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GLOBAL CONFIGURATIONS OF SINGULARITIES FOR QUADRATIC

DIFFERENTIAL SYSTEMS WITH TOTAL FINITE MULTIPLICITY

THREE AND AT MOST TWO REAL SINGULARITIES

Abstract. In this work we consider the problem of classifying all configurations of singularities, finite and

infinite, of quadratic differential systems, with respect to the geometric equivalence relation defined in [2].

This relation is deeper than the topological equivalence relation which does not distinguish between a focus and

a node or between a strong and a weak focus or between foci (or saddles) of different orders. Such distinctions

are however important in the production of limit cycles close to the foci (or loops) in perturbations of the

systems. The notion of geometric equivalence relation of configurations of singularities allows us to incorporate

all these important geometric features which can be expressed in purely algebraic terms. This equivalence

relation is also deeper than the qualitative equivalence relation introduced in [19]. The geometric classification

of all configurations of singularities, finite and infinite, of quadratic systems was initiated in [3] where the

classification was done for systems with total multiplicity mf of finite singularities less than or equal to one.

That work was continued in [4] where the geometric classification was done for the case mf = 2. The case

mf = 3 has been split in two separate papers because of its length. The subclass of three real distinct singular

points was done in [5] and we complete this case here.

In this article we obtain geometric classification of singularities, finite and infinite, for the remaining

three subclasses of quadratic differential systems with mf = 3 namely: (i) systems with a triple singularity

(19 configurations); (ii) systems with one double and one simple real singularities (62 configurations) and

(iii) systems with one real and two complex singularities (74 configurations). We also give here the global

bifurcation diagrams of configurations of singularities, both finite and infinite, with respect to the geometric

equivalence relation, for these subclasses of systems. The bifurcation set of this diagram is algebraic. The

bifurcation diagram is done in the 12-dimensional space of parameters and it is expressed in terms of invariant

polynomials. This provides an algorithm for computing the geometric configuration of singularities for any

quadratic system in this class.

1. Introduction and statement of main results

We consider here differential systems of the form

(1)
dx

dt
= p(x, y),

dy

dt
= q(x, y),

where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R. We call degree of a system (1) the integer

m = max(deg p, deg q). In particular we call quadratic a differential system (1) with m = 2. We denote here

by QS the whole class of real quadratic differential systems.

The study of the class QS has proved to be quite a challenge since hard problems formulated more than

a century ago, are still open for this class. It is expected that we have a finite number of phase portraits in

QS. We have phase portraits for several subclasses of QS but to obtain the complete topological classification

of these systems, which occur rather often in applications, is a daunting task. This is partly due to the

elusive nature of limit cycles and partly to the rather large number of parameters involved. This family of

systems depends on twelve parameters but due to the group action of real affine transformations and time
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homotheties, the class ultimately depends on five parameters which is still a rather large number of parameters.

For the moment only subclasses depending on at most three parameters were studied globally, including global

bifurcation diagrams (for example [1]). On the other hand we can restrict the study of the whole quadratic

class by focusing on specific global features of the systems in this family. We may thus focus on the global

study of singularities and their bifurcation diagram. The singularities are of two kinds: finite and infinite.

The infinite singularities are obtained by compactifying the differential systems on the sphere, on the Poincaré

disk or on the projective plane as defined in Subection 2 (see [16], [20]).

The global study of quadratic vector fields began with the study of these systems in the neighborhood of

infinity ([15], [22], [27], [28]). In [6] the authors classified topological (adding also the distinction between

nodes and foci) the whole quadratic class, according to configurations of their finite singularities.

To reduce the number of phase portraits in half in topological classifications problems of quadratic systems,

the topological equivalence relation was taken to mean the existence of a homeomorphism of the phase plane

carrying orbits to orbits and preserving or reversing the orientation.

We use the concepts and notations introduced in [2] and [3] which we describe in Section 2. To distinguish

among the foci (or saddles) we use the notion of order of the focus (or of the saddle) defined using the the

algebraic concept of Poincaré-Lyapunov constants. We call strong focus (or strong saddle) a focus (or a saddle)

whose linearization matrix has non-zero trace. Such a focus (or saddle) will be denoted by f (respectively

s). A focus (or saddle) with trace zero is called a weak focus (weak saddle). We denote by f (i) (s(i)) the

weak foci (weak saddles) of order i and by c and $ the centers and integrable saddles. For more notations see

Subsection 2.5.

In the topological classification no distinction was made among the various types of foci or saddles, strong

or weak of various orders. However these distinctions of an algebraic nature are very important in the study

of perturbations of systems possessing such singularities. Indeed, the maximum number of limit cycles which

can be produced close to the weak foci in perturbations depends on the orders of the foci.

There are also three kinds of simple nodes: nodes with two characteristic directions (the generic nodes),

nodes with one characteristic direction and nodes with an infinite number of characteristic directions (the star

nodes). The three kinds of nodes are distinguished algebraically. Indeed, the linearization matrices of the two

direction nodes have distinct eigenvalues, they have identical eigenvalues and they are not diagonal for the

one direction nodes and they have identical eigenvalues and they are diagonal for the star nodes (see [2], [3],

[4]). We recall that the star nodes and the one direction nodes could produce foci in perturbations.

Furthermore, a generic node at infinity may or may not have the two exceptional curves lying on the line

at infinity. This leads to two different situations for the phase portraits. For this reason we split the generic

nodes at infinity in two types as indicated in Subsection 2.5.

The geometric equivalence relation (see further below) for finite or infinite singularities, introduced in [2]

and used in [3], [4] and [5], takes into account such distinctions. This equivalence relation is also deeper than

the qualitative equivalence relation introduced by Jiang and Llibre in [19] because it distinguishes among the

foci (or saddles) of different orders and among the various types of nodes. This equivalence relation induces

also a deeper distinction among the more complicated degenerate singularities.

In quadratic systems these could be of orders 1, 2 or 3 [11]. For details on Poincaré-Lyapunov constants

and weak foci of various orders we refer to [26], [20]. As indicated before, algebraic information plays a

fundamental role in the study of perturbations of systems possessing such singularities. In [31] necessary

and sufficient conditions for a quadratic system to have weak foci (saddles) of orders i, i=1,2,3 are given in

invariant form.

For the purpose of classifying QS according to their singularities, finite or infinite, we use the geometric

equivalence relation which involves only algebraic methods. It is conjectured that there are over 1000 distinct

geometric configurations of singularities. The first step in this direction was done in [2] where the global
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classification of singularities at infinity of the whole class QS, was done according to the geometric equivalence

relation of configurations of infinite singularities. This work was then partially extended to also incorporate

finite singularities. We initiated this work in [3] where this classification was done for the case of singularities

with a total finite multiplicity mf ≤ 1, continued it in [4] where the classification was done for mf = 2 and in

[5] where the classification was done for 3 distinct real finite singularities.

In the present article our goal is to go one step further in the geometric classification of global configurations

of singularities by studying here the case of finite singularities with total finite multiplicity three and at most

two real finite singularities.

We recall below the notion of geometric configuration of singularities defined in [4] for both finite and

infinite singularities. We distinguish two cases:

1) If we have a finite number of infinite singular points and a finite number of finite singularities we call

geometric configuration of singularities, finite and infinite, the set of all these singularities each endowed with

its own multiplicity together with the local phase portraits around real singularities endowed with additional

geometric structure involving the concepts of tangent, order and blow–up equivalences defined in Section 4 of

[2] and using the notations described here in Subsection 2.5.

2) If the line at infinity Z = 0 is filled up with singularities, in each one of the charts at infinity X 6= 0

and Y 6= 0, the corresponding system in the Poincaré compactification (see Section 2) is degenerate and

we need to do a rescaling of an appropriate degree of the system, so that the degeneracy be removed. The

resulting systems have only a finite number of singularities on the line Z = 0. In this case we call geometric

configuration of singularities, finite and infinite, the set of all points at infinity (they are all singularities)

in which we single out the singularities at infinity of the “reduced” system, taken together with their local

phase portraits and we also take the local phase portraits of finite singularities each endowed with additional

geometric structure to be described in Section 2.

Remark 1. We note that the geometric equivalence relation for configurations is much deeper than the topo-

logical equivalence. Indeed, for example the topological equivalence does not distinguish between the following

three configurations which are geometrically non-equivalent: 1) n, f ;
(
1
1

)
SN , c©, c©, 2) n, f (1);

(
1
1

)
SN , c©, c©,

and 3) nd, f (1); SN , c©, c© where n and nd mean singularities which are nodes, respectively two directions

and one direction nodes, capital letters indicate points at infinity, c© in case of a complex point and SN a

saddle–node at infinity and
(
1
1

)
encodes the multiplicities of the saddle-node SN . For more details see the

subsection on notation of Subsection 2.5 on notation.

The invariants and comitants of differential equations used for proving our main result are obtained following

the theory of algebraic invariants of polynomial differential systems, developed by Sibirsky and his disciples

(see for instance [30, 33, 24, 8, 14]).

Our results are stated in the following theorem.

Main Theorem. (A) We consider here all configurations of singularities, finite and infinite, of quadratic

vector fields with finite singularities of total multiplicity mf = 3 possessing at most two real finite singular-

ities. These configurations are classified in Diagrams 1–3 according to the geometric equivalence relation.

We have 155 geometrically distinct configurations of singularities, finite and infinite. More precisely 74 geo-

metrically distinct configurations with one real and two complex finite singularities; 62 geometrically distinct

configurations with one double and one simple real finite singularities and 19 with one real finite singularity

which is triple.

(B) Necessary and sufficient conditions for each one of the 155 different geometric equivalence classes can

be assembled from these diagrams in terms of 22 invariant polynomials, with respect to the action of the affine

group and time rescaling, given in Section 2.6 and appearing in the DIAGRAMS 1-3, polynomials defined in

the webpage: http://mat.uab.es/∼artes/articles/qvfinvariants/qvfinvariants.html.
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(C) The Diagrams 1–3 actually contain the global bifurcation diagrams in the 12-dimensional space of

parameters, of the global geometric configurations of singularities, finite and infinite, of these subclasses of

quadratic differential systems and provide an algorithm for finding for any given system in any of the three

families considered, its respective geometric configuration of singularities.

2. Concepts and results in the literature useful for this paper

2.1. Compactification on the sphere and on the Poincaré disk. Planar polynomial differential systems

(1) can be compactified on the 2–dimensional sphere as follows. We first include the affine plane (x, y) in

R3, with its origin at (0, 0, 1), and we consider it as the plane Z = 1. We then use a central projection to

send the vector field to the upper and to the lower hemisphere. The vector fields thus obtained on the two

hemispheres are analytic and diffeomorphic to our vector field on the (x, y) plane. By a theorem stated by

Poincaré and proved in [17] there exists an analytic vector field on the whole sphere which simultaneously

extends the vector fields on the two hemispheres to the whole sphere. We call Poincaré compactification on

the sphere of the planar polynomial system, the restriction of the vector field thus obtained on the sphere, to

the upper hemisphere completed with the equator. For more details we refer to [16]. The vertical projection

of this vector field defined on the upper hemisphere and completed with the equator, yields a diffeomorphic

vector field on the unit disk, called the Poincaré compactification on the disk of the polynomial differential

system. By a singular point at infinity of a planar polynomial vector field we mean a singular point of the

vector field which is located on the equator of the sphere, also located on the boundary circle of the Poincaré

disk.

2.2. Compactification on the projective plane. For a polynomial differential system (1) of degree m with

real coefficients we associate the differential equation ω1 = q(x, y)dx−p(x, y)dy = 0. This equation defines two

foliations with singularities, one on the real and one on the complex affine planes. We can compactify these

foliations with singularities on the real respectively complex projective plane with homogeneous coordinates

X,Y, Z. This is done by introducing the homogeneous coordinates via the equations x = X/Z, y = Y/Z

and taking the pull-back i∗(ω1) of the form ω1 of the inclusion (x, y) 7→ [x : y : 1] into the projective

plane. We obtain a foliation with singularities on P2(K) (K equal to R or C) defined by the equation

ω = A(X,Y, Z)dX + B(X,Y, Z)dY + C(X,Y, Z)dZ = 0 on the projective plane over K, which is called the

compactification on the projective plane of the foliation with singularities defined by ω1 = 0 on the affine plane

K2. This is true because A, B, C are homogeneous polynomials overK, defined by A(X,Y, Z) = ZQ(X,Y, Z),

Q(X,Y, Z) = Zmq(X/Z, Y/Z), B(X,Y, Z) = ZP (X,Y, Z), P (X,Y, Z) = Zmp(X/Z, Y/Z) and C(X,Y, Z) =

Y P (X,Y, Z)−XQ(X,Y, Z). The points at infinity of the foliation defined by ω1 = 0 on the affine plane are

the singular points of the type [X : Y : 0] ∈ P2(K) and the line Z = 0 is called the line at infinity of this

foliation. The singular points of the foliation F are the solutions of the three equations A = 0, B = 0, C = 0.

In view of the definitions of A,B,C it is clear that the singular points at infinity are the points of intersection

of Z = 0 with C = 0. For more details see [20], or [2] or [3].

2.3. Assembling multiplicities of singularities in divisors of the line at infinity and in zero-cycles

of the plane. An isolated singular point p at infinity of a polynomial vector field of degree n has two types

of multiplicities: the maximum number m of finite singularities which can split from p, in small perturbations

of the system within polynomial systems of degree n, and the maximum number m′ of infinite singularities

which can split from p, in small such perturbations of the system. We encode the two in the column (m,m′)t.

We then encode the global information about all isolated singularities at infinity using formal sums called

cycles and divisors as defined in [23] or in [20] and used in [20], [28], [3], [2].

