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Abstract: Terpenes confer advantage in plant protection against abiotic stresses such as heat and drought and
biotic stresses such as herbivore and pathogen attack. We conducted a screening of leaf mono- and sesquiterpene
concentrations in 75 common woody plant species in the rainforest of Danum Valley (Borneo). Terpene
compounds were found in 73 out of the 75 analysed species. Similar or lower proportions have been reported in
other parts of the world. To our knowledge, this study reports for the first time the foliar concentration of mono-
and/or sesquiterpene for 71 species and 39 genera not previously analyzed. Altogether 80 terpene compounds
were determined across the species, and out of these only linalool oxide and (E)-y-bisabolene had phylogenetic
signal. A significant negative relationship between leaf monoterpene concentration and leaf length was observed,
but leaf mono- and sesquitepene concentration were not related to any other leaf morphological trait nor to leaf
elemental composition. Functions such as temperature protection, radiation protection or signaling and
communication could underlie the high frequency of terpene-containing species of this tropical ecosystem which
has multiple and very diverse interactions among multiple species.
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1. Introduction

Protection, defence and infochemical function have been highlighted as possible role of terpenes
[1-5]. Examples of these roles are photoprotection [6], thermotolerance) [7-11], protection against
drought [12, 13] and non-specific antioxidative capacity, whereby terpenes protect photosynthetic
membranes against peroxidation and reactive oxygen species such as singlet [9, 14-17]. Terpenes also
have a role in plant defence, acting as deterrents, toxins or modifiers of insect development [18]. They
are effective against non-adapted specialist herbivores [19], and generalist herbivores [20-22].
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The dosage dependence for a successful deterrent function can change among terpene compounds [23,
24]. Moreover, terpenes have several other protective properties such as defence against fungi and
[25]. All these physiological and ecological functions are likely to play a fundamental role in the
tropical ecosystems with multiple and diverse interactions among multiple species. Although there are
recent efforts to characterize terpene content of the wide diversity of tropical plant species [26], their
terpene content is mostly unknown.

Tropical ecosystems are characterized by frequent nutrient limitations and intense herbivore
pressures [27-30]. Both stresses are known to strongly influence plant terpene concentration [1, 8, 21,
22, 31-34]. Some studies have already shown multiple terpene ecological functions in tropical
ecosystems such as insect nest building [35], or insect attraction [36-38].

Considering the abiotic factors, low terpene production in plants with low nutrient concentration
and photosynthetic rates can be expected from the “nutrient-driven synthesis” hypothesis that predicts
a large enzyme (including terpene synthase) production with greater cellular N and P availability.
Higher nutrient availability is usually expected to translate into higher carbon fixation and activity of
the enzymes involved in isoprenoid production [39, 40]. In contrast, a greater production of terpenes
as carbon based secondary compounds under lower nutrient availabilities can be expected from the
“carbon excess” hypotheses [41-44]. These hypotheses assert that plants allocate carbon to secondary
metabolism only after growth requirements are met and that growth is constrained more by nutrients
than by photosynthesis. Thereafter, these secondary metabolites can exert defensive functions.

From a biotic perspective the role of terpenes has been related to plant defensive capacity.
Although there are several theories to explain defensive success in plants in different environmental
situations such as those theories based on an evolutionary basis [45]. This hypothesis proposes that
plant species adapted to high resource environments will be selected for growth allocation rather than
for defense while plant species adapted to low resource environments will be selected for increased
defense allocation, because with herbivore attack it is much more difficult to replace tissue in low
resource environments than in high resource environments. Thus, there is a quite broad consensus on
that the resource allocation hypothesis is a general framework in which to study the trade offs between
growth and defense as a function of resources availability [42, 44-48]. Both “carbon excess” and
“resource allocation” hypotheses expect higher terpene concentrations related to low nutrient
concentrations, whereas contrarily, “nutrient-driven” hyphotesis predicts higher terpene concentrations
related to high nutrient concentrations.

Several physical leaf properties have proved to be involved in defence mechanisms. Among
them, LMA, plays a prominent role and has been proven to have a deterrent effect [49, 50]. On the
other hand, costs for mechanical leaf support increase with increasing leaf size [51, 52], implying
larger fractional investment in less-palatable veins [51]. Large diversity of leaf shapes and sizes are
present in tropical forests, suggesting that trade-offs associated with leaf size-shape patterns can be
important in modifying the linkages of leaf structure and chemistry to herbivory. At this regard higher
C investment in leaf structures can suppose less allocation to terpenes production.

Few studies have investigated in a tropical rainforest the relationships between leaf terpene
concentrations and other leaf traits related with defense and palatability such as leaf nutrient
concentration, leaf phenolic concentration and leaf physical defenses, in a representative set of species
in the field [53-55]. This type of study has been especially scarce comparing the relationships between
leaf terpene concentrations and other leaf defensive traits. Moreover, there is a lack of terpene content
screening studies in tropical forest.

Borneo is the third largest island of the world. It is located in South-eastern Asia and still has a
great extent of tropical rain forest. Some studies have reported that nutrient availability is limiting for
woody plant productivity in Borneo rainforest [56-60]. Previous studies have demonstrated that on
average leaf nutrient concentrations of Borneo plants tend to be low [61] and some leaf nutrients
concentrations, especially P, are in lower concentrations than in other tropical areas such as Hawaii
[62]. In these nutrient limiting conditions, plant defence strategy against leaf herbivores might even be



an evolutionary-acquired tool in order to avoid N and P losses such as predicted by “resource
allocation” hypothesis [30, 46].

In this study, we conducted a screening of leaf terpene content in 75 common forest plant
species of Borneo. Our aims were: (i) to characterize the mostly unknown terpene concentrations of
these species and (ii) to study the relationships between the different terpene compounds and the
concentrations of other carbon based defenses such as phenolics and with leaf morphological traits and
C, N, P and K leaf concentrations. While studying these relationships, we also aimed to test the
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“nutrient-driven”, “carbon excess” and “resource allocation” hyphoteses.

2. Materials and Methods
2.1. Field site and studied species

The study was conducted in Danum Valley Field Centre located on the east coast of the
Malaysian state of Sabah, Borneo Island (48.75' E and 5° 01' N). (See supplementary material for
details).

A total of 75 common species were sampled (Figure 1, supplemetary material) and their basic
ecological traits are shown in Table 1 (supplementary material).

2.2. Plant sampling

Plant sampling was conducted in medium to large gaps (10-100 m diameter). In all cases, leaves
were sampled from at least three individual plants for each species. The plants were selected at
random, with the condition that plants from a given species are at least 100 m apart. From each plant,
even-aged mature non-senescent foliage, 6-12 months old was randomly sampled. (See supplementary
material for plant sampling details).

2.3. Leaf structural traits

After sampling, the leaves were sealed in plastic bags with wet filter paper and immediately
transported to the laboratory. In the laboratory, fresh and dry leaf mass, leaf area, leaf length, leaf mass
area (LMA), compactness and leaf roundness of individual leaves were determined as described in
supplementary information.

