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PERIODIC ORBITS IN THE ZERO–HOPF BIFURCATION

OF THE RÖSSLER SYSTEM

JAUME LLIBRE

To the memory of Vasile Mioc

Abstract. A zero-Hopf equilibrium is an isolated equilibrium point whose
eigenvalues are ±ωi ̸= 0 and 0. For a such equilibrium there is no a general
theory for knowing when from this equilibrium bifurcates a small–amplitude
periodic orbit moving the parameters of the system. We provide here an

algorithm for solving this problem. In particular, first we characterize the
values of the parameters for which a zero–Hopf equilibrium point takes place
in the Rössler systems, and we find two one–parameter families exhibiting such

equilibria. After for one of these families we prove the existence of one periodic
orbit bifurcating from the zero–Hopf equilibrium. The algorithm developed for
studying the zero–Hopf bifurcation of the Rössler systems can be applied to
other differential system in Rn.

1. Introduction and statements of the main result

In 1979 Rössler [25] inspired by the geometry of 3-dimensional flows, introduced
several systems as prototypes of the simplest autonomous differential equations
having chaos, the simplicity is in the sense of minimal dimension, minimal number
of parameters and minimal nonlinearities. In MathSciNet appear at this moment
more than 171 articles about the Rössler’s systems.

Rössler invented a series of systems, the most famous is probably

(1)

dx

dt
= ẋ = −y − z,

dy

dt
= ẏ = x + ay,

dz

dt
= ż = bx − cz + xz,

introduced in [25], see also [12]. While the Rössler systems were created for studying
the existence of strange attractors in differential systems of dimension three, many
authors have studied the periodic orbits of these systems depending on their three
parameters a, b and c. A brief summary of the results on the periodic orbits of the
Rössler systems is done in section 2. The integrability of those systems was studied
in [19], see also the references quoted there.
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We remark that in many papers the Rössler system is written into the form

(2)

ẋ = −y − z,

ẏ = x + ay,

ż = b − cz + xz.

The differential systems (1) and (2) are equivalent. Indeed, changing the parameter
b of system (2) by the new parameter b = (c2 − d2)/a, the two equilibrium points
of system (2) are

p± =

(
c ± d

2
,
−c ∓ d

2a
,
c ± d

2a

)
.

Translating to the origin of coordinates the equilibrium p+ system (2) becomes
system (1), after renaming the coefficients of x and z in the equation ż.

A zero–Hopf equilibrium is an equilibrium point of a 3–dimensional autonomous
differential system, which has a zero eigenvalue and a pair of purely imaginary
eigenvalues. Usually the zero–Hopf bifurcation is a two–parameter unfolding (or
family) of a 3-dimensional autonomous differential system with a zero–Hopf equi-
librium. The unfolding has an isolated equilibrium with a zero eigenvalue and a
pair of purely imaginary eigenvalues if the two parameters take zero values, and
the unfolding has different topological type of dynamics in the small neighborhood
of this isolated equilibrium as the two parameters vary in a small neighborhood of
the origin. This zero–Hopf bifurcation has been studied by Guckenheimer, Han,
Holmes, Kuznetsov, Marsden and Scheurle in [14, 15, 16, 18, 27], and it has been
shown that some complicated invariant sets of the unfolding could be bifurcated
from the isolated zero–Hopf equilibrium under some conditions. Hence, in some
cases zero–Hopf bifurcation could imply a local birth of “chaos” see for instance the
articles of Baldomá and Seara, Broer and Vegter, Champneys and Kirk, Scheurle
and Marsden (cf. [4, 5, 7, 9, 27]).

As far as we know nobody has studied the existence or non–existence of zero–
Hopf equilibria and zero–Hopf bifurcations in the Rössler systems. This will be
our objective to study the zero–Hopf bifurcations in the Rössler systems. We must
mention that the method used for studying the zero–Hopf bifurcation can be applied
to any differential system in R3.

In the next proposition we characterize when the equilibrium point localized at
the origin of coordinates of the Rössler systems is a zero–Hopf equilibrium point.

Proposition 1. There are two one–parameter families of Rössler systems for which
the origin of coordinates is a zero–Hopf equilibrium point. Namely:

(i) a = c ∈ (−
√

2,
√

2) and b = 1; and
(ii) a = c = 0 and b ∈ (−1,∞).

Proposition 1 is proved in section 4.

Note that the two families of Proposition 1 intersect at the point a = c = 0 and
b = 1.