We have two formal sums (divisors on the line at infinity Z = 0 of the complex affine plane) DS(P,Q;Z) =∑
w Iw(P,Q)w and DS(C,Z) =

∑
w Iw(C,Z)w where w ∈ {Z = 0} and where by Iw(F,G) we mean the

intersection multiplicity at w of the curves F (X,Y, Z) = 0 and G(X,Y, Z) = 0 on the complex projective
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Diagram 1. Global configurations: the case µ0 = 0, µ1 6= 0, D > 0.
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Diagram 1 (continued). Global configurations: the case µ0 = 0, µ1 6= 0, D > 0.
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Diagram 1 (continued). Global configurations: the case µ0 = 0, µ1 6= 0, D > 0.

plane. For more details see [20]. Following [28] we encode the above two divisors on the line at infinity into

just one but with values in the ring Z2:

DS =
∑

ω∈{Z=0}

(
Iw(P,Q)

Iw(C,Z)

)
w.

For a system (1) with isolated finite singularities we consider the formal sum (zero-cycle on the plane)

DS(p, q) =
∑

ω∈R2 Iw(p, q)w encoding the multiplicities of all finite singularities. For more details see [20], [1].

2.4. Some geometrical concepts. Firstly we recall some terminology.

We call elemental a singular point with its both eigenvalues not zero.

We call semi–elemental a singular point with exactly one of its eigenvalues equal to zero.

We call nilpotent a singular point with both its eigenvalues zero but with its Jacobian matrix at this

point not identically zero.

We call intricate a singular point with its Jacobian matrix identically zero.

The intricate singularities are usually called in the literature linearly zero. We use here the term intricate

to indicate the rather complicated behavior of phase curves around such a singularity.

In this section we use the same concepts we considered in [2], [3], [4], [5], such as orbit γ tangent to a semi–

line L at p, well defined angle at p, characteristic orbit at a singular point p, characteristic angle at a singular

point, characteristic direction at p. If a singular point has an infinite number of characteristic directions, we

will it a star–like point.

It is known that the neighborhood of any isolated singular point of a polynomial vector field, which is not

a focus or a center, is formed by a finite number of sectors which could only be of three types: parabolic,

hyperbolic and elliptic (see [16]). It is also known that any degenerate singular point can be desingularized by
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Diagram 2. Global configurations: the case µ0 = 0, µ1 6= 0, D = 0, P 6= 0.
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Diagram 2 (continued). Global configurations: the case µ0 = 0, µ1 6= 0, D = 0, P 6= 0.
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Diagram 3. Global configurations: the case µ0 = 0, µ1 6= 0, D = P = 0.

means of a finite number of changes of variables, called blow–up’s, into elemental ans semi-elemental singular

points (for more details see the Section on blow–up in [2] or [16]).

Topologically equivalent local phase portraits can be distinguished according to the algebraic properties of

their phase curves. For example they can be distinguished algebraically in the case when the singularities

possess distinct numbers of characteristic directions.

The usual definition of a sector is of topological nature and it is local, defined with respect to a neighborhood

around the singular point. We work with a new notion, namely of geometric local sector, introduced in [2],

based on the notion of borsec, term meaning ”border of a sector” (a new kind of sector, i.e. geometric sector)

which takes into account orbits tangent to the half-lines of the characteristic directions at a singular point.

For example a generic or semi–elemental node p has two characteristic directions generating four half lines

at p. For each one of these half lines at p there exists at least one orbit tangent to that half line at p and

we pick an orbit tangent to that half line at p. Removing these four orbits together with the singular point,

we are left with four sectors which we call geometric local sectors and we call borsecs these four orbits. The
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notion of geometric local sector and of borsec was extended for nilpotent and intricate singular points using

the process of desingularization as indicated in [2]. We end up with the following definition: We call geometric

local sector of a singular point p with respect to a sufficiently small neighborhood V , a region in V delimited

by two consecutive borsecs. As mentioned these are defined using the desingularization process.

A nilpotent or intricate singular point can be desingularized by passing to polar coordinates or by using

rational changes of coordinates. The first method has the inconvenience of using trigonometrical functions, and

this becomes a serious problem when a chain of blow–ups are needed in order to complete the desingularization

of the degenerate point. The second uses rational changes of coordinates, convenient for our polynomial

systems. In such a case two blow–ups in different directions are needed and information from both must be

glued together to obtain the desired portrait. Here for desingularization we use this second possibility, i.e. with

rational changes of coordinates (x, y) → (x, zx) for the blow-up in the y-direction. This is a diffeomorphism

for x 6= 0. The line x = 0 = y, the z-axis in R3, or x = 0 in the plane (x, z) is called the blow-up line.

Analogously we use the change (x, y) → (zy, y) for the blow-up in the x-direction. This is a diffeomorphism

for y 6= 0. The blow-up line is again the z-axis in R3 or on the plane (y, z).

The two directional blow–ups can be reduced to only one 1–direction blow–up but making sure that the

direction in which we do a blow–up is not a characteristic direction, not to lose information by blowing–

up in the chosen direction. This can be easily solved by a simple linear change of coordinates of the type

(x, y) → (x+ ky, y) where k is a constant (usually 1). It seems natural to call this linear change a k–twist as

the y–axis gets turned with some angle depending on k. It is obvious that the phase portrait of the degenerate

point which is studied cannot depend on the set of k’s used in the desingularization process.

We recall that after a complete desingularization all singular points are elemental or semi–elemental. For

more details and a complete example of the desingularization of an intricate singular point see [4].

Generically a geometric local sector is defined by two borsecs arriving at the singular point with two different

well defined angles and which are consecutive. If this sector is parabolic, then the solutions can arrive at the

singular point with one of the two characteristic angles, and this is a geometrical information that can be

revealed with the blow–up.

There is also the possibility that two borsecs defining a geometric local sector at a point p are tangent

to the same halph–line at p. Such a sector will be called a cusp–like sector which can either be hyperbolic,

elliptic or parabolic denoted by Hf, Ef and Pf respectively. In the case of parabolic sectors we want to

include the information about how the orbits arrive at the singular points namely tangent to one or to the

other borsec. We distinguish the two cases by writing
x
P if they arrive tangent to the borsec limiting the

previous sector in clockwise sense or
y
P if they arrive tangent to the borsec limiting the next sector. In

the case of a cusp–like parabolic sector, all orbits must arrive with only one well determined angle, but the

distinction between
x
P and

y
P is still valid because it occurs at some stage of the desingularization and this can

be algebraically determined. Example of descriptions of complicated intricate singular points are
y
PE

x
P HHH

and E
x
PfHH

y
PfE.

A star–like point can either be a node or something much more complicated with elliptic and hyperbolic

sectors included. In case there are hyperbolic sectors, they must be cusp–like. Elliptic sectors can either be

cusp–like or star–like.

2.5. Notations for singularities of polynomial differential systems. In this work we limit ourselves

to the class of quadratic systems with finite singularities of total multiplicity three and at most two real

singularities. In [2] we introduced convenient notations which we also used in [3] and [4] some of which we

also need here. Because these notations are essential for understanding the bifurcation diagram, we indicate

below the notations needed for this article.

The finite singularities will be denoted by small letters and the infinite ones by capital letters. In a sequence

of singular points we always place the finite ones first and then infinite ones, separating them by a semicolon‘;’.
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Elemental points: We use the letters ‘s’,‘S’ for “saddles”; $ for “integrable saddles”; ‘n’, ‘N ’ for “nodes”;

‘f ’ for “foci”; ‘c’ for “centers” and c© (respectively c©) for complex finite (respectively infinite) singularities.

We distinguish the finite nodes as follows:

• ‘n’ for a node with two distinct eigenvalues (generic node);

• ‘nd’ (a one–direction node) for a node with two identical eigenvalues whose Jacobian matrix is not

diagonal;

• ‘n∗’ (a star–node) for a node with two identical eigenvalues whose Jacobian matrix is diagonal.

The case nd (and also n∗) corresponds to a real finite singular point with zero discriminant. The case of a

finite complex singular point with zero discriminant will be denoted by c©τ .

In the case of an elemental infinite generic node, we want to distinguish whether the eigenvalue associated

to the eigenvector directed towards the affine plane is, in absolute value, greater or lower than the eigenvalue

associated to the eigenvector tangent to the line at infinity. This is relevant because this determines if all the

orbits except one on the Poincaré disk arrive at infinity tangent to the line at infinity or transversal to this

line. We will denote them as ‘N∞’ and ‘Nf ’ respectively.

Finite elemental foci and saddles are classified as strong or weak foci, respectively strong or weak saddles.

The strong foci or saddles are those with non-zero trace of the Jacobian matrix evaluated at them. In this

case we denote them by ‘s’ and ‘f ’. When the trace is zero, except for centers, and saddles of infinite order

(i.e. with all their Poincaré-Lyapounov constants equal to zero), it is known that the foci and saddles, in the

quadratic case, may have up to 3 orders. We denote them by ‘s(i)’ and ‘f (i)’ where i = 1, 2, 3 is the order. In

addition we have the centers which we denote by ‘c’ and saddles of infinite order (integrable saddles) which

we denote by ‘$’.

A finite real singular point with zero trace will be denoted by c©ρ.

Foci and centers cannot appear as singular points at infinity and hence there is no need to introduce their

order in this case. In case of saddles, we can have weak saddles at infinity but the maximum order of weak

singularities in cubic systems is not yet known. For this reason, a complete study of weak saddles at infinity

cannot be done at this stage. Due to this, in [2], [3], [4], [5] and here we chose not even to distinguish between

a saddle and a weak saddle at infinity.

All non–elemental singular points are multiple points, in the sense that there are perturbations which have

at least two elemental singular points as close as we wish to the multiple point. For finite singular points we

denote with a subindex their multiplicity as in ‘s(5)’ or in ‘ês(3)’ (the notation ‘ ’ indicates that the saddle

is semi–elemental and ‘ês(3)’ indicates that the singular point is nilpotent, in this case a triple elliptic saddle

(i.e. it has two sectors, one elliptic and one hyperbolic)). In order to describe the two kinds of multiplicity

for infinite singular points we use the concepts and notations introduced in [28]. Thus we denote by ‘
(
a
b

)
...’

the maximum number a (respectively b) of finite (respectively infinite) singularities which can be obtained

by perturbation of the multiple point. For example ‘
(
1
1

)
SN ’ means a saddle–node at infinity produced by

the collision of one finite singularity with an infinite one; ‘
(
0
3

)
S’ means a saddle produced by the collision

of 3 infinite singularities. The meaning of the notation ‘ ’ in the general case will be described in the next

paragraph.

Semi–elemental points: They can either be nodes, saddles or saddle–nodes, finite or infinite (see [16]).

We denote the semi–elemental ones always with an overline, for example ‘sn’, ‘s’ and ‘n’ with the corresponding

multiplicity. In the case of infinite points we put ‘ ’ on top of the parenthesis with multiplicities.

Moreover, in cases which will be later explained, an infinite saddle–node may be denoted by ‘
(
1
1

)
NS’ instead

of ‘
(
1
1

)
SN ’. Semi–elemental nodes could never be ‘nd’ or ‘n∗’ since their eigenvalues are always different. In

case of an infinite semi–elemental node, the type of collision determines whether the point is denoted by ‘Nf ’

or by ‘N∞’. The point ‘
(
2
1

)
N ’ is an ‘Nf ’ and ‘

(
0
3

)
N ’ is an ‘N∞’.
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Nilpotent points: They can either be saddles, nodes, saddle–nodes, elliptic saddles, cusps, foci or centers

(see [16]). The first four of these could be at infinity. We denote the nilpotent singular points with a hat

‘̂’ as in ês(3) for a finite nilpotent elliptic saddle of multiplicity 3 and ĉp(2) for a finite nilpotent cusp point

of multiplicity 2. In the case of nilpotent infinite points, we will put the ‘̂’ on top of the parenthesis with

multiplicity, for example
(̂
1
2

)
PEP−H (the meaning of PEP−H will be explained below). The relative position

of the sectors of an infinite nilpotent point, with respect to the line at infinity, can produce topologically

different phase portraits. This forces us to use a notation for these points similar to the notation which we

will use for the intricate points.

Intricate points: It is known that the neighborhood of any singular point of a polynomial vector field

(except for foci and centers) is formed by a finite number of sectors which could only be of three types:

parabolic, hyperbolic and elliptic (see [16]). Then, a reasonable way to describe intricate and nilpotent

points is to use a sequence formed by the types of their sectors. The description we give is the one which

appears in the clockwise direction (starting anywhere) once the blow–down of the desingularization is done.

Thus in non-degenerate quadratic systems (that is, the components of the system are coprime), we have just

seven possibilities for finite intricate singular points of multiplicity four (see [6]) which are the following ones:

phpphp(4); phph(4); hh(4); hhhhhh(4); peppep(4); pepe(4); ee(4).

For infinite intricate and nilpotent singular points, we insert a dash (hyphen) between the sectors to split

those which appear on one side or the other of the equator of the sphere. In this way we will distinguish

between
(
2
2

)
PHP −PHP and

(
2
2

)
PPH −PPH . Whenever we have an infinite nilpotent or intricate singular

point, we will always start with a sector bordering the infinity (to avoid using two dashes).

For the description of the topological phase portraits around the isolated singular points the information

described above is sufficient. However we are interested in additional geometrical features such as the number

of characteristic directions which figure in the final global picture of the desingularization. In order to add

this information we need to introduce more notation. If two borsecs, limiting orbits of a sector, arrive at

the singular point with the same direction, then the sector will be denoted by Hf, Ef or Pf. The index

in this notation refers to the cusp–like form of limiting trajectories of the sectors. Moreover, in the case of

parabolic sectors we need to distinguish whether the orbits arrive tangent to the half-line at the singular point

of one borsec or to the other. We distinguish the two cases by
x
P if they arrive tangent to the borsec limiting

the previous sector in clockwise sense or
y
P if they arrive tangent to the borsec limiting the next sector. A

parabolic sector will be P ∗ when all orbits arrive with all possible slopes between the two consecutive borsecs.

In the case of a cusp–like parabolic sector, all orbits must be tangent to the same half-line at the singularity,

but the distinction between
x
P and

y
P is still valid if we consider the different desingularizations we obtain

from them.

Finally there is also the possibility that we have an infinite number of infinite singular points.