In the dataset, 6 species - Caesalpina major, Cassia alata, Clausena excavata, Fordia
splendidissima, Reinwardtiodendron humile and Sindora irpicina - are compound-leaved. In the case
of compound-leaved species, leaflets were considered as functional analogues of simple leaves, and all
structural and chemical traits refer to leaflets.

2.4. Leaf elemental and phenolic analyses

See supplementary information for detailed explanation of chemical analyses of leaf elemental
and phenolic concentrations. Briefly, for C and N sample determination, 1-2 mg of pulverized dried
sample were mixed with 2 mg of V,0s as oxidant and analysed by combustion coupled to gas
chromatography using a Thermo Electron Gas Chromatograph model NA 2100 (C.E. instruments-
Thermo Electron, Milan, Italy). For analyses of other elements, dried and ground samples were
digested with concentrated HNO; and H,0, (30%, w/v). Thereafter, the concentrations of As, Cd, Cr,
Cu, Mo, Ni, Pb, V and Zn were determined using ICP-MS (Mass Spectrometry with Inductively
Coupled Plasma) (Perkin-Elmer Corporation, Norwalk, USA) and Ca, Fe, K, Mg, Mn, Na and P were
determined using ICP-OES (Optic Emission Spectrometry with Inductively Coupled Plasma) (Perkin-



Elmer Corporation, Norwalk, USA). For As analyses, we firstly generated arsenic hydrides and
analyzed them with ICP-MS. Total phenolic concentration of leaves was determined by the improved
Folin-Ciocalteu assay [63].

2.5. Leaf terpene extraction and analysis

We sampled three plants per species and 10-20 leaves in each plant. Samples were ground in
liquid N, 1-12 hours after sampling. In each sampled plant we took three samples that were mixed and
used in a unique extraction. The leaves were crushed in liquid nitrogen with a Teflon pestle in a Teflon
tube until a homogeneous fine powder was obtained. After homogenization, 1 mL of pentane was
added before the pulp defrosted. The tubes were maintained at 25°C during 24 h, and after this period
a sample of each extract was put into a 300 pL glass vial. The samples were extracted in the
proportion 20 mg leaf powder: 1 mL of pentane. After extraction, samples were automatically injected
into the GC-MS. The column was HP-5 crosslinked 5% PH Me Silicone (Supelco Inc.). The initial
temperature of 40°C was immediately increased with a ramp of 30 °C min™ to 60°C. The second ramp
was 10°C min™ to 150°C which was maintained for 3 min. The third ramp was 70°C min™ to 250°C
which was maintained for 5 min. The carrier gas was helium at 0.7 mL min™. The mass detector was
used with an electron impact of 70 eV. ldentification of monoterpenes and sesquiterpenes was
conducted by GC-MS and comparison with standards from Fluka (Buchs, Switzerland), literature
spectra, and NIST and Wiley libraries. Calibration with common terpenes a-pinene, 5-3-carene, [3-
pinene, B-myrcene, p-cymene, limonene, sabinene (monoterpenes) and a-humulene (sesquiterpenes)
standards was carried out once every five analyses. The standards were purchased from Sigma Aldrich
(Gilingham, Dorset, UK) and analysed following the same process than for the sample extracts.
Terpene calibration curves (each one with 4 different terpene concentrations; 0, 0.01, 0.1 and 0.83 mg
mL™) were always highly significant (r* > 0.99 for the relationships between signal and terpene
concentrations). The most abundant terpenes had similar sensitivity (differences were generally less
than 5%). To link a peak with a determined compound using standard libraries (NIST and Wiley), we
established the threshold value of a 95% or more of the percentage of security that the peak should
correspond to a determined compound. All sampling and analytical procedures were applied in the
same way for all species.

2.6. Phylogenetic and statistical analysis

The program Phylomatic [64] was used to build a phylogenetic tree of the species studied
(Figure S1, supplementary information) as explained in Pefiuelas et al. [62]. The statistical
significance of the genetic differences between different species in explaining the variability of the
studied variables was calculated employing Matlab 7.6.0 with the PHYSIG module developed by
Blomberg et al. [65].

To analyze the relationships of foliage terpene concentrations with the other leaf studied
characteristics (nutrient concentrations, leaf morphological traits and the level of herbivore attack), we
conducted a general linear model (GLM) analysis both taking and not taking into account phylogenetic
signal using Matlab 7.6.0 with REGRESSIONV2 module [66]. Thereafter, the model with a lower
Akaike information criterion (AIC) was selected. When dealing with multiple correlations we used
Bonferroni correction. (See supplementary material for detailed explanation of phylogenetic and
statistical analyses).

3. Results and discussion

Foliar terpene presence was detected in 73 out of the 75 species analysed (Table 1). Table 1 and
S1 (supplementary material) show the mono- and sesqui- that were clearly determined by GC-MS.



Only Popowia pisocarpa and Xanthophyllum affine leaves did not present mono- and sesquiterpenes
(Tables 1 and S1, supplementary material). Eighty different terpene compounds were detected in the
leaves of the analyzed plants, 15 monoterpenes and 65 sesquiterpenes. All the monoterpenes and 62
out of the 65 sesquiterpenes (Table 1) could be determined. Thus, only 3 peaks that corresponded to a
sesquiterpene structure could not be identified. Only one leaf monoterpene (Linalool oxide) and one
sesquiterpene ((E)-o-Bisabolone) had phylogenetic signal (k = 0.524 and P = 0.020, and k = 0.482 and
P = 0.022, respectively). Total leaf monoterpene and sesquiterpene concentrations were positively
correlated (R =0.31 and P < 0.01) across species. The total number of monoterpene, sesquiterpene and
total terpene chemical species per each plant species did not have phylogenetic signal (k =0.072 and P
= 0.831, k = 0.094 and P = 0.649, and k = 0.079 and P = 0.832, respectively). Total leaf terpene
concentrations (mg g*) were not different among the species of different successional stages (P =
0.84) and ranged on average between 2-3 mg g™ in all categories of successional stages.

Leaf total monoterpenes were not correlated with the studied chemical and physical leaf traits
(Table S2, supplementary material) and neither with the species succesional stage (data not shown).

This study provides novel information about terpene concentrations in Borneo plant species. Of
the 75 species studied, 97% (73) contained terpenes in a detectable amount. This percentage was
higher than previously observed in other parts of the world (apart from traditional phytotherapy studies
which focus on plants with high secondary metabolite concentrations) such as Hawaii or the
Mediterranean region but not compared to others such as the French Guaiana [67]. For instance,
Sardans et al. (2010) [26] found detectable concentration of foliar terpenes in 25 out of 73 species
(34%) sampled in Hawaii, and Llusia & Pefiuelas (1998, 2000) [13, 68] found detectable foliar terpene
concentration in 4 out of 7 species studied (57%) in the North Western Mediterranean basin. Courtois
et al. (2009) [67] found terpene in all 55 species studied in French Guaiane.