Now we shall study when the Rössler systems having a zero–Hopf equilibrium
point at the origin of coordinates have a zero–Hopf bifurcation producing some
periodic orbit.
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Theorem 2. Let (a, b, c) = (ā + εα, 1 + εβ, ā + εγ) be with ā ∈ (−
√

2,
√

2) \ {0}
and ε a sufficiently small parameter. If

(3)
(
−α + a

(
1 − a2

)
β + γ

) ((
a2 − 1

)
α + aβ +

(
1 − a2

)
γ
)

< 0

and

(4) α + aβ − γ ̸= 0,

then the Rössler system (1) has a zero–Hopf bifurcation at the equilibrium point
localized at the origin of coordinates, and a periodic orbit borns at this equilibrium
when ε = 0, and it exists for ε > 0 sufficiently small. Moreover, the stability or
instability of this periodic orbit is given by the eigenvalues

(5)
A ±

√
B

2a2(2 − a2)3/2
,

where

A = (2 − a2)(α − aβ − γ),

B =
(
3a4 − 4

)
α2 + 2a

(
2a6 − 3a4 + 4

)
αβ − 2

(
3a4 − 4

)
αγ

+a2
(
3a4 − 4

)
β2 − 2a

(
2a6 − 3a4 + 4

)
βγ +

(
3a4 − 4

)
γ2.

Theorem 3. Let (a, b, c) = (εα, b̄+ εβ, εγ) be with b̄ ∈ (−1, ∞) and ε a sufficiently
small parameter. Using the averaging theory of first order we cannot find periodic
orbits bifurcating from the zero–Hopf equilibrium point localized at the origin of
coordinates of the Rössler system (1).

Theorem 2 and 3 are proved in section 4 using the averaging theory of first order.

If a(ab − c) ̸= 0 then the Rössler system (1) has a second equilibrium point,
namely

p =

(
ab − c

a
, c − ab,

c − ab

a

)
.

If we translate this equilibrium point at the origin of coordinates the Rössler system
(1) becomes

(6)

ẋ = −y − z,

ẏ = x + ay,

ż =
c

a
x − abz + xz.

So system (6) coincides with system (1), if we rename the coefficients c/a and ab of
ż by b and c respectively. In other words, doing this change in the parameters of the
system we can obtain equivalent theorems to Theorem 2, and 3 for the equilibrium
p.

It is important to remark that the tools used here for studying the zero–Hopf
bifurcations of the Rössler system can be applied for studying arbitrary zero–Hopf
bifurcations of differential systems in Rn with n > 2.
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2. Results on the periodic orbits

In this section we present a brief summary on the results about the periodic
orbits of the Rössler system (1).

In 1984 Glendinning and Sparrow [13] studied the dynamics near homoclinic
orbits, and applied their studies to the Rössler system showing the existence of
periodic orbits near some homoclinic orbits.

Magnitskii [22] in 1995 did a qualitative analysis of the Hopf bifurcation (the
appearance of periodic solutions) in the Rössler system. He finds the domain of
the parameters a and b in which the Hopf bifurcation occurs as the bifurcation
parameter c increases, obtains asymptotic formulas for the amplitude and period
of the periodic solutions that arise in a neighborhood of the bifurcation point, and
provide some information about their stability.

In 1997 Krishchenko [17] estimated domains for the existence of periodic orbits
of differential systems in Rn, and applied them to the Rössler system showing that
all its periodic orbits lie inside a bounded domain.

In 1999 Terëkhin and Panfilova [29] determine conditions for the existence of
periodic solutions of the Rössler system in a neighborhood of the two equilibrium
points of the system when c2 − 4ab > 0.

Ashwin et al. [2] in 2003 studied numerically the dynamics of the Rössler system
and provided some information on its periodic orbits.

In 2003 Pilarczyk [23] developed a numerical method based on the Conley index
theory, and applied it to the Rössler system showing the existence of two periodic
orbits.

Galias [11] in 2006 describes a numerical method that approximates short–period
orbits, he implemented and tested the method in the Rössler system.

Llibre et al. [20] in 2007 studied the Hopf bifurcation using averaging theory of
first order, and applied it to the Rössler system.

Algaba et al. [1] in 2007 studied the periodic orbits and their bifurcations near
a triple–zero singularity, and they apply their results to the Rössler system using
numerical tools and they found an important number of bifurcations of periodic
orbits.