Line at infinity filled up with singularities: It is known that any such system has in a sufficiently small

neighborhood of infinity one of 6 topological distinct phase portraits (see [29]). The way to determine these

phase portraits is by studying the reduced systems on the infinite local charts after removing the degeneracy

of the systems within these charts. In case a singular point still remains on the line at infinity we study such

a point. In [29] the tangential behavior of the solution curves was not considered in the case of a node. If

after the removal of the degeneracy in the local charts at infinity a node remains, this could either be of the

type Nd, N and N⋆ (this last case does not occur in quadratic systems as it was shown in [2]). Since no

eigenvector of such a node N (for quadratic systems) will have the direction of the line at infinity we do not

need to distinguish Nf and N∞ (see [2]). After removal of the degeneracy, other types of singular points at

infinity of quadratic systems can be saddles, foci, centers, semi–elemental saddle–nodes or nilpotent elliptic

saddles. We also have the possibility of no singularities after removal of the degeneracy. To convey the way

these singularities were obtained as well as their nature, we use the notation [∞; ∅], [∞; N ], [∞; Nd], [∞; S],

[∞; C], [∞;
(
2
0

)
SN ] and [∞;

(̂
3
0

)
ES].
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2.6. Affine invariant polynomials and preliminary results. Consider real quadratic systems of the form

(2)

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y),

with homogeneous polynomials pi and qi (i = 0, 1, 2) in x, y which are defined as follows:

p0 = a00, p1(x, y) = a10x+ a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q1(x, y) = b10x+ b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

Let ã = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) be the 12-tuple of the coefficients of systems (2)

and denote R[ã, x, y] = R[a00, . . . , b02, x, y].

It is known that on the set QS of all quadratic differential systems (2) acts the group Aff (2,R) of affine

transformations on the plane (cf. [28]). For every subgroup G ⊆ Aff (2,R) we have an induced action of G on

QS. We can identify the set QS of systems (2) with a subset of R12 via the map QS−→ R12 which associates to

each system (2) the 12–tuple ã = (a00, . . . , b02) of its coefficients. We associate to this group action polynomi-

als in x, y and parameters which behave well with respect to this action, the GL–comitants, the T –comitants

and the CT –comitants. For their constructions we refer the reader to the paper [28] (see also [30]). In the

statement of our main theorem intervene the following 22 invariant polynomials constructed in these article:

µ0, µ1, C2, D, κ, σ, η,F1,F2, T3, T4,W2,W3,W4,W5,W6,W7, K̃, L̃, Ñ ,B1, U3. In the proof of our main theorem

there appear 19 other invariant polynomials: B2, E1,F ,F3,F4, G9, G10,H, M̃ , P, T1, T2, U1, U2, U4, U5, U6, Y1, Y2.

We refer the reader interested in the construction of these polynomials to the following associated web-page:

http://mat.uab.es/∼artes/articles/qvfinvariants/qvfinvariants.html.

3. The proof of the Main Theorem

According to [31] for a quadratic system to have finite singularities of total multiplicity three (i.e. mf = 3)

the conditions µ0 = 0 and µ1 6= 0 must be satisfied. Since the subclass with three real finite simple singularities

was considered in [5] (i.e. the additional condition D < 0 holds) we consider here three subclasses:

• systems with one real and two complex finite singularities (µ0 = 0, µ1 6= 0, D > 0);

• systems with one double and one simple real finite singularities (µ0 = 0, µ1 6= 0, D = 0, P 6= 0);

• systems with one triple real finite singularity (µ0 = 0, µ1 6= 0, D = 0, P = 0).

We observe that the systems from each one of the above mentioned subclasses have finite singularities of

total multiplicity 3 and therefore by [2] the following lemma is valid.

Lemma 1. The geometric configurations of singularities at infinity of the family of quadratic systems pos-

sessing finite singularities of total multiplicity 3 (i.e. µ0 = 0, µ1 6= 0) are classified in Diagram 4 according

to the geometric equivalence relation.

3.1. Systems with one real and two complex finite singularities. Consider quadratic systems (2) with

real coefficients and variables x and y. Assume that these systems possess one real and two complex finite

singularities. Then according to [31] via an affine transformation and time rescaling these systems could be

brought to the form:

(3)
ẋ = 2(h− gu)x+ g(u2 + 1)y + gx2 − 2hxy,

ẏ = 2(m− lu)x+ l(u2 + 1)y + lx2 − 2mxy

possessing the real elemental singular point M1(0, 0) and the two complex singularities M2,3(u ± i, 1). For

these systems calculations yield

µ0 = 0, µ1 = 4(gm− hl)2(1 + u2)x, κ = 128h2(gm− hl).
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Diagram 4. Configurations of infinite singularities: the case µ0 = 0, µ1 6= 0.

Since for the above systems we have µ1 6= 0 (i.e. gm−hl 6= 0) we observe that the condition κ = 0 is equivalent

to h = 0.

3.1.1. The case κ 6= 0. Then h 6= 0 and we may assume h = 1 due to a time rescaling. So we get the systems

(4)
ẋ = 2(1− gu)x+ g(u2 + 1)y + gx2 − 2xy,

ẏ = 2(m− lu)x+ l(u2 + 1)y + lx2 − 2mxy

and for the singular points M1(0, 0) and M2,3(u ± i, 1) we have the following values for the traces ρi, for the

determinants ∆i, for the discriminants τi and for the linearization matrixM1 (in the case of a real singularity):

(5)

M1 =

(
2(1− gu) g(1 + u2)

2(m− lu) l(1 + u2)

)
, ρ1 = 2 + l − 2gu+ lu2,

∆1 = 2(l − gm)(1 + u2), τ1 = ρ21 − 4∆1;

ρ2,3 = l − 2mu+ lu2 ± 2i(g −m), ∆2,3 = 4(gm− l)(1∓ iu), τ2,3 = ρ22,3 − 4∆2,3.

Then for the above mentioned systems we calculate

(6)

κ = −64∆1/(1 + u2), K̃ = 2∆1x
2/(1 + u2), G9 = ∆1/(2(1 + u2)),

T4 = 2ρ1ρ2ρ3∆
2
1/(1 + u2), T3 = 2

[
ρ1(ρ2 + ρ3) + ρ2ρ3

]
∆2

1/(1 + u2),

T2 = 2(ρ1 + ρ2 + ρ3)∆
2
1/(1 + u2), η = 4

[
(g + 2m)2 − 8l

]
,

M̃ = −8
[
(g + 2m)2 − 6l

]
x2 + 16(g + 2m)xy − 32y2,

W4 = 4τ1τ2τ3∆
4
1/(1 + u2)2, W2 = 4(τ1 + τ2 + τ3)∆

4
1/(1 + u2)2,

W3 = 4
[
τ1(τ2 + τ3) + τ2τ3

]
∆4

1/(1 + u2)2.

Remark 2. We observe that M̃ 6= 0 and the condition κ 6= 0 implies K̃G9 6= 0. Moreover we have sign (K̃) =

−sign (κ).

3.1.1.1. The subcase κ < 0. This implies K̃ > 0 and according to [6] (see Table 1, lines 124 - 135) the elemental

real singular point is an anti-saddle and its type is governed by the invariant polynomials Wi, i = 4, 3, 2 (as

in the case we consider we have G9 6= 0).
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3.1.1.1.1. The possibility W4 < 0. Clearly for the complex singularities M2,3 we have τ3 = τ̄2 (also ρ3 = ρ̄2)

and then τ2τ3 > 0. So considering (6) we have τ1 < 0, i.e. the real singular point is a focus.

1) Assume first T4 6= 0. Then the focus is strong and considering Lemma 1 and the condition M̃ 6= 0 (see

Remark 2) we arrive at the following three configurations of singularities:

• f, c©, c©;
(
1
1

)
SN, c©, c© : Example ⇒ (g = −2, l = 1, m = 1, u = 0) (if η < 0);

• f, c©, c©;
(
1
1

)
SN, S,N∞ : Example ⇒ (g = −2, l = −1, m = 1, u = 0) (if η > 0);

• f, c©, c©;
(
0
2

)
SN,

(
1
1

)
SN : Example ⇒ (g = −2, l = 0, m = 1, u = 0) (if η = 0).

2) Suppose now T4 = 0.

a) The case T3 6= 0. Considering (6) we have ρ1 = 0 (i.e. l = 2(gu− 1)/(1 + u2)) and we calculate

(7)
W4 = −16∆5

1τ2τ3/(1 + u2)2, T3 = 2ρ2ρ3∆
2
1/(1 + u2), F = −ρ2ρ3∆1/(4(1 + u2)),

F1 = 2∆1

[
(1 + u2)(2g2u− 2gmu− 5g + 2m) + 4(g + u)

]
/(1 + u2).

a1) The subcase F1 6= 0. As T3F < 0 considering [31] (see Main Theorem, (b1)) we have a first order weak

focus. So by Lemma 1 and Remark 2 we get the three global configurations:

• f (1), c©, c©;
(
1
1

)
SN, c©, c© : Example ⇒ (g = 3, l = 2, m = −3, u = 1) (if η < 0);

• f (1), c©, c©;
(
1
1

)
SN, S,N∞ : Example ⇒ (g = 3, l = 2, m = −4, u = 1) (if η > 0);

• f (1), c©, c©;
(
0
2

)
SN,

(
1
1

)
SN : Example ⇒ (g = 3, l = 2, m = −7/2, u = 1) (if η = 0).

a2) The subcase F1 = 0. Then the order of the weak focus is at least two. We claim that in this

case the condition gu − 1 6= 0 holds. Indeed if gu − 1 = 0 (then u 6= 0) we set g = 1/u (this implies

l = 2(gu− 1)/(1 + u2) = 0) and we calculate for systems (4)

F1 = −4m(1 + u2)/u2, κ = 128m/u.

Therefore due to κ 6= 0 we have F1 6= 0 and we obtain a contradiction which proves our claim. So gu− 1 6= 0

and considering (7) the condition F1 = 0 gives

m =
4u− g + 2g2u− 5gu2 + 2g2u3

2(gu− 1)(1 + u2)

and calculations yield

(8)

F1 = 0, F2 = − (2gu− 1)2(5gu− 4)
[
g2 + (gu− 2)2

]4

(gu− 1)5(1 + u2)2
,

T3 =
2(2gu− 1)2

[
g2 + (gu− 2)2

]3

(gu− 1)4(1 + u2)
, η =

4Φ(g, u)
[
g2 + (gu− 2)2

]3

(gu− 1)2(1 + u2)2
,

where Φ(g, u) = 9g2u2(1 + u2)− 4gu(3+ 4u2) + 4(1+ 2u2) is a quadratic polynomial with respect to g whose

discriminant equals −16u4(3 + 2u2) ≤ 0. So for the expressions above we get η > 0 and we observe that the

conditions F2 = 0 and T3 6= 0 imply 5gu− 4 = 0. In this case u 6= 0, otherwise we have F2 6= 0. Therefore we

get g = 4/(5u) and we calculate:

F1 = F2 = 0, F3 = 210325−6(4 + 9u2)4u−8(1 + u2)−2 6= 0,

F4 = 213335−7(4 + 9u2)4u−7(1 + u2)−2 6= 0.

Hence by [31] we could not have a center. So considering Lemma 1 we arrive at the two global configurations:

• f (2), c©, c©;
(
1
1

)
SN, S,N∞ : Example ⇒ (g = 2/3, l = −1/3, m = −4/3, u = 1) (if F2 6= 0);

• f (3), c©, c©;
(
1
1

)
SN, S,N∞ : Example ⇒ (g = 4/5, l = −1/5, m = −11/5, u = 1) (if F2 = 0).
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b) The case T3 = 0. Considering (6) it is clear that the condition T4 = T3 = 0 gives ρ2 = ρ3 = 0 and this

implies g = m and l = 2mu/(1 + u2). Then calculations yield

(9)
W4 = 256∆6

1τ1/(1 + u2)3, κ = −64∆1/(1 + u2),

η = 4m(9m− 16u+ 9mu2)/(1 + u2), ρ2 = ρ3 = 0, ρ1 = 2.

We claim that in this case the condition W4 < 0 implies η < 0. Indeed, we observe that the curves η = 0 and

τ1 = 0 have only complex points of intersection. So it is sufficient to determine the sign of the polynomial η

at a point where τ1 < 0. At the point (m,u) = (−1/2,−2) we have τ1 = −2 < 0 and η = −19/5 < 0 and this

proves our claim.

Thus due to ρ1 6= 0 the focus is strong and we get the next configuration:

• f, c© ρ, c© ρ;
(
1
1

)
SN, c©, c© : Example ⇒ (g = 1/2, l = 6/13, m = 1/2, u = 3/2).

3.1.1.1.2. The possibility W4 > 0. In this case by [6] (see Table 1, line 124) the elemental singularity is a

generic node and we arrive at the next three global configurations of singularities:

• n, c©, c©;
(
1
1

)
SN, c©, c© : Example ⇒ (g = 1, l = 2, m = 1, u = 0) (if η < 0);

• n, c©, c©;
(
1
1

)
SN, S,N∞ : Example ⇒ (g = 1, l = 17/16, m = 1, u = 0) (if η > 0);

• n, c©, c©;
(
0
2

)
SN,

(
1
1

)
SN : Example ⇒ (g = 1, l = 9/8, m = 1, u = 0) (if η = 0).

3.1.1.1.3. The possibility W4 = 0. We consider two cases: W3 6= 0 and W3 = 0.

1) Assume first W3 6= 0. Considering (6) we obtain τ1 = 0 and we have a node with coinciding eigenvalues.

We claim that this node will be a star node if and only if U3 = 0.

Indeed taking into account the linearization matrix M1 from (5) it is clear that we have a star node if and

only if g = 0, l = 2/(1+u2) and m = 2u/(1+u2). In this case a straightforward computation gives us U3 = 0.

Conversely, assume that U3 = 0. Then we have

Coefficient[U3, y
5] = −12g(1 + u2)

[
g2 + (gu− 2)2] = 0 ⇔ g = 0

and this implies

Coefficient[U3, xy
4] = −24l(1 + u2)(l + lu2 − 2) = 0, κ = −128l.

So due to κ 6= 0 we obtain l = 2/(1 + u2) and then we have

Coefficient[U3, x
2y3] = 288(2u−m−mu2)/(1 + u2) = 0.