As far as we know, within the 73 species that contained at least one mono- or sesquiterpene
compound in detectable amounts, only 2 species (Cinnamomum zeylanicum and Dipterocarpus
gracilis) had been previously reported as monoterpene and/or sesquiterpene-containing species [69,
70]. Therefore this study reports 71 species for the first time as mono- and/or sesquiterpene-containing
species (Table 2, supplementary material). Furthermore, we have determined mono- and sesquiterpene
compounds not previously reported in the two species previously reported as terpene-containing: the
monoterpenes limonene, a-pinene and B-myrcene and the sesquiterpene y-elemene in Cinnamomum
zelynicum, and the monoterpenes limonene and o-pinene and the sesquiterpenes a-cubebene,
bicyclogermacrene, y-cadinene, germacrene D and selina-3,7(11)-diene in Dipterocarpus gracilis
(Table 2, supplementary material). The studied species represent 39 genera, from a total of 64 genera
studied, with terpene concentration reported for the first time (Agelaea, Ardisia, Artocarpus,
Baccaurea, Barringtonia, Caesalpinia, Chaetocarpus, Cleistanthus, Clidemia, Combretum,
Dimorphocalyx, Diospyros, Durio, Endospermum, Etlinglera, Euphoria=Dimocarpus, Eusideroxylon,
Fordia, Fagraea, Glochidion, Gluta, Hopea, Luvunga, Macaranga, Madhuca, Mallotus, Melastoma,
Memecylon, Neonauclea, Palanquium, Parashorea, Payena, Pleurocarpidia, Poikilospermum,
Pterospermum, Reinwarditiodendron, Swintonia, Symplocos, Uncaria) (Table 2, supplementary
material). In the case of Ardisia elliptica, plants of this species growing in Oahu (Hawaii) were
analysed with the same protocol used in this study and no mono- and seaquiterpene compounds were
detected [26]. On the other hand, 23 genera (Callicarpa, Canarium, Cinnamomum, Chisocheton,
Clausena, Dacryodes, Dipterocarpus, Dryobalanops, Ficus, Lansium, Myristica, Nauclea,
Podocarpus, Polyalthia, Pouteria, Senna, Shorea, Sindorea, Syzygium, Tabernaemontana, Tarenna,
Uvaria, Zingiber) had been previously reported as mono- and sesquiterpene-containing genera, but






Table 1. Foliar concentrations of monoterpene and sesquiterpene compounds determined in the 75 Borneo rainforest species studied.

Species

Monoterpenes

Previous reports in the

This study literature

Mono- and Sesquiterpenes
reported in the same
species (labeled with *) or
in the other species of the
same Genus

Sesquiterpenes

Agelaea borneensis

Ardisia elliptica

Arctocarpus
odoratissimus

Baccaurea macrocarpa

Barringtonia
sarctostachys

Caesalpinia mezzoneuron

Limonene (56.0),
a-Pinene (8.5),

Total (64.5)
Limonene (4.4 + 1.9),
Total (4.4 +1.9)

Limonene (13.7),
a-Pinene (60.4),

Total (74.3)

Limonene (1.99 +
1.15), a-Pinene (1.70 +
0.98), Total (2.46 +
1.01)

Limonene (3.1),
a-Terpinene (15.4),
Total (18.5)

Limonene (7.3 + 2.0),
-Ocimene (56.3 +
48.7), y-Terpinene (9.6
+8.3),

E-Sabinene (2.66 +
2.31), Linalool (9.1 +
7.9),

a-Pinene (3.8 + 2.5),
Sabinene (16.0 + 13.9),

B-Caryophyllene (11.4), Germacrene D (2.5), Total (53.4)

a-Copaene (45.3 + 32.0), B-Caryophyllene (485 + 285), a-Cubebene (13.6 +
11.1), a-Ylangene (0.58 + 0.47), a-Farnesene (2.13 + 1.74), a-Caryophyllene
(99.0 + 45.9), y-Cadinene (11.4 + 4.7), B-Selinenen (11.5 + 5.4), a-Selinene (693
+493), Total (1331 + 872)

a-Copaene (33.5), B-Caryophyllene (84.5), Aromadendrene (99.8),
Bicyclogermacrene (15.4), a-Mururolene (15.5 + 12.7), Total (260)

Bicyclogermacrene (0.64 + 0.37), Bicycloelemene (14.3 + 8.3),
a-Caryophyllene (4.78 + 2.76), a-Muurolene (15.5 + 12.7), Germacrene D (3.4
+2.8), Total (32.1 + 26.2)

a-Copaene (13.3), a-Amorphene (5.55), Calarene (7.3), E-Caryophyllene (578),
Bicyclogermacrene (11.2), a-Caryophyllene (223), Germacrene D (181), Total
(1020)

Bicycloelemene (10.0 + 8.6), a-Copaene (33.3 + 26.5), p-Caryophyllene (97.7 +
50.9), y-Elemene (564 + 488), a-Cubebene (10.4 + 9.0), (-)-B-Elemene (547 +
474), B-Cubebene (452 + 391), B-Gurjunene (5.1 + 4.4), a-Amorphene (0.96 +
0.83), A-Elemene (180 + 156), E-Caryophyllene (61.5 + 53.3),
Bicyclogermacrene (145 + 126), a-Caryophyllene (375 + 175) y-Cadinene (3.7 +
3.2), B-Selinene (129 + 111), Germacrene D (4.4 + 2.2), Selina-3,7(11)-diene
(2.1 +1.8), Total (2619 + 1404)



Callicarpa longifolia

Canarium decumanum

Canarium denticulatum

Cassia (Senna) alata
Chaetocarpus

castanocarpus

Chisocheton sarawakensis

Cinnamomum zeylanicum

Total (108 + 50.6)
B-Pinene (332 + 271),
Limonene (302 + 172),
y-Terpinene (54.9 +
44.8), Linalool oxide
(2.94 + 1.70), a-
Terpinene (34.6 +
20.0), a-Pinene (846 +
488), Sabinene (147 +
85), Total (1275 +
1040)

Limonene (3.4)
Limonene (37.0 +
13.4), B-Ocimene (14.0
+ 11.4), a-Pinene (39.1
+23.1), Total (90.0 +
46.3)

Limonene (141), o~
Pinene (9.3), Total
(150)

Limonene (3.9), a-
Pinene (1.31), Total
(5.3)

Camphene (33.2), B-
Pinene (25.5),
Limonene (230), a-
Pinene (1592),
Sabinene (193), Total
(2073)

Limonene (48.8 +
26.0), a-Pinene (170 +
96), B-Myrcene (15.9 +
9.2), Total (156 + 125)

a-Copaene (21.7 + 11.5), a-Santalene (18.6 + 10.8), p-Caryophyllene (166 +
96), E-a-Bisabolene (3.2 + 1.9), E-y-Bisabolene (2.2 + 1.3), y-Elemene (2.6 +
2.2), B-Gurjunene (11.7 + 6.8), a-Amorphene (2.75 + 1.6), Calerene (3.1 + 2.5),
1,5,5-thrimethyl cyclohexane (146 + 64), a-Caryophyllene (141 + 69),
Germacrene D (47.7 + 38.9), Total (410 + 287)

