronicity criterion given by (a) in Theorem A. To this end
we show the following result, which was proved previously by Sáez and Szántó [32, Theorem B].

Proposition 4.4. The Kolmogorov cubic system

{
ẋ = x

(
(1− a)(1− 2x)− a(x2 − y2)

)
,

ẏ = y
(
(a− 1)(1− 2y)− a(x2 − y2)

)
,

has an isochronous center at
(

1
2 ,

1
2

)
for all a > 1.

Proof. We first translate the singular point at
(

1
2 ,

1
2

)
to the origin by performing the coordinate transfor-

mation
{
x = 1

2 (1 − u −
√
a− 1v), y = 1

2 (1 − u +
√
a− 1v)

}
. Then, after a constant rescaling of time, the

differential system writes as {
u̇ = v(−1 + 2u− au2),

v̇ = u− u2 + v2 − auv2.

This differential system fulfils the hypothesis (H) because one can check that H(u, v) = u2+v2

1−2u+au2 is a

first integral with integrating factor given by κ(u) = 2
(1−2u+au2)2 . In this case M(u) = u2

1−2u+au2 and

the involution associated to M is the Möbius transformation σ(u) = u
2u−1 . Some computations show that

`1(u) = (1−2u+au2)3/2

2(1−u)3 and one can verify that Bσ

(
`1
)
(u) = 0 for u < 1/2. Therefore by (a) in Theorem A

we can assert that the center is isochronous. This proves the result.
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[26] P. Mardešić, D. Maŕın and J. Villadelprat, On the time function of the Dulac map for families of
meromorphic vector fields, Nonlinearity, 16 (2003) 855–881.
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