Therefore we get m = 2u/(1 + u2) and this proves our claim.

We observe that in the case U3 = 0 we obtain η = −64/(1 + u2)2 < 0 and according to Lemma 1 we get

the three global configurations of singularities

• nd, c©, c©;
(
1
1

)
SN, c©, c© : Example ⇒ (g = −1/4, l = 4, m = 2, u = 0) (if η < 0);

• nd, c©, c©;
(
1
1

)
SN, S,N∞ : Example ⇒ (g = −1/16, l = 1, m = 2, u = 0) (if η > 0);

• nd, c©, c©;
(
0
2

)
SN,

(
1
1

)
SN : Example ⇒ (g = 0, l = 2, m = 2, u = 0) (if η = 0) in the case U3 6= 0 and

the unique global configurations of singularities

• n∗, c©, c©;
(
1
1

)
SN, c©, c© : Example ⇒ (g = 0, l = 2, m = 0, u = 0) in the case U3 = 0.

2) Suppose now W3 = 0. Considering (6) we get τ2 = τ3 = 0. However for systems (4) these conditions

lead to a quite complicated system of polynomial equations. So we decide to construct a more convenient

canonical form and this will be done in Lemma 2. According to this lemma in the case κ < 0 we obtain 12

geometrically distinct configurations and the corresponding invariant conditions which characterize them.

3.1.1.2. The subcase κ > 0. Then ∆1 < 0 and the real singular point is a saddle. On the other hand considering

(6) we obtain η > 0 and according to Lemma 1 at infinity we get the unique configuration:
(
1
1

)
SN,Nf , Nf .
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3.1.1.2.1. The possibility W4 6= 0. In this case the discriminants of the complex points are different from zero.

1) Assume first T4 6= 0. In this case the saddle is strong and we arrive at the global configurations of

singularities

• s, c©, c©;
(
1
1

)
SN,Nf , Nf : Example ⇒ (g = 1, l = −1, m = 1, u = 0).

2) Suppose now T4 = 0.

a) The case T3 6= 0. Then ρ1 = 0, i.e. we have a weak saddle whose order depends on the polynomial F1.

a1) The subcase F1 6= 0. The weak saddle has order one and we get the global configurations of singularities

• s(1), c©, c©;
(
1
1

)
SN,Nf , Nf : Example ⇒ (g = 2, l = 1, m = 1, u = 1).

a2) The subcase F1 = 0. Then we have a weak saddle whose order is at least two. We claim that in this

case the condition F2 6= 0 holds, i.e. we could not have a third order weak saddle. Indeed, as it was shown

earlier (see the compartment 3.1.1.1.1, p. a2)) the conditions T4 = F1 = 0 yields

l =
2(gu− 1)

1 + u2
, m =

4u− g + 2g2u− 5gu2 + 2g2u3

2(gu− 1)(1 + u2)

and then we obtain the value of F2 given in (8). So due to T3 6= 0 the condition F2 = 0 implies 5gu− 4 = 0.

In this case u 6= 0, otherwise we have F2 6= 0. Therefore we get g = 4/(5u) and we calculate:

F1 = F2 = 0, κ = −768(4 + 9u2)/(25u2(1 + u2)) < 0

and we obtain a contradiction which proves our claim. Thus we obtain the unique global configurations of

singularities which is:

• s(2), c©, c©;
(
1
1

)
SN,Nf , Nf : Example ⇒ (g = 0, l = −2, m = 0, u = 0).

b)The case T3 = 0. Considering (6) it is clear that the condition T4 = T3 = 0 gives ρ2 = ρ3 = 0 and this

implies g = m and l = 2mu/(1 + u2). Then we have ρ1 = 2 6= 0, i.e. the saddle is strong:

• s, c© ρ, c© ρ;
(
1
1

)
SN,Nf , Nf : Example ⇒ (g = 1, l = 0, m = 1, u = 0).

3.1.1.2.2. The possibility W4 = 0. Since the real singularity is a saddle we conclude that in this case both

complex points have zero discriminants (i.e. W4 = W3 = 0). In this case by Lemma 2 we get the three

geometrically distinct configurations (Cf13), (Cf14) and (Cf15) and the corresponding invariant conditions

which characterize them.

3.1.1.3. The subcase κ = 0. Then h = 0 and we have µ1 = 4g2m2(1 + u2)x 6= 0. Therefore we may assume

g = 1 due to a time rescaling and we get the 3-parameter family of systems

(10)
ẋ = −2ux+ (u2 + 1)y + x2,

ẏ = 2(m− lu)x+ l(u2 + 1)y + lx2 − 2mxy.

For the singular points M1(0, 0) and M2,3(u ± i, 1) we have the following values for the traces ρi, for the

determinants ∆i, for the discriminants τi and for the linearization matrix M1 (in the case of real singularity):

(11)
M1 =

(−2u 1 + u2

2(m− lu) l(1 + u2)

)
, ρ1 = l − 2u+ lu2, ∆1 = −2m(1 + u2), τ1 = ρ21 − 4∆1;

ρ2,3 = l − 2mu+ lu2 ± 2i(1−m), ∆2,3 = 4m(1∓ iu), τ2,3 = ρ22,3 − 4∆2,3.
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Then for systems above we calculate

(12)

µ1 = 4m2(1 + u2)x, K̃ = −4mx2, G9 = 0,

W7 = 3τ1τ2τ3∆
6
1/(1 + u2)2/16, W5 = 9(τ1 + τ2 + τ3)∆

6
1/(1 + u2)2/4,

W6 =
[
τ1(τ2 + τ3) + τ2τ3

]
∆6

1/(1 + u2)2/16, T4 = T3 = T2 = T1 = 0,

σ = ρ1 − 2(m− 1)x, B1 = ρ1ρ2ρ3∆1,

B2 = −(m− 1)2(1 + u2)
[
ρ1(ρ2 + ρ3) + ρ2ρ3

]
∆1.

We observe that the condition µ1 6= 0 implies K̃ 6= 0 and by (12) we have sign (K̃) = sign (∆1). According

to [6] and [31] the above polynomials are responsible for the types of the finite singularities of systems (10).

In order to describe the infinite singularities, considering Lemma 1 we calculate the additional invariant

polynomials:

(13)
κ = η = 0, M̃ = −8(1 + 2m)2x2, L̃ = 8(1 + 2m)x2,

C2 = −lx3 + (1 + 2m)x2y, Ñ = −4m(1 +m)x2.

So by Lemma 1 we have the next remark.

Remark 3. Systems (10) could possess at infinity only one of the following seven configurations of singular-

ities: M̃ 6= 0, K̃ < 0 ⇒
(̂
1
2

) y
PfE

x
Pf−H, Nf ;

M̃ 6= 0, K̃ > 0, L̃ < 0, Ñ < 0 ⇒
(̂
1
2

) y
PfE

x
Pf−H, S;

M̃ 6= 0, K̃ > 0, L̃ < 0, Ñ > 0 ⇒
(̂
1
2

) x
PfH

y
Pf−E, S;

M̃ 6= 0, K̃ > 0, L̃ < 0, Ñ = 0 ⇒
(̂
1
2

)
H−E, S;

M̃ 6= 0, K̃ > 0, L̃ > 0 ⇒
(̂
1
2

)
HfHHf−H, N∞;

M̃ = 0, C2 6= 0 ⇒
(̂
1
3

)
HfH

y
Pf−

x
P ;

M̃ = C2 = 0 ⇒ [∞; ∅].

3.1.1.3.1. The possibility K̃ < 0. Then ∆1 < 0 and the real singularity is a saddle. We observe that the

condition K̃ < 0 implies m > 0 and then M̃ 6= 0.

1) Assume first B1 6= 0. In this case ρ1 6= 0 and the saddle is strong. So considering Remark 3 we obtain

the configuration

• s, c©, c©;
(̂
1
2

) y
PfE

x
Pf−H, Nf : Example ⇒ (l = 1, m = 1, u = 0).

2) Suppose now B1 = 0. Then ρ1ρ2ρ3 = 0 and we consider two cases: B2 6= 0 and B2 = 0.

a) The case B2 6= 0. As ρ3 = ρ̄2 considering (12) we have ρ2ρ3 6= 0 and then ρ1 = 0, i.e. l = 2u/(1 + u2)

and the saddle is weak. We calculate

(14)
B1 = H = 0, B2 = 8m(m− 1)4(1 + u2)3,

σ = 2(1−m)x, F1 = 8m(m− 1)u(1 + u2)

and clearly the conditions B2 6= 0 and K̃ < 0 imply σ 6= 0 and B2 > 0. So according to [31] (see the statements

(e1) and (e3), [β] of the Main Theorem) the weak saddle is of order one if F1 6= 0 and it is integrable if F1 = 0.

Considering Remark 3 we get the two configurations

• s(1), c©, c©;
(̂
1
2

) y
PfE

x
Pf−H, Nf : Example ⇒ (l = 1, m = 2, u = 1) (if F1 6= 0);

• $, c©, c©;
(̂
1
2

) y
PfE

x
Pf−H, Nf : Example ⇒ (l = 0, m = 2, u = 0) (if F1 = 0).

b) The case B2 = 0. We claim that the condition B1 = B2 = 0 implies σ = 0. Indeed, we observe that the

condition m = 1 has to be satisfied, otherwise we must have ρ2 = ρ3 = 0 and this implies m = 1. Therefore
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as m = 1 we get ρ1 = ρ2 = ρ3 and then the condition B1 = ρ31∆1 = 0 implies σ = ρ1 = 0, i.e. our claim is

proved.

Thus we have m = 1 and l = 2u/(1 + u2) and we get Hamiltonian systems. So we arrive at the global

configurations of singularities

• $, c© ρ, c© ρ;
(̂
1
2

) y
PfE

x
Pf−H, Nf : Example ⇒ (l = 0, m = 1, u = 0).

Remark 4. Considering (13) we observe that the condition L̃ = 0 is equivalent to M̃ = 0.

3.1.1.3.2. The possibility K̃ > 0. In this case ∆1 > 0, i.e. the real singular point is an anti-saddle and as

G9 = 0, according to [6] (see Table 1, lines 127 - 129, 132-135) its type is governed by the invariant polynomials

W7, W6 and W5

1) Assume first W7 < 0. By (12) due to τ2τ3 > 0 we have τ1 < 0 and we conclude, that the real singularity

is a focus.

a) The case B1 6= 0. Then ρ1 6= 0 and the focus is strong. Considering Remarks 3 and 4 we arrive at the

next six global configurations of singularities

• f, c©, c©;
(̂
1
2

) y
PfE

x
Pf−H, S : Example ⇒ (l = 1, m = −3/2, u = 0) (if L̃ < 0, Ñ < 0);

• f, c©, c©;
(̂
1
2

) x
PfH

y
Pf−E, S : Example ⇒ (l = 1, m = −2/3, u = 0) (if L̃ < 0, Ñ > 0);

• f, c©, c©;
(̂
1
2

)
H−E, S : Example ⇒ (l = 1, m = −1, u = 0) (if L̃ < 0, Ñ = 0);

• f, c©, c©;
(̂
1
2

)
HfHHf−H, N∞ : Example ⇒ (l = 1, m = −1/3, u = 0) (if L̃ > 0);

• f, c©, c©;
(̂
1
3

)
HfH

y
Pf−

x
P : Example ⇒ (l = 1, m = −1/2, u = 0) (if L̃ = 0, C2 6= 0).

• f, c©, c©; [∞; ∅] : Example ⇒ (l = 0, m = −1/2, u = 1) (if L̃ = 0, C2 = 0).

b) The case B1 = 0. Then ρ1ρ2ρ3 = 0 and as ℑ(ρ2) = −ℑ(ρ3) = 2(1−m) we obtain ρ2ρ3 6= 0 due to K̃ > 0

(i.e. m < 0). So we get ρ1 = 0 and this gives l = 2u/(u2 + 1). Then following [31] we calculate

B1 = H = 0, σ = 2(1−m)x, F1 = 8mu(m− 1)(1 + u2), K̃ = −4mx2,

B2 = 8(m− 1)4m(1 + u2)3, C2 = x
[
− 2ux+ (1 + u)2(1 + 2m)y

]
/(1 + u)2

and clearly the condition K̃ > 0 implies B2 < 0 and σ 6= 0. So according to [31] (see Main Theorem) we have

a weak focus of the first order if F1 6= 0 (the statement (e2)) and we have a center if F1 = 0 (the statement

(e4), [β]).

b1) The subcase F1 6= 0. Then u 6= 0 (this implies C2 6= 0) and we arrive at the next five global configurations

of singularities

• f (1), c©, c©;
(̂
1
2

) y
PfE

x
Pf−H, S : Example ⇒ (l = 1, m = −3/2, u = 1) (if L̃ < 0, Ñ < 0);

• f (1), c©, c©;
(̂
1
2

) x
PfH

y
Pf−E, S : Example ⇒ (l = 1, m = −2/3, u = 1) (if L̃ < 0, Ñ > 0);

• f (1), c©, c©;
(̂
1
2

)
H−E, S : Example ⇒ (l = 1, m = −1, u = 1) (if L̃ < 0, Ñ = 0);

• f (1), c©, c©;
(̂
1
2

)
HfHHf−H, N∞ : Example ⇒ (l = 1, m = −1/3, u = 1) (if L̃ > 0);

• f (1), c©, c©;
(̂
1
3

)
HfH

y
Pf−

x
P : Example ⇒ (l = 1, m = −1/2, u = 1) (if L̃ = 0).

b2) The subcase F1 = 0. Then u = 0 and hence l = 0. So considering (13) in this case the condition L̃ = 0

implies also C2 = 0.

• c, c©, c©;
(̂
1
2

) y
PfE

x
Pf−H, S : Example ⇒ (l = 0, m = −3/2, u = 0) (if L̃ < 0, Ñ < 0);

• c, c©, c©;
(̂
1
2

) x
PfH

y
Pf−E, S : Example ⇒ (l = 0, m = −2/3, u = 0) (if L̃ < 0, Ñ > 0);

• c, c©, c©;
(̂
1
2

)
H−E, S : Example ⇒ (l = 0, m = −1, u = 0) (if L̃ < 0, Ñ = 0);
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• c, c©, c©;
(̂
1
2

)
HfHHf−H, N∞: Example ⇒ (l = 0, m = −1/3, u = 0) (if L̃ > 0);

• c, c©, c©; [∞; ∅]: Example ⇒ (l = 0, m = −1/2, u = 0) (if L̃ = 0).