B-Caryophyllene (1454), a-Caryophyllene (429), Total (1883)

a-Copaene (153 + 101), B-Caryophyllene (329 + 155), y-Elemene (32.3 + 19.1),
a-Cubebene (38.1 + 31.1), (-)-B-Elemene (107 + 37), A-Elemene (94.3 + 39.5),
1,5,5-trimethyl-6-methylene-cyclohexene (319 + 90), a-Guaiene (9.9 + 6.8),
Allomadendrene (4.2 + 3.4), a-Caryophyllene (22.0 + 12.6), y-Cadinene (14.4 +
0.8), Germacrene D (255 + 154), Selina-3,7(11)-diene (14.4 + 4.1), B-Bisabolene
(81.8 + 28.6), Total (1474 + 380)

a-Copaene (64), (-)-B-Elemene (146), A-Elemene (651), E-Caryophyllene
(1139), B-Selinene (4233), Germacrene D (750), Selina-3,7(11)-diene (646),
Total (6683)

a-Caryophyllene (84.1), Total (84.1)
B-Caryophyllene (6.2), a-lonone (5.6), a-Caryophyllene (12.0), B-Selinene (4.4),

Germacrene D (11.7), (+)-Spathulenol (9.7), Total (49.5)

B-Caryophyllene (83.0 + 38.4), y-Elemene (6.9 + 5.6), a-Caryophyllene (40.4 +
12.9), Germacrene D (10.2 + 8.3), Total (99.4 + 55.5)

C. americana and C.
japonica (Cantrell et al.
2005) [86], C. microphylla
(Chung et al. 2005) [87]

C .album (Giang et al.
2006) [88], C. boivbinii
(Billet et al. 1971) [89], C.
Zeylanicum (Bandaranayake
1980) [90]

C. fistula (Tzakou et al.
2007) [91], C. javanica
(Chaudhuri & Chawla 1987)
[92]

C. penduliflorus
(Phongmaykyn et al. 2008)
[93]

C.burmanii (Sardans et al.
2010) [26], C. malabatrum
(Leela et al. 2009) [94],
(Jayaprakasha et al. 2003;
Yang et al. 2005;Tira-Picos



Clausena excavata

Cleistanthus bridelifolius

Clidemia hirta

Combretum nigrescens

Dacryodes rugosa

Dimocarpus longan
subsp. malesianus =
Euphoria malaiensis

Dimorphocalyx murinus

Diospyros durinoides

Limonene (56.9 +

46.5), a-Pinene (30.2 +
24.7), B-Myrcene (49.4

+33.5), Total (134 +
104)

Limonene (81), a-
Pinene (21.1) , Total
(27.2)

Limonene (18.2), Total

(18.2)

Limonene (3.64), a-
Pinene (1.87), Total
(5.5)

Limonene (495), a-
Pinene (2402), Total
(2897)

Limonene (15.3), a-
Pinene (1.44), Total
(16.7)

Limonene (5.3), a-
Pinene (4.8), Total
(10.1)

Limonene (6.3 + 0.3),

o-Copaene (22.8 + 11.8), B-Copaene (3.6 + 3.0), B-Caryophyllene (2.92 + 2.40),
v-Elemene (8.5 + 7.0), (-)-B-Elemene (24.5 + 20.0), a-Amorphene (634 + 511),
A-Elemene (115 + 94), E-Caryophyllene (358 + 289), Bicyclo[3,1,1]hept-2-ene-
2,6-dimethyl-3-penthyl) (16.7 + 13.6), B-Selinene (1005 + 414), A-Cadinene (3.6
+2.9), B-Panasinsene (9.2 + 7.5), Selina-3,7(11)-diene (7206 + 160), Nerolidol
(65.3 + 53.3), Caryophyllene oxide (34.4 + 8.8), Germacrene D (219 + 154),
Total (2537 + 1284)

a-Copaene (6.4),3-Copaene (4.7), Aromadendrene (2.61), a-Pharnesene (54.1),
Total (67.8)

-Cubebene (5.7), Total (5.7)

a-Copaene (5.2), E-a-Bergamolene (3.6), Germacrene D (7.4), Total (16.1)

a-Copaene (14.3), B-Caryophyllene (10.8), y-Elemene (10.5), (-)-B-Elemene
(13.9), a-Amorphene (19.0), Allomadendrene (58.5), a-Caryophyllene (13.3),
Germacrene D (4.5), Total (133)

a-Copaene (397 + 62), B-Caryophyllene (1392 + 25), y-Elemene (270 + 143),
(+)-Aromadendrene (1.72), a-Cubebene (2.7), Calerene (103 + 44), 1,5,5-
trimethyl-6-methylene-cyclohexene (32.6 + 9.2), Bicyclo[3,1,1]hept-2-ene-2,6-
dimethyl-3-penthyl) (76.9 + 35.5), B-Sesquiphenentrene (14.0 + 8.1),

Allomadendrene (147 + 40), a-Caryophyllene (1352 + 59), Germacrene D (415 +

278), Selina-3,7(11)-diene (62.6 + 9.8), Total (3104 + 1270)
v-Elemene (28.6), a-Cubenene (9.5), a-Ylangene (8.8), (-)-B-Elemene (68.5), a-

Cadinol (32.9), a-Selinene (143), a-Amorphene (19.0), Bicycloelemene (6.5), a-

Gurjunene (6.9), E-Caryophyllene (68.3), A-Cadinene (50.9), E-o-Bergamotene

(51.8), a-Caryophyllene (68.3), B-Selinene (112), B-Panasinsene (5.2), Selina-3,7

(11)-diene (113), Germacrene D (443), A-Cadinene (50.9), Total (1316)

-Caryophyllene (1.7 + 1.0), y-Elemene (0.43 + 0.35), a-Caryophyllene (3.0 +

et al. 2009; Wang et al.
2009) [95-98], C.
zeylanicum (Chen et al.
2010)[70]*

C. harmandiana
(Thongthoom et al. 2010)
[99], C. heptaphylla (Sohrab
etal. 1999) [100], C.
lansium (Chokeprasert et al.
2007) [101]

D. edulis (Ekong & Okogun
1969) [102]



Dipterocarpus
sarawakensis

Dipterocarpus applanatus

Dipterocarpus gracilis

Dryobalanops lanceolata

Durio kutejensis

Endospermum diadenum

Etlingera brevilabrum

a-Pinene (33.6 + 14.6),
Total (26.6 + 15.9)
Limonene (5.9), Total
(5.9)

Limonene (29.6 +
81.2), a-Pinene (27.9 +
16.1), Total (38.3 +
21.1)

Limonene (6.3 + 3.6),
a-Terpinene (14.8 +
8.5), a-Pinene (0.26 +
0.15), Total (14.2 +
11.6)