In 2007 Starkov and Starkov [28] used compact invariant sets of the Rössler
system for studying the existence and non–existence of periodic orbits.

3. The averaging theory for periodic orbits

The averaging theory is a classical and matured tool for studying the behavior
of the dynamics of nonlinear smooth dynamical systems, and in particular of their
periodic orbits. The method of averaging has a long history that starts with the
classical works of Lagrange and Laplace who provided an intuitive justification
of the process. The first formalization of this procedure is due to Fatou [10] in
1928. Important practical and theoretical contributions in this theory were made by
Krylov and Bogoliubov [6] in the 1930s and Bogoliubov [3] in 1945. The averaging
theory of first order for studying periodic orbits can be found in [30], see also [15].
It can be summarized as follows.

Now we shall present the basic results from averaging theory that we need for
proving the results of this paper.
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The next theorem provides a first order approximation for the periodic solutions
of a periodic differential system, for the proof see Theorems 11.5 and 11.6 of Verhulst
[30].

Consider the differential equation

(7) ẋ = εF (t,x) + ε2G(t,x, ε), x(0) = x0

with x ∈ D, where D is an open subset of Rn, t ≥ 0. Moreover we assume that
both F (t,x) and G(t,x, ε) are T−periodic in t. We also consider in D the averaged
differential equation

(8) ẏ = εf(y), y(0) = x0,

where

(9) f(y) =
1

T

∫ T

0

F (t,y)dt.

Under certain conditions, equilibrium solutions of the averaged equation turn out
to correspond with T−periodic solutions of equation (7).

Theorem 4. Consider the two initial value problems (7) and (8). Suppose:

(i) F , its Jacobian ∂F/∂x, its Hessian ∂2F/∂x2, G and its Jacobian ∂G/∂x
are defined, continuous and bounded by a constant independent of ε in
[0, ∞) × D and ε ∈ (0, ε0].

(ii) F and G are T−periodic in t (T independent of ε).

Then the following statements hold.

(a) If p is an equilibrium point of the averaged equation (8) and

(10) det

(
∂f

∂y

)∣∣∣∣
y=p

̸= 0,

then there exists a T−periodic solution φ(t, ε) of equation (7) such that
φ(0, ε) → p as ε → 0.

(b) The stability or instability of the limit cycle φ(t, ε) is given by the stability
or instability of the equilibrium point p of the averaged system (8). In fact
the singular point p has the stability behavior of the Poincaré map associated
to the limit cycle φ(t, ε).

4. Proofs

Proof of Proposition 1. The characteristic polynomial of the linear part of the Rössler
system at the origin is

p(λ) = −λ3 + (a − c)λ2 + (ac − 1 − b)λ + ab − c.

Imposing that p(λ) = −λ(λ2 + ω2), we obtain

(i) a = c = ±
√

2 − ω2 and b = 1 for ω ∈ (0,
√

2); and
(ii) a = c = 0 and b = ω2 − 1 for ω ∈ (0, ∞).

So the proposition follows. �
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Proof of Theorem 2. If (a, b, c) = (ā + εα, 1 + εβ, ā + εγ) with ε > 0 a sufficiently
small parameter, then the Rössler system becomes

(11)
ẋ = −y − z,
ẏ = x +

(
ā + εα

)
y,

ż = (1 + εβ)x −
(
ā + εγ

)
z + xz.

Doing the rescaling of the variables (x, y, z) = (εX, εY, εZ), system (11) in the
new variables (X,Y, Z) writes

(12)
Ẋ = −Y − Z,

Ẏ = X + ā Y + ε α Y,

Ż = X − ā Z + ε(βX − γZ + XZ).

Now we shall write the linear part at the origin of the differential system (12)
when ε = 0 into its real Jordan normal form, i.e. as




0 −
√

2 − ā2 0√
2 − ā2 0 0

0 0 0


 .

For doing that we consider the linear change (X, Y, Z) → (u, v, w) of variables given
by

(13)

X =
(ā2 − 2) v − ā

(√
2 − ā2 u + w

)

ā2 − 2
,

Y =

√
2 − ā2 u + w

ā2 − 2
,

Z = − ā(2 − ā2)v +
√

2 − ā2
(
ā2 − 1

)
u + w

ā2 − 2
.