2) Suppose now W7 > 0. In this case we have τ1 > 0 and the anti-saddle is a generic node.

Remark 5. We observe that the condition C2 = 0 (i.e. l = 0 and m = −1/2) implies W7 = −3(1+u2)6/4 < 0.

By this remark we conclude that the condition W7 > 0 implies C2 6= 0. So considering Remarks 3 and 4 we

arrive at the next five global configurations of singularities

• n, c©, c©;
(̂
1
2

) y
PfE

x
Pf−H, S : Example ⇒ (l = 4, m = −3/2, u = 0) (if L̃ < 0, Ñ < 0);

• n, c©, c©;
(̂
1
2

) x
PfH

y
Pf−E, S : Example ⇒ (l = 4, m = −2/3, u = 0) (if L̃ < 0, Ñ > 0);

• n, c©, c©;
(̂
1
2

)
H−E, S : Example ⇒ (l = 4, m = −1, u = 0) (if L̃ < 0, Ñ = 0);

• n, c©, c©;
(̂
1
2

)
HfHHf−H, N∞ : Example ⇒ (l = 4, m = −1/3, u = 0) (if L̃ > 0);

• n, c©, c©;
(̂
1
3

)
HfH

y
Pf−

x
P : Example ⇒ (l = 4, m = −1/2, u = 0) (if L̃ = 0).

3) Assume finally W7 = 0. Considering (12) we obtain τ1τ2τ3 = 0.

a) The case W6 6= 0. Then τ2τ3 6= 0 and we get τ1 = 0, i.e. the real singularity is a node with coinciding

eigenvalues. Considering the corresponding linearization matrix M1 given by (11) we conclude that this node

could not be a star node. Thus considering Remarks 3, 5 and 4 we arrive at the next five global configurations

of singularities:

• nd, c©, c©;
(̂
1
2

) y
PfE

x
Pf−H, S : Example ⇒ (l = 4, m = −2, u = 0) (if L̃ < 0, Ñ < 0);

• nd, c©, c©;
(̂
1
2

) x
PfH

y
Pf−E, S : Example ⇒ (l = 5/2, m = −25/32, u = 0) (if L̃ < 0, Ñ > 0);

• nd, c©, c©;
(̂
1
2

)
H−E, S : Example ⇒ (l = 2

√
2, m = −1, u = 0) (if L̃ < 0, Ñ = 0);

• nd, c©, c©;
(̂
1
2

)
HfHHf−H, N∞ : Example ⇒ (l = 1, m = −1/8, u = 0) (if L̃ > 0);

• nd, c©, c©;
(̂
1
3

)
HfH

y
Pf−

x
P : Example ⇒ (l = 2, m = −1/2, u = 0) (if L̃ = 0).

b) The case W6 = 0. By (12) the conditions W7 = W6 = 0 give τ2 = τ3 = 0 and this implies for systems (10)

(15)
ℜ(τ2) = (l − 2mu+ lu2)2 − 4(1 +m)2 = 0,

ℑ(τ2) = 4
[
l(m− 1)(1 + u2)− 2m(1 +m)u

]
= 0.

As K̃ > 0 (i.e. m < 0) we have m− 1 6= 0 and hence the equations above yield

l = ε
4m2(1 +m)2

(m2 + 1)2
, u = ε

m2 − 1

2m
, ε = ±1.

Then we calculate:

W7 = W6 = 0, W5 =
9(1 +m2)10(1 + 4m+m2)

16m4
= 9(m2 + 1)4∆2

1τ1/4,

B1 = −4ε(m+ 1)(1 +m2)4/m2 = 8(1 +m2)∆1ρ1,

Ñ = −4m(1 +m)x2, K̃ = −4mx2, L̃ = 8(1 + 2m)x2.

b1) The subcase W5 < 0. Then τ1 < 0 and the real singular point is a focus. Clearly the focus is strong if

ρ1 6= 0 (i.e. B1 6= 0) and it is weak if ρ1 = 0. In the second case we have m = −1 and then calculations yield

B1 = H = F1 = 0, σ = 4x, B2 = −128 < 0.

According to [31] (see Main Theorem, the statement (e4), [β]) we have a center. On the other hand, due to

K̃ 6= 0, the condition B1 = 0 is equivalent to Ñ = 0. So considering Remarks 3, 5 and 4 we arrive at the next

five global configurations of singularities

• f, c©τ , c©τ ;
(̂
1
2

) y
PfE

x
Pf−H, S : Example ⇒ (l = 16/25, m = −2, u = −3/4) (if L̃ < 0, Ñ < 0);
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• f, c©τ , c©τ ;
(̂
1
2

) x
PfH

y
Pf−E, S : Example ⇒ (l = 16/169, m = −2/3, u = 5/12) (if L̃ < 0, Ñ > 0);

• c, c©τ , c©τ ;
(̂
1
2

)
H−E, S : Example ⇒ (l = 0, m = −1, u = 0) (if L̃ < 0, Ñ = 0);

• f, c©, c©;
(̂
1
2

)
HfHHf−H, N∞ : Example ⇒ (l = 4/25, m = −1/3, u = 4/3) (if L̃ > 0);

• f, c©τ , c©τ ;
(̂
1
3

)
HfH

y
Pf−

x
P : Example ⇒ (l = 4/25, m = −1/2, u = 3/4) (if L̃ = 0).

b2) The subcase W5 > 0. Then τ1 > 0 and the real singular point is a generic node. On the other hand the

conditions K̃ > 0 and τ1 = 1+ 4m+m2 > 0 imply either m < −2−
√
3 or

√
3− 2 < m < 0. So the condition

L̃ < 0 gives m < −1/2 and then we have m < −2−
√
3 and this implies Ñ < 0. We also observe that in this

case L̃ 6= 0. Thus by Remarks 3 we get the next two global configurations of singularities

• n, c©τ , c©τ ;
(̂
1
2

) x
PfE

y
Pf−H, S : Example ⇒ (l = 576/289, m = −4, u = −15/8) (if L̃ < 0);

• n, c©τ , c©τ ;
(̂
1
2

)
HfHHf−H, N∞ : Example ⇒ (l = 36/289, m = −1/4, u = 15/8) (if L̃ > 0).

b3) The subcase W5 = 0. Then τ1 = 0 and considering the corresponding matrix we get a node with one

direction. We obtain m1,2 = −2±
√
3 (m2 < m1 < 0) and we get L < 0 for m = m2 and L > 0 for m = m1.

So denoting

li = 4m2
i (1 +mi)

2/(1 +m2
i )

2, ui = (m2
i − 1)/(2mi), i = 1, 2

we arrive at the two configurations

• nd, c©τ , c©τ ;
(̂
1
2

) x
PfE

y
Pf−H, S : Example ⇒ (l = l2, m = m2, u = u2) (if L̃ < 0);

• nd, c©τ , c©τ ;
(̂
1
2

)
HfHHf−H, N∞ : Example ⇒ (l = l1, m = m1, u = u1) (if L̃ > 0).

Thus the case κ = 0 is completely examined.

In what follows we consider the family of systems (4) with the special property: the discriminants corre-

sponding to the complex points vanish. However for these systems the discriminants are polynomials quite

big which imply complicated computations. In order to avoid such computations we will use a new normal

form of this family of systems.

Assume that a non–degenerate system (2) possesses singular points M1,2(α± iβ, γ ± iδ) (β2 + δ2 6= 0). Via

the substitution x ↔ y we may assume β 6= 0 and then we can consider β = 1 due to the change x → x/β.

Therefore the affine transformation x̃ = −δx+ y+ αδ − γ, ỹ = x− α, moves the points M1,2(α± i, γ ± iδ) to

the points M̃1,2(0,±i). Then from the identities P (0, i) = Q(0, i) = 0 we obtain: d = f = 0, k = a and n = b

and introducing some new parameters we obtain the systems

(16) ẋ = a+ cx+ gx2 + 2hxy + ay2, ẏ = b+ ex+ lx2 + 2mxy + by2

with a2 + b2 6= 0, having the singular points M1,2(0,±i). For these systems the condition µ0 = 0 and µ1 6= 0

must be fulfilled (i.e. only one finite real singular point must be at infinity).

On the other hand the invariant polynomial µ0 is the discriminant of the form K̃(ã, x, y). So in this case

the homogeneous quadratic polynomial K̃ has the form: K̃ = (ux+ vy)2. Moreover the linear form ux+ vy is

a common factor of the quadratic parts of systems (2) and, hence, the fourth finite singularity has coalesced

with the infinite singular point N(−v, u, 0). We observe that the condition v 6= 0 has to be satisfied, otherwise

the common factor of the quadratic parts of systems (16) will be x and this implies a = b = 0 and we get

degenerate systems. So v 6= 0 and via the transformation x1 = x and y1 = ux/v + y, which preserves the

singular points M1,2(0,±i), we get K̃(ã, x, y) = δy2. This means that the common factor of the homogeneous

quadratic parts of systems (16) will be y and therefore the transformation applied, implies the conditions

g = l = 0.

Thus we arrive at the family of systems

(17) ẋ = a+ cx+ 2hxy + ay2, ẏ = b + ex+ 2mxy + by2,

possessing three distinct finite singularities: M1,2(0,±i) and one real singularity M3.



GLOBAL CONFIGURATIONS OF SINGULARITIES FOR QUADRATIC DIFFERENTIAL SYSTEMS 23

Lemma 2. Assume that for a system (17) the conditions κ 6= 0 and W4 = W3 = 0 hold, i.e. τ1 = τ2 = 0. Then

this system could possess only one of the following 15 geometrical distinct global configurations of singularities:

• f, c©τ , c©τ ;
(
1
1

)
SN, c©, c© (if κ < 0, W2 < 0, T4 6= 0, η < 0); (Cf1)

• f, c©τ , c©τ ;
(
1
1

)
SN, S,N∞ (if κ < 0, W2 < 0, T4 6= 0, η > 0); (Cf2)

• f, c©τ , c©τ ;
(
1
1

)
SN,

(
0
2

)
SN (if κ < 0, W2 < 0, T4 6= 0, η = 0); (Cf3)

• f (1), c©τ , c©τ ;
(
1
1

)
SN, c©, c© (if κ < 0, W2 < 0, T4 = 0, η < 0 ); (Cf4)

• f (1), c©τ , c©τ ;
(
1
1

)
SN, S,N∞ (if κ < 0, W2 < 0, T4 = 0, η > 0 ); (Cf5)

• f (1), c©τ , c©τ ;
(
1
1

)
SN,

(
0
2

)
SN, (if κ < 0, W2 < 0, T4 = 0, η = 0 ); (Cf6)

• n, c©τ , c©τ ;
(
1
1

)
SN, c©, c© (if κ < 0, W2 > 0, η < 0); (Cf7)

• n, c©τ , c©τ ;
(
1
1

)
SN, S,N∞ (if κ < 0, W2 > 0, η > 0); (Cf8)

• n, c©τ , c©τ ;
(
1
1

)
SN,

(
0
2

)
SN, (if κ < 0, W2 > 0, η = 0); (Cf9)

• nd, c©τ , c©τ ;
(
1
1

)
SN, c©, c© (if κ < 0, W2 = 0, η < 0 ); (Cf10)

• nd, c©τ , c©τ ;
(
1
1

)
SN, S,N∞ (if κ < 0, W2 = 0, η > 0 ); (Cf11)

• nd, c©τ , c©τ ;
(
1
1

)
SN,

(
0
2

)
SN, (if κ < 0, W2 = 0, η = 0 ); (Cf12)

• s, c©τ , c©τ ;
(
1
1

)
SN,Nf , Nf (if κ > 0, T4 6= 0 ); (Cf13)

• s(1), c©τ , c©τ ;
(
1
1

)
SN,Nf , Nf (if κ > 0, T4 = 0, F1 6= 0 ); (Cf14)

• s(2), c©τ , c©τ ;
(
1
1

)
SN,Nf , Nf (if κ > 0, T4 = 0, F1 = 0 ); (Cf15)

Proof: For systems (17) we calculate:

τ1,2 = c2 − 16am− 4(b− h)2 ± 4i(2ae− bc+ ch) = 0.

Hence we get the conditions c2− 16am− 4(b−h)2 = 0 = 2ae− bc+ ch and we shall consider two possibilities:

a 6= 0 and a = 0.

A. The possibility a 6= 0 Then we may assume a = 1 due to a time rescaling and we calculate e = c(b−h)/2,

m =
[
c2 − 4(b− h)2

]
/16. So we get the family of systems

(18)
ẋ = 1 + cx+ 2hxy + y2,

ẏ = b+ c(b− h)x/2 +
[
c2 − 4(b− h)2

]
xy/8 + by2,

possessing the complex singular points M1,2(0,±i) and one real elemental singularity M3. For these systems

we calculate:

µ0 =0, µ1 = −c ω1ω2

64
y, K̃ =

ω1

4
y2, κ = −ω1ω

2
3

32
,

G9 =
ω1ω

2
3

4096
, W4 = W3 = 0, W2 =

c2ω2
1ω

2
2ω

2
3

218
τ3,

T4 =
cω1ω2ω3

512
ρ1ρ2ρ3, T3 =

cω1ω2ω3

512
(ρ1ρ2 + ρ1ρ3 + ρ2ρ3),

where

ω1 = 4(b+ h)2 − c2, ω2 = 4(b2 − h2)− c2, ω3 = 4(b− h)2 − c2.

3.1.2. The case κ < 0. Then K̃ > 0 and according to [6] (see the Table 1, lines 124-135) the elemental real

singular point is an anti-saddle and its type is governed by the invariant polynomial W2, as in the case under

consideration we have G9 6= 0 and W4 = W3 = 0.