Camphene (286 + 165),
Limonene (11.4 +5.1),
a-Pinene (0.40 + 0.23),
Total (199 + 161)
Limonene (14.3), a-
Pinene (265), Total
(280)

Limonene (19.5), B-
Ocimene (124), y-
Terpinene (81.0), E-
Sabinene (44.9), Z-
Sabinene hydrate
(54.4), Linalool (183),
y-Terpinene (5.2), a-
Pinene (20.7), Sabinene
(442), Myrcene (19.5) ,
Total (994)

Limonene (24.1), a-
Pinene (656), Total

0.9), Globulol (21.1 + 6.2), Germacrene D (1.5 + 0.9), Total (19.1 + 10.4)

-Caryophyllene (31.8), 1,5,5-trimethyl-6-methylene-cyclohexene (43.5),
Bicyclo[4,4,0]dec-1-ene-2-isopropyl-5-methyl-9-methylene (178), Germacrene B
(6.6), a-Guaiene (6.2), a-Caryophyllene (11.), Germacrene D (6.8), Total (284)
o-Copaene (653 + 377), B-Caryophyllene (1097 + 633), B-Cubebene (416 +
240), Bicyclogermacrene (3543 + 1934), Bicyclo[4,4,0]dec-1-ene-2-isopropyl-5-
methyl-9-methylene (158 + 92), a-Caryophyllene (1217 + 635), Germacrene D
(52.9 + 43.2), y-Cadinene (1425 + 823), Total (5818 + 560)

-Caryophyllene (698 + 401), a.-Cubebene (55.7 + 32.2), B-Cubebene (14.8 +
8.5), E-Caryophyllene (283 + 164), Aromadendrene (139 + 80),
Bicyclogermacrene (155 + 90), Germacrene D (78.2 + 63.8), Selina-3,7(11)-
diene (16.9 + 9.8), a-Caryophyllene (674 + 153), B-Selinene (56.6 + 46.2), Total
(1400 + 633)

a-Copaene (122 + 71), B-Caryophyllene (5.9 + 3.4), a-Amorphene (25.2 + 14.5),
Aromadendrene (5.8 + 3.3), a-Caryophyllene (2.9 + 1.7), y-Cadinene (21.1 +
12.2), B-Selinene (1.2 + 1.0), Germacrene D (8.8 + 7.2), Selina-3,7(11)-diene
(13.2 +7.6), Total (142 + 91.2)

Bicycloelemene (29.1), a-Copaene (375), a-Cubebene (45.9), E-Caryophyllene
(109), Bicyclogemacrene (496), a-Caryophyllene (293), Total (1484)

a-Copaene, (176) (-)-B-Elemene (15.6), 3-Cubebene (921), 1,4,7-
Cycloundecatriene-1,5,9,9-tetramethyl-Z,Z,7- (14.0), Total (1126)

D. species (Messer et al.
1990) [69]*, D. kerrii

(Richardson et al. 1989 and

1991) [103, 104]

D. aromatica (Park et al.
2003) [105]



Eusideroxylon zwangeri

Ficus aurata

Fordia splendidissima

Fagraea cuspidata

Glochidion rubrum

Gluta macrocarpa

Zingiber odoriferum

(680)

B-Pinene (63.4 + 27.3),
Limonene (16.5 + 2.3),
a-Pinene (362 + 11),
Total (316 + 30)

Limonene (7.7), a-
Pinene (8.5), Total
(16.2)

Limonene (20.3) , Total
(20.3)

Limonene (5.8), a-
Pinene (0.66) , Total
(6.4)

Limonene (168), y-
Terpinene (106), a-
Pinene (1402),
Phellandrene (453),
Total (2128)
Limonene (32.1), B-
Ocimene (3229), a-
Pinene (33.7), B-
Myrcene (94.0), Total
(3389)

Limonene (35.0), a-
Pinene (492), Total
(527)

a-Copaene (1049 + 108), B-Caryophyllene (2972 + 460), y-Elemene (448 + 184),

a-Cubebene (533 + 57), a-Ylangene (103 + 28), 3-Cubebene (1046 + 47),

Calarene (138 + 72), 1,5,5-trimethyl-6-methylene-cyclohexene (12.5 + 7.5), E-

Caryophyllene (1777 + 377), Bicyclogermacrene (2290 + 614), a-Guaiene (681

+ 556), E-B-Phanesene (48.1 + 14.6), a-Caryophyllene (31.4 + 1.3), y-Cadinene

(163 + 40), a-Muurolene (28.7 + 12.5), a-Cadinol (119 + 48), Germacrene D

(611 + 499), Selina-3,7(11)-diene (61.8 + 2.5), Total (8886 + 3628)
F. carica (Gibernau et al.
1997) [106], F. exasperate
(Sonibare et al. 2006) [107]

B-Caryophyllene (6.6), a.-Caryophyllene (21.1), Total (27.7)

a-Caryophyllene (15.6), Total (15.6)

B-Caryophyllene (914), (+)-Aromadendrene (36.1), 8-1sopropanyl-1,5-dimethyl-
cyclodeca 1,5-diene (86.4), A-Elemene (725), Aromadendrene (67.3), E-a-
Bergamotene (48.7), a-Caryophyllene (378), y-Cadinene (82.7), B-Selinene
(1383), Germacrene D (1711), Selina-3,7(11)-diene (62.7), Total (5515)

Z. aromaticum (Kirara et al.
2003) [108], Z. nimmonii
(Baby et al. 2006) [109], Z.
ottensii (Akiyama et al.
2006) [110], Z. officinalis
(Rani 1999; Bartley &
Jacobs 2000; Ma et al.
2004; Picaud et al. 2006;
Ma & Gang 2006; Menon et

a-Copaene (260),3-Copaene (14.4), Bicyclogermacrene (715), Germacrene D
(23.6)
Aromadendrene (9.0), Total (1022)



Hopea griffithii

Hopea nervosa

Hopea nutans

Hopea sangal

Lansium domesticum

Luvunga heterophylla

B-Pinene (331),
Limonene (40.9), a-
Pinene (2812),
Sabinene (52.2), B-
Myrcene (93.0), Total
(3329)

Camphene (0.64 +
0.58), p-Pinene (0.6662
+ 0.57), Limonene
(80.9 +69.2), B-
Ocimene (21.6 + 19.7),
Linalool (14.8 + 13.5),
a-Terpinene (9.5 +
8.7), a-Pinene (387 +
352), D-Calerene (0.69
+0.63), Total (1134 +
1027)

Limonene (5.0 + 2.9),
-Ocimene (34.6 +
20.0), Total (26.4 + 1.6)

Limonene (6.31), a-
Pinene (32.9 + 23.7),
Total (39.3 + 24.8)