In the new variables (u, v, w) the differential system (12) writes

(14)

u̇ = −
√

2 − ā2 v + ε
1

(2 − ā2)
3/2

(
α

(
1 − ā2

) (√
2 − ā2u + w

)

+
(
(ā2 − 2)v − ā

(√
2 − ā2u + w

) )(
β +

(
ā2 − 1

)
u√

2 − ā2
+ āv − w

ā2 − 2

)

+γ
(
ā(2 − ā2)v +

√
2 − ā2

(
ā2 − 1

)
u + w

) )
,

v̇ =
√

2 − ā2 u + ε
αā

(√
2 − ā2 u + w

)

ā2 − 2
,

ẇ = ε
1

ā2 − 2

(
α

(
−

√
2 − ā2u − w

)
+ ā

(
(ā2 − 2)v −

(√
2 − ā2u + w

))

((
ā2 − 1

)
u√

2 − ā2
+ āv − w

ā2 − 2
+ β

)

+γ
(
ā(2 − ā2)v +

√
2 − ā2

(
ā2 − 1

)
u + w

) )
.
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Now we pass the differential system (14) to cylindrical coordinates (r, θ, w) de-
fined by u = r cos θ and v = r sin θ, and we obtain

(15)

dr

dθ
= ε

1√
2 − ā2 r

(αā
√

2 − ā2 r2 cos θ sin θ

ā2 − 2
+

αārw sin θ

ā2 − 2

+
r cos θ

(2 − ā2)
3/2

(
α

(
1 − ā2

) (
w +

√
2 − ā2 r cos θ

)

+
(
β − w

ā2 − 2
+

(ā2 − 1)r cos θ√
2 − ā2

+ ār sin θ
)

(
− āw − ā

√
2 − ā2r cos θ +

(
ā2 − 2

)
r sin θ

)

+γ
(
w +

√
2 − ā2

(
ā2 − 1

)
r cos θ − ā

(
ā2 − 2

)
r sin θ

)))
+ O(ε2)

= εF1(θ, r, w) + O(ε2),

dw

dθ
= ε

1√
2 − ā2 (ā2 − 2)

(
− α

(
w +

√
2 − ā2 r cos θ

)

+
(
β − w

ā2 − 2
+

(
ā2 − 1

)
r cos θ√

2 − ā2
+ ār sin θ

)

(
− āw − ā

√
2 − ā2r cos θ +

(
ā2 − 2

)
r sin θ

)

+γ
(
w +

√
2 − ā2

(
ā2 − 1

)
r cos θ − ā

(
ā2 − 2

)
r sin θ

) )
+ O(ε2)

= εF2(θ, r, w) + O(ε2).

We shall apply the averaging theory described in Theorem 4 to the differential
system (15). Using the notation of section 3 we have t = θ, T = 2π, x = (r, w)T

and

F (θ, r, w) =

(
F1(θ, r, w)
F2(θ, r, w)

)
, and f(r, w) =

(
f1(r, w)
f2(r, w)

)
.

It is immediate to check that system (14) satisfies all the assumptions of Theorem
4.

Now we compute the integrals (9), i.e.

f1(r, w) =
1

2π

∫ 2π

0

F1(θ, r, w)dθ

=
r
(
2(α − γ) + ā(ā(−3α + ā(−w + β + ā(α − γ)) + 3γ) − 2β)

)

2 (2 − ā2)
5/2

,

f2(r, w) =
1

2π

∫ 2π

0

F2(θ, r, w)dθ

=
2w(γ − α)ā2 + 2

(
r2 + w(w + 2β)

)
ā + 4w(α − γ) −

(
r2 + 2wβ

)
ā3

2 (2 − ā2)
5/2

.
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The system f1(r, w) = f2(r, w) = 0 has a unique solution (r∗, w∗) with r∗ > 0,
namely

r∗ =

√
2 (ā2 − 2) (−α + ā (1 − ā2) β + γ) ((ā2 − 1) α + āβ + (1 − ā2) γ)

ā3
,

w∗ =

(
ā2 − 2

) ((
ā2 − 1

)
α + āβ +

(
1 − ā2

)
γ
)

ā3
,

if ā ̸= 0 and
(
−α + ā

(
1 − ā2

)
β + γ

) ((
ā2 − 1

)
α + āβ +

(
1 − ā2

)
γ
)

< 0.

The Jacobian (10) at (r∗, w∗) takes the value

− (α + āβ − γ)
(
−α + ā

(
1 − ā2

)
β + γ

)

2 (ā2 − 2)
3 .