3.1.2.1. The subcase W2 < 0. In this case we obtain τ3 < 0, i.e. the real singularity of systems (18) is a focus,

which could be either strong or weak.
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3.1.2.1.1. The possibility T4 6= 0. Then the focus is strong and we arrive at the following three configurations:

(Cf1) if η < 0: (b = 1, c = 1/2, h = 0);

(Cf2) if η > 0: (b = 1, c = 1/5, h = 4/5);

(Cf3) if η = 0: (b = 1, c = 1/5, h = 7/10).

3.1.2.1.2. The possibility T4 = 0. As τ1 = τ2 = 0 it is clear that ρ1ρ2 6= 0, otherwise we get degenerate systems.

Therefore ρ3 = 0 (i.e. focus is weak) and in this case T3 6= 0 due to ρ2ρ3 6= 0.

On the other hand according to [1] we have the next result.

Remark 6. In the class of quadratic systems with a weak focus of order two the condition µ0 = 0 = W4

implies the existence of exactly three distinct real singularities.

So by this remark, systems (18) could not have a weak focus of the second order. Therefore in the case

considered, we arrive at the following three configurations:

(Cf4) if η < 0: (b = 1, c = 2/
√
7, h = 0);

(Cf5) if η > 0: (b = 1, c = 2
5

√
(76−

√
5209)/7, h = 4/5);

(Cf6) if η = 0: (b = 1, c =
√
(
√
41− 5)/8, h = (

√
41− 1)/8).

3.1.2.2. The subcase W2 > 0. Then τ3 > 0, i.e. the real singular point is a generic node. In this case we get

the next three configurations:

(Cf7) if η < 0: (b = 1, c = 1/5, h = 0);

(Cf8) if η > 0: (b = 1, c = 1/5, h = −4/5);

(Cf9) if η = 0: (b = 1, c = 1/5, h = −7/10);

3.1.2.3. The subcase W2 = 0. Then τ3 = 0 and the real singularity is a node with coinciding eigenvalues. We

claim that we could not have a star node in this case.

Indeed, assume that the singular point M3 is a star node. According to [3, Lemma 5] the conditions either

(i) or (ii) of this lemma must hold. Suppose first that the conditions (i) are satisfied, i.e. U1 6= 0, U2 6=
0, U3 = Y1 = 0. Then we must have

Y1 = c[c2(b− 3h)− 4(b− h)2(b + h)]/32 = 0.

We observe that the condition c = 0 implies U2 = 0. So, c 6= 0 and then clearly the condition (b−3h)(b+h) ≥ 0

must hold. Obviously we could assume that both factors are non-negative and we set new parameters u and

v as follows: (b− 3h) = u2 and (b+h) = v2. So we get b = (u2+3v2)/4 and h = (v2 −u2)/4 and we calculate

Y1 = c(cu− u2v − v3)(cu+ u2v + v3)/32 = 0.

As the third factor can be obtained by the second one replacing v by −v we may assume cu − u2v − v3 = 0.

If u = 0 then v = 0 and we obtain

U3 = −27c4y(c2x2 + 16y2)2/212.

Since c 6= 0 we get U3 6= 0, i.e. the conditions (i) of the lemma are not satisfied.

Assume u 6= 0. Then c = v(u2 + v2)/u and we calculate

U2 =(u− v)2(u+ v)2(u2 + v2)v3
[
(u2 + v2)3x2 − 8u2(u2 + v2)xy + 16u2y2

]
/(16u5),

U3 =3(u− v)2(u + v)2(u2 + v2)2
[
(u2 + v2)3x2 − 8u2(u2 + v2)xy + 16u2y2

]
×

[
(u2 + v2)2(u2 + 3v2)x− 4(u2 − 2uv + 3v2)(u2 + 2uv + 3v2)y

]
/(214u8)

Since u 6= 0 the condition U3 = 0 implies (u− v)(u + v) = 0 and this yields U2 = 0.
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Thus the conditions (i) of Lemma 5 from [3] cannot be satisfied.

Assume now that the conditions (ii) are satisfied, i.e. U1 = U4 = U5 = U6 = 0, Y2 6= 0. We have

Coefficient[U6, y
2] = −4h2 and hence the condition U6 = 0 implies h = 0. Then we calculate Coefficient[U5, y

2] =

−12b = 0, i.e. b = 0. Therefore we obtain

U6 = −c4x2/64, Y2 = 3c2

and hence the condition U6 = 0 implies Y2 = 0. So the conditions (ii) of of Lemma 5 from [3] also cannot be

satisfied and this completes the proof of our claim.

Thus we get a node nd and we obtain the three configurations:

(Cf10) if η < 0: (b = 1, c = 2(4−
√
7)/9, h = 0);

(Cf11) if η > 0: (b = 1, c = 2(4 +
√
7)/9, h = 0);

(Cf12) if η = 0: (b = 1, c = −(α1/3 − 1)2/(2α1/3), h = (α4/3 + 1)/(4α2/3); α = 2−
√
3).

3.1.3. The case κ > 0. Then K̃ < 0 and according to [6] (see the Table 1, line 123) the elemental real singular

point is a saddle. In this case the total index of the infinite singularities must be +2 and hence, at infinity

besides a saddle-node we have two nodes (i.e. η > 0).

3.1.3.1. The subcase T4 6= 0. Then the saddle is strong and we get the configuration

(Cf13): (b = 1, c = 2, h = −1).

3.1.3.2. The subcase T4 = 0. Then ρ3 = 0 and the saddle is weak and its order is governed by the invariant

polynomial F1 (see [31, Main Theorem]).

3.1.3.2.1. The possibility F1 6= 0. In this case the we have a weak saddle of the first order:

(Cf14): (b = 1, c =
√
(256 + 4

√
1009)/175, h = −2/5).

3.1.3.2.2. The possibility F1 = 0. In this case we have a weak saddle of order two and it could not be of order

three. Indeed as it follows from [20] the condition µ0 = 0 implies D < 0, i.e. we could not have one real and

two complex singular points. So we arrive at the configuration

(Cf15):
(
h = 1, (b, c) = (b0, c0) ≈ (−1.98345, 2.06329) ∈

{
T −1
4 (0),F−1

1 (0)
})

.

B. The possibility a = 0 In this case we for systems (17) we get τ1,2 = −(2b− 2h+ ic)2 = 0 that implies

c = 0 and h = b. Hence we get the family of systems

(19) ẋ = 2bxy, ẏ = b+ ex+ 2mxy + by2,

for which we have µ1 = −4eb3y 6= 0 and therefore we can consider e = 1 = b due to the rescaling (x, y, t) 7→
(bx/e, y, t/b) and then we calculate

κ = −128m2, T4 = 256m2, W2 = 256m2(m2 − 2), η = 4m2.

Since κ 6= 0 we get κ < 0, η > 0, T4 6= 0 and sign (W2) = sign (m2 − 2). So we could only have the

configurations (Cf2), (Cf8) and (Cf11), which are already detected in the case a 6= 0.

As all the cases are considered, the lemma is proved.

3.2. Systems with one double and one simple real finite singularities. Assume that quadratic systems

(2) possess one double and one simple finite singularities. Then according to [31] via an affine transformation

and time rescaling these systems could be brought to the form:

(20) ẋ = cx+ cy − cx2 + 2hxy, ẏ = ex+ ey − ex2 + 2mxy

possessing the double singular point M1,2(0, 0) and the elemental singularity M3(1, 0). For these systems

calculations yield

µ0 = 0, µ1 = −4(cm− eh)2x, κ = 128h2(cm− eh).
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As for systems above we have µ1 6= 0 (i.e. gm− hl 6= 0) we observe that the condition κ = 0 is equivalent to

h = 0.

3.2.1. The case κ 6= 0. Then h 6= 0 and we may assume h = 1 due to a time rescaling. So we get the systems

(21) ẋ = cx+ cy − cx2 + 2xy, ẏ = ex+ ey − ex2 + 2mxy,

possessing the singular points M1,2(0, 0) and M3(1, 0). For these singularities we have the following values of

the traces ρi, of the determinants ∆i and of the discriminants τi:

ρ1 = ρ2 = c+ e, ∆1 = ∆2 = 0, τ1 = τ2 = (c+ e)2;

ρ3 = e− c+ 2m, ∆3 = 2(e− cm), τ3 = (e− c+ 2m)2 + 8(cm− e).

Then for the above systems we have

(22)

κ = −64∆3, K̃ = 2∆3x
2, E1 = −ρ1∆

4
3/2, G9 = ∆3/2,

T4 = −2ρ21ρ3∆
2
3, T3 = 2ρ1(ρ1 + 2ρ3)∆

2
3,

η = 4
[
(c− 2m)2 − 4∆3

]
, W4 = 4ρ41∆

4
3τ3,

M̃ = −8
[
(c+ 2m)2 − 6e

]
x2 + 16(c+ 2m)xy − 32y2.

Remark 7. We observe that M̃ 6= 0 and the condition κ 6= 0 implies K̃G9 6= 0. Moreover we have sign (K̃) =

−sign (κ).

3.2.1.1. The subcase κ < 0. This implies K̃ > 0 and according to [6] (see Table 1, lines 138 - 144) the elemental

singular point is an anti-saddle and its type is governed by the invariant polynomials W4 and W2 (as in the

considered case we have G9 6= 0).

3.2.1.1.1. The possibility W4 < 0. Considering (22) we have τ3 < 0, i.e. the elemental singular point is a focus.

On the other hand as the condition W4 6= 0 implies E1 6= 0 and G9 6= 0, according to [6] (see Table 1, line

140) the double point is a semi-elemental saddle-node.

1) Assume first T4 6= 0. Then the focus is strong and considering Lemma 1 and M̃ 6= 0 from (22) we arrive

at the following three configurations of singularities:

• f, sn(2);
(
1
1

)
SN, c©, c© : Example ⇒ (c = 2, e = 1, m = 0) (if η < 0);

• f, sn(2);
(
1
1

)
SN, S,N∞ : Example ⇒ (c = 2, e = 5/12, m = 0) (if η > 0);

• f, sn(2);
(
0
2

)
SN,

(
1
1

)
SN : Example ⇒ (c = 2, e = 1/2, m = 0) (if η = 0).

2) Suppose now T4 = 0. Then considering (22) we get ρ3 = 0, i.e. the focus is weak. In this case we have

e = c− 2m and we calculate

(23)
T4 = 0, T3 = 32(c−m)2(c− 2m− cm)2, F = −2(c−m)2(c− 2m− cm),

F1 = 4(c+ 2c2 − 2m− 2cm)(c− 2m− cm), W4 = −8192(c−m)4(c− 2m− cm)5.

So the condition W4 < 0 gives T3F < 0 and by [31] the order of weak focus is governed by invariant polynomial

F1.

a) The case F1 6= 0. Then the simple singular point of systems (21) is a first order weak focus and

considering Lemma 1 we arrive at the following three global configurations of singularities:

• f (1), sn(2);
(
1
1

)
SN, c©, c© : Example ⇒ (c = 0, e = 2, m = −1) (if η < 0);

• f (1), sn(2);
(
1
1

)
SN, S,N∞ : Example ⇒ (c = 0, e = 10, m = −5) (if η > 0);

• f (1), sn(2);
(
0
2

)
SN,

(
1
1

)
SN : Example ⇒ (c = 0, e = 8, m = −4) (if η = 0).

b) The case F1 = 0. By (23) the condition F1 = 0 gives c+ 2c2 − 2m− 2cm = 0 and c+ 1 6= 0, otherwise

we get F1 = −4(1 + m) 6= 0 due to the condition κ = 128(1 + m) 6= 0. So c + 1 6= 0 and we obtain
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m = c(1 + 2c)/(2(1 + c)). Then we calculate

F2 = −c8(3 + 2c)2(6 + 5c)

(1 + c)5
, η = 4

c2(12 + 20c+ 9c2)

(1 + c)2
,

W4 = 16
c14(3 + 2c)5

(1 + c)9
, κ = 64

c2(3 + 2c)

1 + c

and we observe that due to κ 6= 0 the condition η > 0 holds. Moreover, we get F2 = 0 for c = −6/5 and in this

case the weak focus is of order 3 as F3F4 = 2233215−13 6= 0 (see [31], the Main Theorem). Thus considering

Lemma 1 we get the following two global configurations of singularities:

• f (2), sn(2);
(
1
1

)
SN, S,N∞ : Example ⇒ (c = −4/3, e = 16/3, m = −10/3) (if F2 6= 0);

• f (3), sn(2);
(
1
1

)
SN, S,N∞ : Example ⇒ (c = −6/5, e = 36/5, m = −21/5) (if F2 = 0).

3.2.1.1.2. The possibility W4 > 0. Then the anti-saddle is a generic node and we get the next three global

configurations of singularities:

• n, sn(2);
(
1
1

)
SN, c©, c© : Example ⇒ (c = 0, e = 1, m = 1) (if η < 0);

• n, sn(2);
(
1
1

)
SN, S,N∞ : Example ⇒ (c = 0, e = 1/3, m = 1) (if η > 0);

• n, sn(2);
(
0
2

)
SN,

(
1
1

)
SN : Example ⇒ (c = 0, e = 1/2, m = 1) (if η = 0).

3.2.1.1.3. The possibility W4 = 0. Then as ∆3 6= 0 by (22) we have ρ1τ3 = 0 and clearly ρ1 = 0 if and only if

W4 = T4 = 0.

1) Assume first T4 6= 0. In this case ρ1 6= 0 and then the condition W4 = 0 gives τ3 = 0. So in this case we

have a node with coinciding eigenvalues. We claim that this node will be a star node if and only if U3 = 0.

Indeed the linearization matrix corresponding to M3(1, 0) is M3 =

(−c 2 + c

−e e+ 2m

)
and clearly we have a

star node if and only if e = 0, c = −2 and m = 1. In this case a straightforward computation gives us U3 = 0.