Limonene (10.7), a-
Pinene (5.8), Total

al. 2007) [111-116], Z.
zerumbet (Damodaran &
Dev 1967; Jang & Seo
2005; Sadhu et al. 2007; Yu
et al. 2008a and 2008b)
[117-121]

a-Copaene (62.5), Calarene (50.5), E-Caryophyllene (38.9), B-Cubebene (2), a-

Caryophyllene (30.7), Germacrene D (19.1), Total (219)

Bicycloelemene (5.8 + 5.3), a-Copaene (22.9 + 14.3), a-Satalene (9.4 + 6.6), -
Caryophyllene (117 + 75), y-Elemene (14.2 + 12.9), a-Cubebene (2.14 + 1.62),
B-Elemene (0.87 + 0.79), (-)-B-Elemene (4.9 + 4.4),(13-Cubebene (3.0 + 2.7),
Bicyclogermecrene (55.2 + 50.1), Aromadendrene (1.2 + 1.1), a-Farnesene (1.3
+ 1.2), a-Caryophyllene (39.2 + 17.2), y-Cadinene (5.7 + 3.6), B-Selinene (10.8 +
9.4), A-Elemene (7.0 + 6.4), 1,5,5-trimethyl-6-methylene-cyclohexene (0.44 +
0.41), E-Caryophyllene (7.8 + 6.9), Bicyclo[3,1,1]hept-2-ene-2,6-dimethyl-3-
penthyl) (4.8 + 4.4), E-a-Bergamolene (33.1 + 20.7), pB-Bisabolene (57.2 +
52.3), Germacrene D (140 + 65), Selina-3,7(11)-diene (6.1 + 5.4), (+)-B-
Gurjunene (0.41 + 0.38), A-Cadinene (8.2 + 7.5), Total (557 + 225)

a-Copaene (34.2 + 19.7), B-Caryophyllene (97.5 + 24.8), y-Elemene (331 + 270),

(-)-B-Elemene (254 + 208), B-Cubebene (259 + 150), A-Elemene (91.7 + 74.9),

a-Caryophyllene (30.0 + 7.4), y-Cadinene (7.8 + 4.5), Selina-3,7(11)-diene (3.8 +

2.2), Total (995 + 714)

(-)-B-Elemene (372), a-Lonone (1439), Bicyclogermacrene (21.0), y-Cadinene

(56.0), Aromadendrene (8.1), Total (1893)

a-Copaene (1.3 + 1.0), B-Caryophyllene (30.6 + 20.2), y-Elemene (105 + 84), o- L. anamalayanum
Cubebene (48.5 + 34.7), B-Cubebene (188 + 63), Calarene (5.5 + 4.5), 1,4,7- (Krishnappa & Dev 1973)
Cycloundecatriene-1,5,9,9-tetramethyl-Z,Z,Z- (4.0 + 3.3), a-Caryophyllene (24.0 [122]

+ 16.2), y-Cadinene (24.5 + 11.2), Total (432 + 142)

o-Copaene (1384), 3-Caryophyllene (15.9), a-Cubebene (74.2), a-Ylangene

(116), (-)-B-Elemene (800), a-Amorphene (168), A-Elemene (1448), a-



Macaranga conifera

Macaranga gigantea

Madhuca korthalsii

Mallotus mollissimus

Mallotus wrayi

Melastoma

(16.5)

B-Pinene (241), y-
Terpinene (80.3), a-
Pinene (273),
Phellandrene (132),
Total (706)
Limonene (8.2 + 6.7),
a-Pinene (4.2 + 3.4),
Total (12.3 +5.8)

Limonene (6.3), a-
Pinene (33.6), Total
(40.0)

B-Pinene (823 + 373),
Limonene (49.5 +
19.5), y-Terpinene
(12.6 +5.2), a-Pinene
(2197 + 900), Total
(3082 + 1254)
Limonene (4.6 + 2.2),

a-Pinene (3.69 + 0.41),

Total (8.3 +2.5)

Limonene (11.9 + 1.0),

Gurjunene (59.8), E-Caryophyllene (254), Bicyclogermecrene (2201),
Germacrene B (397), a-Guaiene (349), a-Caryophyllene (1790), B-Selinene
(2079), y-Selinene (1379), 5-Azulenemethanol (193), Germacrene D (70.9), Total
(12778)

a-Caryophyllene (11.0), Total (11.0)

a-Copaene (35.2 + 28.7), B-Caryophyllene (564 + 240), (-)-B-Elemene (26.0 +
21.2), 8-1sopropanyl-1,5-dimethyl-cyclodeca 1,5-diene (13.8 + 11.2), B-
Cubebene (9.5 + 7.8), A-Elemene (27.5 + 16.2), Bicyclo[3,1,1]hept-2-ene-2,6-
dimethyl-6-(4-methyl-3-pentenyl)- (56.9 + 39.0), E-a-Bergamolene (9.8 + 8.0),
B-Bisabolene (84.2 + 68.7), E-pB-Pharnesene (5.2 + 4.3), a-Caryophyllene (913 +
570), y-Cadinene (18.9 + 15.4), B-Selinene (16.7 + 13.6), Veridiflorol (32.8 +
28.8), Total (1780 + 810)

Bicycloelemene (12.4), a-Copaene (14.6), (-)-B-Elemene (13.3), a-Amorphene
(4.3), Calarene (3.0), E-Caryophyllene (34.5), Aromadendrene (2.6),
Bicyclogermacrene (181), Germacrene D (288), Selina-3,7(11)-diene (3.5), a-
Caryophyllene (19.1), Total (580)

a-Copaene (83.5 + 35.8), Caryophyllene (252 + 179), (-)-a-Selinene (341 +
160), a-Cubebene (4.7 + 3.8), B-Elemene (4.5 + 3.7), Aromadendrene (31.2 +
19.8), Bicyclogermacrene (330 + 156), Germacrene B (109 + 59), o~
Caryophyllene (265 + 132), B-Panasinsene (77.2 + 63.1), Selina-3,7(11)-diene
(60.7 + 49.6), Germacrene D (62.5 + 41.8), Total (1622 + 763)

o-Copaene (28.4 + 14.5), a-Cubebene (71.1 + 58.0), B-Elemene (3.8 + 3.1), a-
Amorphene (32.5 + 26.5), E-Caryophyllene (153 + 113), Bicyclogermacrene (8.1
+5.2), Germacrene B (1.9 + 1.6), a-Farnesene (47.1 + 38.4), a-Caryophyllene
(120 + 79), a-Muurolene (8.3 + 6.6), B-Bisabolene (12.1 + 9.9), A-Cadinene
(44.3 + 33.8), Globulol (11.1 + 9.0), Viridiflorol (32.8 + 26.8), Germacrene D
(155 + 65), Selina-3,7(11)-diene (87.1 + 71.1), (+)-B-Gurjunene (5.4 + 4.4), Total
(801 + 321)

a-Caryophyllene (43.0 + 24.8), Total (43.0 + 24.8)



malabathricum

Memecylon laevigatum

Myristica maxima

Nauclea subdita

Neonauclea artocarpoides

Palaquium microphyllum

Parashorea malaanonan

Parashorea tomentella

y-Terpinene (12.5 +
10.2), a-Pinene (41.1 +

3.1), Total (75.7 + 23.0)