Moreover the eigenvalues of the Jacobian matrix

∂(f1, f2)

∂(r, w)

∣∣∣∣
(r,w)=(r∗,w∗)

are the ones given in (5). In short, the rest of the proof of the theorem follows
immediately from Theorem 4 if we show that the periodic solution corresponding
to (r∗, w∗) provides a periodic orbit bifurcating from the origin of coordinates of
the differential system (11) at ε = 0.

Theorem 4 garantes for ε > 0 sufficiently small the existence of a periodic solution
(r(θ, ε), w(θ, ε)) of system (15) such that (r(0, ε), w(0, ε)) → (r∗, w∗) when ε → 0.
So, system (14) has the periodic solution

(16)
(
u(θ, ε) = r(θ, ε) cos θ, v(θ, ε) = r(θ, ε) sin θ, w(θ, ε)

)
,

for ε > 0 sufficiently small. Consequently, system (12) has the periodic solution
(X(θ), Y (θ), Z(θ)) obtained from (16) through the change of variables (13). Finally,
for ε > 0 sufficiently small system (11) has a periodic solution (x(θ), y(θ), z(θ)) =
(εX(θ), εY (θ), εZ(θ)) which tends to the origin of coordinates when ε → 0. There-
fore, it is a periodic solution starting at the zero-Hopf equilibrium point located at
the origin of coordinates when ε = 0. This completes the proof of the theorem. �

Proof of Theorem 3. If (a, b, c) = (εα, b̄ + εβ, εγ with ε > 0 a sufficiently small
parameter, then the Rössler system becomes

(17)
ẋ = −y − z,
ẏ = x + εαy,
ż = (b̄ + εβ)x − εγz + xz.

Doing the rescaling of the variables (x, y, z) = (εX, εY, εZ), and denoting again
the variables (X,Y, Z) by (x, y, z) system (17) writes

(18)
ẋ = −y − z,
ẏ = x + εαy,
ż = b̄x + ε(βx − γz + xz).
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We shall write the linear part at the origin of the differential system (18) when
ε = 0 into its real Jordan normal form, i.e. as




0 −
√

b̄ + 1 0√
b̄ + 1 0 0
0 0 0


 .

For doing that we consider the linear change (x, y, z) → (u, v, w) of variables given
by

x = v, y = −
√

b̄ + 1u + w

b̄ + 1
, z =

w − b̄
√

b̄ + 1 u

b̄ + 1
.

In the new variables (u, v, w) the differential system (12) writes
(19)

u̇ = −
√

b̄ + 1v + ε

√
b̄ + 1uα − v(w + β) + b̄

(√
b̄ + 1u(v − γ) − vβ

)
+ w(α + γ)

(b̄ + 1)3/2
,

v̇ =
√

b̄ + 1u,

ẇ = ε
v(w + β) − wγ + b̄

(
wα + vβ +

√
b̄ + 1u(−v + α + γ)

)

b̄ + 1
.

Writing the differential system (19) in cylindrical coordinates (r, θ, w) defined by
u = r cos θ and v = r sin θ, and we obtain
(20)

dr

dθ
= ε

cos θ
(
w(α + γ) − r(w + b̄β + β) sin θ +

√
b̄ + 1r cos θ(α − b̄γ + b̄r sin θ)

)

(b̄ + 1)2

+O(ε2)

= εF1(θ, r, w) + O(ε2),

dw

dθ
= ε

w(b̄α − γ) + r(w + b̄β + β) sin θ − b̄
√

b̄ + 1r cos θ(−α − γ + r sin(θ))

(b̄ + 1)3/2

+O(ε2)

= εF2(θ, r, w) + O(ε2).

It is immediate to check that system (20) satisfies all the assumptions of Theorem
4.

Now we compute the integrals (9), i.e.

f1(r, w) =
1

2π

∫ 2π

0

F1(θ, r, w)dθ =
r(α − b̄γ)

2(b̄ + 1)3/2
,

f2(r, w) =
1

2π

∫ 2π

0

F2(θ, r, w)dθ =
w(b̄α − γ)

(b̄ + 1)3/2
.

The system f1(r, w) = f2(r, w) = 0 has a unique solution (0, 0) and consequently
the averaging theory does not provide any information about the possible periodic
orbits which can bifurcate from the zero–Hopf equilibrium in this case. �
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Barcelona, Catalonia, Spain. Fax +34 935812790. Phone +34 93 5811303

E-mail address: jllibre@mat.uab.cat