Conversely, assume that U3 = 0. As Coefficient[U3, y
5] = 12c2(2+c) we have c(2+c) = 0. We claim that we

could not have c = 0, otherwise we get Coefficient[U3, xy
4] = 24e2 = 0 and this contradicts κ 6= 0. So we have

c = −2 and then we calculate Coefficient[U3, xy
4] = 24(e− 2+2m)(e+2m) = 0 and as κ = −128(e+2m) 6= 0

we get e = 2(1−m). Finally we calculate Coefficient[U3, x
2y3] = 288(m− 1) = 0 and we have m = 1 and this

implies U3 = 0. So we arrive at the conditions above (i.e. the elemental singularity is a star node) and this

proves our claim.

On the other hand when we have a star node we obtain η = 0. So considering Lemma 1 we arrive at the

following four global configurations of singularities:

• nd, sn(2);
(
1
1

)
SN, c©, c© : Example ⇒ (c = 1, e = 3, m = 1) (if U3 6= 0, η < 0);

• nd, sn(2);
(
1
1

)
SN, S,N∞ : Example ⇒ (c = −3, e = −1, m = 1) (if U3 6= 0, η > 0);

• nd, sn(2);
(
0
2

)
SN,

(
1
1

)
SN : Example ⇒ (c = 6, e = 8, m = 1) (if U3 6= 0, η = 0).

• n∗, sn(2);
(
0
2

)
SN,

(
1
1

)
SN : Example ⇒ (c = −2, e = 0, m = 1) (if U3 = 0).

2) Suppose now T4 = 0. As it was mention above in this case we have ρ1 = 0 and then E1 = 0. As K̃ > 0

and G9 6= 0 according to [6] (see Table 1, lines 142 and 144) the double point is a nilpotent cusp, whereas

the type of the anti-saddle in this case is governed by the invariant polynomial W2. Setting e = −c for the

elemental singular point we have

(24) M3 =

(−c 2 + c

c 2m− c

)
, ρ3 = 2(m− c), ∆3 = −2c(1 +m), τ3 = 4(c2 + 2c+m2)
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and calculations yield

(25)

κ = −64∆3, E1 = T4 = T3 = 0, G9 = ∆3/2, T2 = 2ρ3∆
2
3,

T1 = 2∆2
3, F = (1 + c−m)ρ3∆3/2, F1 = −2c(1 + c−m)∆3,

η = 4
[
(c+ 2m)2 + 8c

]
, W2 = 4∆4

3τ3.

a) The case W2 < 0. This gives τ3 < 0 and the elemental singularity is a focus.

a1) The subcase T2 6= 0. Then ρ3 6= 0 and the focus is strong. So considering Lemma 1 we arrive at the

next three global configurations of singularities:

• f, ĉp(2);
(
1
1

)
SN, c©, c© : Example ⇒ (c = −1/12, e = 1/12, m = −9/25) (if η < 0);

• f, ĉp(2);
(
1
1

)
SN, S,N∞ : Example ⇒ (c = −1/13, e = 1/13, m = −9/25) (if η > 0);

• f, ĉp(2);
(
0
2

)
SN,

(
1
1

)
SN : Example ⇒ (c = −2/25, e = 2/25, m = −9/25) (if η = 0).

a2) The subcase T2 = 0. We have a weak focus and the condition ρ3 = 0 gives m = c. Then by (25) we

obtain

(26)
T2 = F = 0, T1 = 8c2(1 + c)2, F1 = 4c2(1 + c),

B = −2c2, H = 4c(1 + c), κ = 128c(1 + c).

So the condition κ 6= 0 yields T1F1 6= 0 (moreover κ < 0 implies H < 0) and according to [31] (see the

statement (d2) of Main Theorem) the weak focus could only be of order one. So we get the next three global

configurations of singularities:

• f (1), ĉp(2);
(
1
1

)
SN, c©, c© : Example ⇒ (c = −1/2, e = 1/2, m = −1/2) (if η < 0);

• f (1), ĉp(2);
(
1
1

)
SN, S,N∞ : Example ⇒ (c = −17/18, e = 17/18, m = −17/18) (if η > 0);

• f (1), ĉp(2);
(
0
2

)
SN,

(
1
1

)
SN : Example ⇒ (c = −8/9, e = 8/9, m = −8/9) (if η = 0).

b) The case W2 > 0. Then we have τ3 > 0 and the elemental singularity is a generic node:

• n, ĉp(2);
(
1
1

)
SN, c©, c© : Example ⇒ (c = −2, e = 2, m = 2) (if η < 0);

• n, ĉp(2);
(
1
1

)
SN, S,N∞ : Example ⇒ (c = −1, e = 1, m = 2) (if η > 0);

• n, ĉp(2);
(
0
2

)
SN,

(
1
1

)
SN : Example ⇒ (c = −8/9, e = 8/9, m = 16/9) (if η = 0).

c) The case W2 = 0. Considering (25) we have τ3 = 0 and systems (21) with e = −c possess a node with

coinciding eigenvalues. As the linearization matrix has the form given in (24) and c 6= 0 (due to κ 6= 0) this

node could not be a star node. So considering Lemma 1 we arrive at the following three global configurations

of singularities:

• nd, ĉp(2);
(
1
1

)
SN, c©, c© : Example ⇒ (c = −9/5, e = 9/5, m = −3/5) (if η < 0);

• nd, ĉp(2);
(
1
1

)
SN, S,N∞ : Example ⇒ (c = −1/5, e = 1/5, m = −3/5) (if η > 0);

• nd, ĉp(2);
(
0
2

)
SN,

(
1
1

)
SN : Example ⇒ (c = −32/25, e = 32/25, m = −24/25) (if η = 0).

3.2.1.2. The subcase κ > 0. This implies K̃ < 0 and according to [6] (see Table 1, lines 136, 137) the elemental

singular point is a saddle. At the same time the type of the double point depends on the value of the invariant

polynomial E1.

On the other hand considering (22) we observe that the condition κ > 0 implies η > 0 and according to

Lemma 1 at infinity there could be the unique configuration of singularities:
(
1
1

)
SN,Nf , Nf .

3.2.1.2.1. The possibility T4 6= 0. By (22) this implies ρ1ρ3 6= 0 and then E1 6= 0, i.e. the double point is

semi-elemental saddle-node. On the other hand as ρ3 6= 0 the saddle is strong and we obtain the following

global configuration of singularities:

• s, sn(2);
(
1
1

)
SN,Nf , Nf : Example ⇒ (c = 0, e = −1, m = 0).
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3.2.1.2.2. The possibility T4 = 0. Considering (22) we observe that ρ1 = 0 if and only if T4 = T3 = 0.

1) Assume first T3 6= 0. In this case we get ρ1 6= 0 (then E1 6= 0) and ρ3 = 0. We get e = c − 2m and by

(23) and [31] we obtain a weak saddle the order of which is governed by the invariant polynomial F1.

a) The case F1 6= 0. Clearly we arrive at the configuration:

• s(1), sn(2);
(
1
1

)
SN,Nf , Nf : Example ⇒ (c = 0, e = −2, m = 1).

b) The case F1 = 0. It was shown above (see subsection 3.2.1.1.1) that in this case the condition c+ 1 6= 0

holds and we obtain m = c(1 + 2c)/(2(1 + c)). Then calculations yield

F2 = −c8(3 + 2c)2(6 + 5c)

(1 + c)5
, κ = 64

c2(3 + 2c)

1 + c

and due to κ > 0 the condition F2 6= 0 holds. So we could only have a weak saddle of order two and this

leads to the configuration:

• s(2), sn(2);
(
1
1

)
SN,Nf , Nf : Example ⇒ (c = 1, e = −1/2, m = 3/4).

2) Suppose now T3 = 0. In this case we have ρ1 = 0 and then E1 = 0. As K̃ < 0 according to [6] (see Table

1, line 137) besides the saddle we have a nilpotent cusp.

a) The case T2 6= 0. Considering (25) we get ρ3 6= 0 and therefore we have a strong saddle:

• s, ĉp(2);
(
1
1

)
SN,Nf , Nf : Example ⇒ (c = 1, e = −1, m = 0).

b) The case T2 = 0. Then m = c and taking into account (26) we conclude, that the weak saddle could be

only of the first order:

• s(1), ĉp(2);
(
1
1

)
SN,Nf , Nf : Example ⇒ (c = 1, e = −1, m = 1).

3.2.2. The case κ = 0. In this case h = 0 and then c 6= 0, otherwise systems (20) become degenerate. So we

may assume c = 1 due to a time rescaling and we obtain the 2-parameter family of systems

(27) ẋ = x+ y − x2, ẏ = ex+ ey − ex2 + 2mxy,

for the singular points M1,2(0, 0) and M3(1, 0) of which we have the following linearization matrices, traces,

determinants and discriminants:

(28)

M1 =

(
1 1

e e

)
, ρ1 = ρ2 = 1 + e, ∆1 = ∆2 = 0, τ1 = τ2 = (1 + e)2;

M3 =

(−1 1

−e e+ 2m

)
, ρ3 = e− 1 + 2m, ∆3 = −2m, τ3 = ρ23 − 4∆3.

For the systems above calculations yield

(29)

µ0 = 0, µ1 = −∆2
3x, K̃ = 2∆3x

2, E1 = −ρ1∆
4
3/2, G9 = 0,

Ti = 0, i = 1, 2, 3, 4, σ = ρ1 + 2(m− 1)x, W7 = 3ρ41∆
6
3τ3/16,

B1 = ρ21ρ3∆3, B2 = −ρ1(m− 1)2(3e− 1 + 4m)∆3.

We observe that the condition µ1 6= 0 implies K̃ 6= 0. According to [6] and [31] the polynomials above are

responsible for the types of the finite singularities of systems (27). In order to describe the infinite singularities

considering Lemma 1 we calculate the additional invariant polynomials:

(30)
κ = η = 0, M̃ = −8(1 + 2m)2x2, C2 = ex3 − (1 + 2m)x2y,

L̃ = 8(1 + 2m)x2, Ñ = −4m(1 +m)x2.

So considering Lemma 1 we have the next remark.

Remark 8. Systems (27) could possess at infinity only one of the following seven configurations of singular-

ities:
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M̃ 6= 0, K̃ < 0 ⇒
(̂
1
2

) y
PfE

x
Pf−H, Nf ;

M̃ 6= 0, K̃ > 0, L̃ < 0, Ñ < 0 ⇒
(̂
1
2

) y
PfE

x
Pf−H, S;

M̃ 6= 0, K̃ > 0, L̃ < 0, Ñ > 0 ⇒
(̂
1
2

) x
PfH

y
Pf−E, S;

M̃ 6= 0, K̃ > 0, L̃ < 0, Ñ = 0 ⇒
(̂
1
2

)
H−E, S;

M̃ 6= 0, K̃ > 0, L̃ > 0 ⇒
(̂
1
2

)
HfHHf−H, N∞;

M̃ = 0, C2 6= 0 ⇒
(̂
1
3

)
HfH

y
Pf−

x
P ;

M̃ = C2 = 0 ⇒ [∞; ∅].

3.2.2.1. The subcase K̃ < 0. Then ∆3 < 0 and the elemental singularity is a saddle.

3.2.2.1.1. The possibility B1 6= 0. In this case we have ρ1ρ3 6= 0 and therefore the double point is a semi-

elemental saddle-node and the saddle is strong. We observe that the condition K̃ < 0 implies m > 0 and then

M̃ 6= 0. So considering the above remark we arrive at the global configurations of singularities

• s, sn(2);
(̂
1
2

) y
PfE

x
Pf−H, Nf : Example ⇒ (e = 0, m = 1).

3.2.2.1.2. The possibility B1 = 0. Then ρ1ρ3 = 0 and we shall consider two cases: B2 6= 0 and B2 = 0

1) Assume first B2 6= 0. Considering (29) we have ρ1 6= 0 and then ρ3 = 0 (i.e. e = 1− 2m) and the saddle

is weak. We calculate

(31) B1 = H = 0, B2 = 8m(m− 1)4, σ = 2(m− 1)(x− 1), F1 = 8m(m− 1)

and clearly the conditions B2 6= 0 and K̃ < 0 imply σF1 6= 0 and B2 > 0. So according to [31] (see the

statement (e1) of the Main Theorem) the weak saddle is of order one. Considering Remark 8 we get the

configuration

• s(1), sn(2);
(̂
1
2

) y
PfE

x
Pf−H, Nf : Example ⇒ (e = 0, m = 1/2).

2) Suppose now B2 = 0.

a) The case σ 6= 0. We claim that in this case the condition B1 = B2 = 0 is equivalent to ρ1 = 0. Indeed

suppose the contrary. Then ρ3 = 0 and since K̃ 6= 0, considering (31) the condition B2 = 0 implies σ = 0.

This contradiction proves our claim. So ρ1 = 0 (i.e. e = −1 and then E1 = 0) and by [6] (see Table 1, line 137)

the double singular point is a nilpotent cusp. In this case ρ3 = 2(m− 1) 6= 0 due to σ = 2(m− 1)(x− 1) 6= 0.

By Remark 8 we get the global configurations of singularities

• s, ĉp(2);
(̂
1
2

) y
PfE

x
Pf−H, Nf : Example ⇒ (e = −1, m = 2).

b) The case σ = 0. Then e = −1, m = 1 and the system (27) is Hamiltonian, i.e. the saddle is integrable:

• $, ĉp(2);
(̂
1
2

) y
PfE

x
Pf−H, Nf : Example ⇒ (e = −1, m = 1).

3.2.2.2. The subcase K̃ > 0. In this case according to [6] (see Table 1, lines 139 - 143) the elemental singular

point is an anti-saddle and its type is governed by the invariant polynomial W7 (as in the considered case we

have G9 = 0).

Remark 9. Considering (30) we observe that the condition L̃ = 0 implies M̃ = 0. Moreover as in this case

W7 = 3e(e− 4)(1 + e)4/16 we obtain that the condition W7 6= 0 yields C2 6= 0.

3.2.2.2.1. The possibility W7 < 0. By (29) we have ρ1 6= 0 and τ3 < 0 and we conclude, that the double point

is a semi-elemental saddle-node, whereas the simple point is a focus.