Limonene (3.3), a-
Pinene (19.5), Total
(22.8)

Limonene (3.8), a-
Pinene (1.90), Total
(5.7)

Limonene (5.0), a-
Pinene (47.7), Total
(52.7)

Limonene (11.1), a-
Pinene (25.3), Total
(36.3)

B-Pinene (28.2 + 24.4),
Limonene (26.8 +
12.9), y-Terpinene
(19.9 + 10.9), Linalool
(778 + 674), a-Pinene
(185 + 141), Sabinene
(14.3 +12.4),
Phellandrene (61.8 +
53.6), B-Myrcene (17.0
+ 14.8), Total (1130 +
934)

Camphene (3.9 + 3.4),

a-Copaene (5.5), E-a-Bergamolene (4.7), a-Caryophyllene (567), y-Cadinene
(11.0), B-Selinene (59.3), (+)-Spathulenol (16.0), Aromadendrene (70.0), Total
(736)

a-Copaene (22.1), Calarene (30.4), Aromadendrene (478), Bicyclogermacrene
(105), a-Caryophyllene (392), A-Cadinene (7.4), Germacrene D (750), Selina-
3,7(11)-diene (750), Total (1784)

a-Copaene (8.0), B-Caryophyllene (115),y-Elemene (776), (-)-B-Elemene (7.9),
E-Caryophyllene (33.1), Bicyclogermacrene (36.0), a-Caryophyllene (75.2),
Germacrene D (129), Total (404)

M. malabarica (Baby et al.
2007) [123]

N. latifolia (Maikal & Kobo
2008; Okwu & Uchenna
2009) [124, 125]

a-Copaene (427), y-Elemene (776), a-Cubebene (155), B-Elemene (457), (-)-B-
Elemene (23.5), E-Caryophyllene (200), Aromadendrene (118),
Bicyclogermacrene (751), Germacrene B (1332), a-Guaiene (918), a-
Caryophyllene (459), B-Selinene (228), Azulene (2321), A-Cadinene (215),
Viridiflorol (85.3), Total (8455)

Bicycloelemene (35.1), a-Cubebene (52.0), B-Elemene (57.7 + 49.9), (-)-B-
Elemene (24.7), Bicyclogermacrene (449), a-Caryophyllene (224) , Total (784)

a-Copaene (25.3 + 20.1), B-Caryophyllene (63.0 + 45.5), y-Elemene (6.8 + 5.9),
(-)-B-Elemene (232 + 201), A-Elemene (11.4 +9.9), 1,5,5-trimethyl-6-
methylene-cyclohexene (23.0 + 19.9), Bicyclo[3,1,1]hept-2-ene-2,6-dimethyl-3-
penthyl) (47.5 + 41.2), B-Cubebene (6.0 + 5.2), Bicyclogermacrene (61.3 + 49.7),
Bicyclo[4,4,0]dec-1-ene-2-isopropyl-5-methyl-9-methylene (30.7 + 26.6), o~
Loone (6.9 + 6.0), a-Guaiene (5.2 + 4.8), E-B-Farnesene (3.3 + 2.9), a-
Caryophyllene (113 + 90), y-Cadinene (46.7 + 40.4), E-a-Bergamotene (111 +
10), B-Bisabolene (17.8 + 15.4), (+)-Spathulenol (4.4 + 3.8), Germacrene D (20.3
+ 13.6), B-Selinene (96.2 + 67.4), Caryophyllene oxide (33.3 + 28.8), Total (941
+ 100)

Bicycloelemene (18.2 + 16.3), a-Copaene (95.6 + 69.3), B-Copaene (7.0 + 4.4),



Payena acuminata

Pleiocarpidia
sandahanica

Podocarpus neriifolius

Poikilospermum
cordifolium

Polyalthia sumatrana

Popowia pisocarpa

Pouteria malaccensis

B-Pinene (10.5 + 9.4),
Limonene (17.7 + 9.1),
a-Pinene (203 + 167),
Total (235 + 179)

Limonene (11.1), a-
Pinene (107), Total
(118)

Limonene (5.1 + 0.5),
a-Pinene (5.1 + 1.8),
Total (6.8 + 3.4)

Limonene (1.6 + 0.9),
a-Pinene (1.45 + 0.84),
Total (2.04 + 1.67)

Limonene (8.8 + 1.3),
a-Pinene (1.05 + 0.61),
Total (6.5 + 3.1)

Limonene (3.3 + 0.6),
a-Pinene (32.8 + 17.3),
Total (24.1 + 18.8)

Limonene (3.9), Total
(87.1)

-Bourbonene (15.6 + 14.1), y-Elemene (75.2 + 67.3), Isospathulenol (4.5 + 3.0),

a-Ylangene (59.7 + 53.4), a-Cubebene (64.6 + 34.3), (-)-B-Elemene (9.0 + 5.9),

A-Elemene (40.5 + 31.9), E-Caryophyllene (546 + 488), Bicyclogermacrene (362

+ 147), a-Guaiene (3.8 + 3.2), a-Farnesene (2.6 + 2.3), a-Caryophyllene (474 +
298), A-Cadinene (9.6 + 4.2), (+) Spathulenol (40.8 + 36.1), Germacrene D (384
+ 155), Total (2213 + 990)

-Caryophyllene (94.3), a-Caryophyllene (36.7), Total (131)

Bicycloelemene (15.0 + 8.7), a-Copaene (2.78 + 1.60), (+)-Aromadendrene (10.4

+6.0), (-)-B-Elemene (3.4 + 2.8), a-Amorphene (131 + 76), E-Caryophyllene
(9.0 +5.2), Bicyclogermacrene (61.4 + 35.5), Viridiflorol (5.4 + 3.1),
Germacrene D (3.3 + 2.7), Selina-3,7(11)-diene (4.9 + 2.8), Total (163 + 133)
Bicycloelemene (4.0 + 2.3), a-Copaene (2.4 + 1.4), a-Cubebene (11.4 + 6.6), a-
Amorphene (3.0 + 1.8), Calerene (1.8 + 1.5), Bicycloelemene (3.56 + 2.05), E-
Caryophyllene (93.6 + 2.4), Bicyclogermacrene (88.5 + 7.4), a-Caryophyllene
(53.4 +1.9), Germacrene D (36.2 + 28.7), (+)-B-Gurjunene (3.0 + 1.8) , Total
(212 +9.7)

a-Copaene (544 + 314), a-Cubebene (28.8 + 16.6), y-Elemene (79.3 + 64.7),
a-Ylangene (45.2 + 26.1), B-Elemene (191 + 110), [1A-Elemene (423 + 345), E-
Caryophyllene (98.0 + 48.0), Aromadendrene (24.8 + 14.3), a-Guaiene (134 +
78), a-Caryophyllene (340 + 196), A-Cadinene (48.3 + 27.0), a-Selinene (507 +
292), 5-Azulenemethanol (62.9 + 36.3), Germacrene D (596 + 482), (+)-B-
Gurjunene (746 + 431), Total (2946 + 2392)

a-Copaene (2.8 + 1.6), B-Caryophyllene (6.9 + 2.9), y-Elemene (4.8 + 4.0), a-
Cubebene (1.7 + 1.0), a-Ylangene (19.4 + 11.2), (-)-B-Elemene (1.85 + 1.51),
1,4,7-Cycloundecatriene-1,5,9,9-tetramethyl-Z,Z,Z- (3.7 + 2.2), Allomadendrene
(2.8 + 1.6), y-Cadinene (7.5 + 4.4), B-Selinene (4.0 + 3.3), Globulol (1.6 + 0.9),
o-Selinene (2.3 + 1.3), Total (43.2 + 33.2)