1) Assume first B1 6= 0. Then ρ3 6= 0 and the focus is strong. Considering Remarks 8 and 9 we arrive at

the next five global configurations of singularities

• f, sn(2);
(̂
1
2

) y
PfE

x
Pf−H, S : Example ⇒ (e = 1, m = −3/2) (if L̃ < 0, Ñ < 0);



GLOBAL CONFIGURATIONS OF SINGULARITIES FOR QUADRATIC DIFFERENTIAL SYSTEMS 31

• f, sn(2);
(̂
1
2

) x
PfH

y
Pf−E, S : Example ⇒ (e = 1, m = −2/3) (if L̃ < 0, Ñ > 0);

• f, sn(2);
(̂
1
2

)
H−E, S : Example ⇒ (e = 1, m = −1) (if L̃ < 0, Ñ = 0);

• f, sn(2);
(̂
1
2

)
HfHHf−H, N∞ : Example ⇒ (e = 1, m = −1/3) (if L̃ > 0);

• f, sn(2);
(̂
1
3

)
HfH

y
Pf−

x
P : Example ⇒ (e = 1, m = −1/2) (if L̃ = 0).

2) Suppose now B1 = 0. As W7 6= 0 (i.e. ρ1 6= 0) we have ρ3 = 0 and this gives e = 1 − 2m. Then we

obtain W7 = 1536(m− 1)4m7 and considering (31) we observe that the condition W7 < 0 implies σF1 6= 0

and B2 < 0. According to [31] (see the statement (e2) of the Main Theorem) we have a first order weak.

Considering Remarks 8 and 9 we get the following five global configurations of singularities:

• f (1), sn(2);
(̂
1
2

) y
PfE

x
Pf−H, S : Example ⇒ (e = 4, m = −3/2) (if L̃ < 0, Ñ < 0);

• f (1), sn(2);
(̂
1
2

) x
PfH

y
Pf−E, S : Example ⇒ (e = 7/3, m = −2/3) (if L̃ < 0, Ñ > 0);

• f (1), sn(2);
(̂
1
2

)
H−E, S : Example ⇒ (e = 3, m = −1) (if L̃ < 0, Ñ = 0);

• f (1), sn(2);
(̂
1
2

)
HfHHf−H, N∞ : Example ⇒ (e = 5/3, m = −1/3) (if L̃ > 0);

• f (1), sn(2);
(̂
1
3

)
HfH

y
Pf−

x
P : Example ⇒ (e = 2, m = −1/2) (if L̃ = 0).

3.2.2.2.2. The possibility W7 > 0. By (29) we have ρ1 6= 0 and τ3 > 0 and we conclude, that the double point

is a semi-elemental saddle-node, whereas the simple point is a generic node. So by Remark 8 we arrive at the

next five global configurations of singularities

• n, sn(2);
(̂
1
2

) y
PfE

x
Pf−H, S : Example ⇒ (e = −2, m = −3/2) (if L̃ < 0, Ñ < 0);

• n, sn(2);
(̂
1
2

) x
PfH

y
Pf−E, S : Example ⇒ (e = −2, m = −2/3) (if L̃ < 0, Ñ > 0);

• n, sn(2);
(̂
1
2

)
H−E, S : Example ⇒ (e = −2, m = −1) (if L̃ < 0, Ñ = 0);

• n, sn(2);
(̂
1
2

)
HfHHf−H, N∞ : Example ⇒ (e = −2, m = −1/3) (if L̃ > 0);

• n, sn(2);
(̂
1
3

)
HfH

y
Pf−

x
P : Example ⇒ (e = −2, m = −1/2) (if L̃ = 0).

3.2.2.2.3. The possibility W7 = 0. By (29) we have ρ1τ3 = 0.

1) Assume first B1 6= 0. Then we obtain ρ1 6= 0 and τ3 = 0. So the simple singularity is a node with

coinciding eigenvalues. On the other hand considering the linearization matrix M3 from (28) we observe that

we could not have a star node.

Thus considering Remark 8 we get the next six global configurations of singularities

• nd, sn(2);
(̂
1
2

) y
PfE

x
Pf−H, S : Example ⇒ (e = 1, m = −2) (if L̃ < 0, Ñ < 0);

• nd, sn(2);
(̂
1
2

) x
PfH

y
Pf−E, S : Example ⇒ (e = 1/25, m = −18/25) (if L̃ < 0, Ñ > 0);

• nd, sn(2);
(̂
1
2

)
H−E, S : Example ⇒ (e = 3 + 2

√
2, m = −1) (if L̃ < 0, Ñ = 0);

• nd, sn(2);
(̂
1
2

)
HfHHf−H, N∞ : Example ⇒ (e = 1/4, m = −1/8) (if L̃ > 0);

• nd, sn(2);
(̂
1
3

)
HfH

y
Pf−

x
P : Example ⇒ (e = 4, m = −1/2) (if L̃ = 0, C2 6= 0);

• nd, sn(2); [∞; ∅] : Example ⇒ (e = 0, m = −1/2) (if L̃ = 0, C2 = 0).

2) Suppose now B1 = 0. Then ρ1ρ3 = 0 and this gives ρ1 = 0, otherwise we get ρ3 = τ3 = 0 and M3

becomes a non-elemental singularity. So ρ1 = 0 (i.e. e = −1 and then E1 = 0) and the double point is a cusp.

As in this case we have τ3 = 4(1 + m2) > 0, the simple singular point is a generic node. So as e 6= 0 (i.e.

C2 6= 0) we get the five configurations of singularities:

• n, ĉp(2);
(̂
1
2

) y
PfE

x
Pf−H, S : Example ⇒ (e = −1, m = −3/2) (if L̃ < 0, Ñ < 0);

• n, ĉp(2);
(̂
1
2

) x
PfH

y
Pf−E, S : Example ⇒ (e = −1, m = −2/3) (if L̃ < 0, Ñ > 0);
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• n, ĉp(2);
(̂
1
2

)
H−E, S : Example ⇒ (e = −1, m = −1) (if L̃ < 0, Ñ = 0);

• n, ĉp(2);
(̂
1
2

)
HfHHf−H, N∞ : Example ⇒ (e = −1, m = −1/3) (if L̃ > 0);

• n, ĉp(2);
(̂
1
3

)
HfH

y
Pf−

x
P : Example ⇒ (e = −1, m = −1/2) (if L̃ = 0).

Thus we obtain a total of 62 geometrically distinct configurations of singularities for the family of quadratic

systems with one double and one simple finite singularities.

3.3. Systems with one triple real finite singularity. Assume that quadratic systems (2) possess a triple

finite singularity. In this case according to [31] we shall consider the family of systems

(32) ẋ = gy + gx2 + 2hxy, ẏ = ly + lx2 + 2mxy

possessing only one finite singularity: the triple point M1,2,3(0, 0). For these systems calculations yield

µ0 = 0, µ1 = 4(gm− hl)2x, κ = 128h2(hl − gm).

As for the above systems we have µ1 6= 0 (i.e. gm− hl 6= 0) we observe that the condition κ = 0 is equivalent

to h = 0.

3.3.1. The case κ 6= 0. Then h 6= 0 and we may assume h = 1 due to a time rescaling. Moreover we can

consider m ∈ {0, 1} due to the rescaling (x, y, t) 7→ (mx, m2y, t/m2) in the case m 6= 0. So we get the systems

(33)
ẋ = gy + gx2 + 2xy, gm− l 6= 0,

ẏ = ly + lx2 + 2mxy, m ∈ {0, 1},
for which we calculate

(34)
κ = 128(l− gm), K̃ = 4(gm− l)x2, G10 = l3(gm− l)3, T4 = −8l3(gm− l)2,

η = 4
[
(g − 2m)2 + 8l

]
, M̃ = −8

[
(g − 2m)2 + 6l

]
x2 − 16(g − 2m)xy − 32y2.

Remark 10. We observe that the condition G10 = 0 is equivalent to T4 = 0 and in this case we get η ≥ 0.

Moreover we have sign (K̃) = −sign (κ).

3.3.1.1. The subcase κ < 0. This implies K̃ > 0 and according to to [6] (see Table 1, lines 146, 147) the triple

finite singular point is a semi–elemental node if G10 6= 0 and it is a nilpotent elliptic saddle if G10 = 0 (in this

case l = 0 due to κ 6= 0).

As M̃ 6= 0 considering Lemma 1 we arrive at the following five configurations of singularities:

• n(3);
(
1
1

)
SN, c©, c© : Example ⇒ (g = 1, l = −1, m = 1) (if T4 6= 0, η < 0);

• n(3);
(
1
1

)
SN, S,N∞ : Example ⇒ (g = 1, l = 1/2, m = 1) (if T4 6= 0, η > 0);

• n(3);
(
0
2

)
SN,

(
1
1

)
SN : Example ⇒ (g = 1, l = −1/8, m = 1) (if T4 6= 0, η = 0);

• ês(3);
(
1
1

)
SN, S,N∞ : Example ⇒ (g = 1, l = 0, m = 1) (if T4 = 0, η > 0);

• ês(3);
(
0
2

)
SN,

(
1
1

)
SN : Example ⇒ (g = 2, l = 0, m = 1) (if T4 = 0, η = 0).

3.3.1.2. The subcase κ > 0. In this case we have K̃ < 0 and according to to [6] (see Table 1, line 145) the

triple finite singular point is saddle. As its eigenvalues are λ1 = 0 and λ2 = l we conclude that this triple

saddle is semi-elemental if l 6= 0 and it is a nilpotent saddle if l = 0.

We claim that the condition κ > 0 implies η > 0. Indeed, as κ = 128(l−gm) > 0 then we can set l = gm+ε

(ε > 0) and then we obtain

4
[
(g − 2m)2 + 8l

]
= 4
[
(g + 2m)2 + 8ε

]
> 0.

Thus considering Lemma 1 we obtain the following two configurations of singularities:

• s(3);
(
1
1

)
SN,Nf , Nf : Example ⇒ (g = 0, l = 1, m = 1) (if T4 6= 0);

• ŝ(3);
(
1
1

)
SN,Nf , Nf : Example ⇒ (g = −1, l = 0, m = 1) (if T4 = 0).
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3.3.2. The case κ = 0. Then h = 0 and gm 6= 0 due to µ1 = 4g2m2x 6= 0. So we may assume g = 1 due to

the rescaling (x, y) 7→ (x/g, y/g2) and we get the family of systems

(35) ẋ = y + x2, ẏ = ly + lx2 + 2mxy, m 6= 0,

for which we calculate

(36)

µ0 = κ = η = 0, µ1 = 4m2x, K̃ = 4mx2, G10 = l3m3,

F1 = 6lm, L̃ = 8(1− 2m)x2, Ñ = 4m(1−m)x2,

M̃ = −8(2m− 1)2x2, C2 = −lx3 + (1− 2m)x2y,

smallskip

3.3.2.1. The subcase K̃ < 0. According to to [6] (see Table 1, line 145) the triple finite singular point is saddle.

As it was mentioned earlier this triple saddle is semi-elemental if G10 6= 0 and it is a nilpotent saddle if

G10 = 0, which is equivalent to F1 = 0.

On the other hand the condition K̃ < 0 implies m < 0 and then M̃ 6= 0. Therefore considering Lemma 1

we obtain the following two configurations of singularities:

• s(3);
(̂
1
2

) y
PfE

x
Pf−H, Nf : Example ⇒ (l = 1, m = −1) (if F1 6= 0);

• ŝ(3);
(̂
1
2

) y
PfE

x
Pf−H, Nf : Example ⇒ (l = 0, m = −1) (if F1 = 0).

smallskip

3.3.2.2. The subcase K̃ > 0. As we have mentioned earlier the triple finite singular point is a semi–elemental

node if G10 6= 0 and it is a nilpotent elliptic saddle if G10 = 0.

3.3.2.2.1. The possibility M̃ 6= 0. Then 2m− 1 6= 0 and as m > 0 (due to K̃ > 0) we have

sign (L̃) = sign (1− 2m) sign (Ñ) = sign (1−m).

Therefore according to Lemma 1 we arrive at the following 8 configurations of singularities:

• n(3);
(̂
1
2

) y
PfE

x
Pf−H, S : Example ⇒ (l = 1, m = 2) (if F1 6= 0, L̃ < 0, Ñ < 0);

• n(3);
(̂
1
2

) x
PfH

y
Pf−E, S : Example ⇒ (l = 1, m = 2/3) (if F1 6= 0, L̃ < 0, Ñ > 0);

• n(3);
(̂
1
2

)
H−E, S : Example ⇒ (l = 1, m = 1) (if F1 6= 0, L̃ < 0, Ñ = 0);

• n(3);
(̂
1
2

)
HfHHf−H, N∞ : Example ⇒ (l = 1, m = 1/3) (if F1 6= 0, L̃ > 0);

• ês(3);
(̂
1
2

) y
PfE

x
Pf−H, S : Example ⇒ (l = 0, m = 2) (if F1 = 0, L̃ < 0, Ñ < 0);

• ês(3);
(̂
1
2

) x
PfH

y
Pf−E, S : Example ⇒ (l = 0, m = 2/3) (if F1 = 0, L̃ < 0, Ñ > 0);

• ês(3);
(̂
1
2

)
H−E, S : Example ⇒ (l = 0, m = 1) (if F1 = 0, L̃ < 0, Ñ = 0);

• ês(3);
(̂
1
2

)
HfHHf−H, N∞ : Example ⇒ (l = 0, m = 1/3) (if F1 = 0, L̃ > 0).

3.3.2.2.2. The possibility M̃ = 0. Then m = 1/2 and we obtain C2 = −lx3. So the condition F1 = 0 is

equivalent to C2 = 0 and considering Lemma 1 we get the following two global configurations of singularities:

• n(3);
(̂
1
3

)
HfH

y
Pf−

x
P : Example ⇒ (l = 1, m = 1/2) (if F1 6= 0);

• ês(3); [∞; ∅] : Example ⇒ (l = 0, m = 1/2) (if F1 = 0).

Thus we obtained that a quadratic system with a triple finite singularity possesses only one of the 19 global

configurations of singularities given above.

As all the cases are examined, we have constructed all 155 possible configurations for the family of qua-

dratic systems with mf = 3 possessing at most two real finite singularities. Therefore our Main Theorem is

completely proved.
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