3-Burbonene (5.6), B-Caryophyllene (270), (+)-Aromadendrene (36.9), E-a-
Bisabolene (36.9), (-)-a-Selinene (161), a-Cubebene (62.1), 8-Isopropanyl-1,5-

P. andina (Kubo et al.
1992) [126], P. halli (Perry
et al. 2007) [127], P. sensu
latissimo (Abdillahi et al.
2010) [128], P. spicatus
(Lorimer & Weavers 1987)
[129]

P. cerasoide
(Kanokmedhakul et al.
2007) [130], P. longifolia
(Ogunbinu et al. 2007)
[131], P. suaveolens
(Nyegue et al. 2008) [132]

P. caimito (Adron et al.
1972) [133], P. splendens
(Sotes et al. 2006) [134]



Pterospermum stapfianum

Reinwardtiodendron
humile

Shorea acuta

Shorea fallax

Shorea johorensis

Camphene (41.2),
Limonene (17.1), a-
Pinene (94.5), Total
(152.8)

Limonene (49.1), B-
Ocimene (560),
Linalool (154), o-
Terpinene (2990), B-
Myrcene (36.3), A-3-
Carene (32.8), Total
(3822)

Limonene (1.14 +
0.93), a-Pinene (0.71 +
0.58), Total (1.85 +
1.51)

Limonene (6.8 + 5.6),
o-Terpinene (37.8 +
30.9), a-Pinene (14.8 +
8.3), Total (59.3 + 31.9)

dimethyl-cyclodeca-1,5-diene (14.9), Bicyclo[4,4,0]dec-1-ene-2-isopropyl-5-
methyl-9-methylene (6.5), E-a-Bergamotene (49.7), a-Caryophyllene (93.6), y-
Cadinene (81.2), B-Selinene (178), -Bisabolene (6.8), (+)-Spathulenol (7.5),
Germacrene D (37.2), Selina-3,7(11)-diene (77.2), Total (929)

a-Copaene (6.1), B-Caryophyllene (6.0), a-Cubebene (3.2), a-Caryophyllene
(11.5), y-Cadinene (14.6), B-Selinene (201), Selina-3,7(11)-diene (77.2),
Veridiflorol (24.1), a-Selinene (190), Total (457)

a-Copaene (518 + 226), B-Caryophyllene (396 + 228), (+)-Aromadendrene (65.2
+ 37.6), a-Cubebene (30.9 +17.8), a-Caryophyllene (12670 + 285), B-Elemene
(13.9 + 8.0), (-)-B-Elemene (192 + 157), a-Amorphene (58.7 + 33.9), Calarene
(299 + 244), 1,5,5-trimethyl-6-methylene-cyclohexene (23.0 + 13.3), Azulene
(363 + 221), a-Muurolene (32.7 + 26.7), Viridiflorol (30.5 + 17.7), a-Gurjunene
(147 + 85), E-Caryophyllene (1187 + 684), Germacrene D (100 + 82), Selina-
3,7(11)-diene (150 + 87), a-Guaiene (158 + 78), Bicyclogermacrene (626 + 361),
a-Caryophyllene (12670 + 285), (+)-Spathulenol (7.1 + 4.1), Total (3899 +
2510)

y-Elemene (565), a-Cubebene (163), B-Elemene (10435), Germacrene B (4469),
Germacrene D (5024), Total (20657)

S. species (Bisset et al.
1971) [135], S negrosensis
(Ishi & Kadoya 2003) [136]

B-Caryophyllene (1.5 + 1.2), [Ja-Cubebene (14.2 + 11.1), (-)-B-Elemene (13.6 +
11.1), 1,5,5-trimethyl-6-methylene-cyclohexene (27.9 + 16.2),
Bicyclogermacrene (202 + 165), B-Sesquiphellandrene (16.6 + 13.5), E-
Caryophyllene (38.8 + 25.0), Allomadendrene (3.1 + 2.6), a-Caryophyllene (22.0
+ 13.5), B-Selinene (118 + 96), Germacrene D (224 + 187) , Total (692 + 2278)

B-Caryophyllene (25.3 + 20.7), a-Cubebene (5.2 + 3.4), B-Elemene (31.5 +
27.5), o-Amorphene (6.4 + 3.7), Bicycloelemene (3.2 + 2.6), E-Caryophyllene
(324 + 205), Bicyclogermacrene (132 + 83), Germacrene B (39.1 + 31.9), a-
Caryophyllene (201 + 125), Germacrene D (294 + 64), Total (1062 + 436)



Sindorea irpicina

Swintonia acuta

Symplocos fasciculata

Syzygium campanulatum

Tarbernaemontana
macrocarpa

Tarenna cumingiana

Uncaria cordata

Limonene (1.75), a-
Pinene (1.84), Total
(36)

B-Pinene (30.0 + 24.5),
Limonene (22.5 + 1.9),
B-Ocimene (212 +
122), y-Terpinene (0.96
+ 0.78), Linalool oxide
(1.53 + 0.88), Linalool
(21.6 +12.4), a-
Terpinene (2.52 +
1.46), a-Pinene (26.7 +
15.4), Sabinene (5.5 +
3.2), Total (226 + 68.5)
Limonene (22.3), a-
Pinene (10.1), Total
(32.4)

B-Pinene (528),
Limonene (22.8), a-
Pinene (1082), -
Myrcene (54.9), Total
(1687)

Limonene (5.7), a-
Pinene (2.57), Total

o-Copaene (33.1 + 15.3), B-Caryophyllene (4.3 + 2.5), y-Elemene (133 + 108),
B-Elemene (803 + 563), B-Cubebene (29.5 + 17.1), Calarene (51.3 + 41.9), A-
Elemene (29.4 + 24.0), E-Caryophyllene (91.5 + 52.9), Bicyclogermacrene (298
+ 172), Germacrene B (2.9 + 2.3), a-Caryophyllene (15.5 + 3.3), B-Selinene (239
+ 195), Germacrene A (55.6 + 32.1), A-Cadinene (3.8 + 2.2), Germacrene D (60
+ 33), Total (1404 + 851)

B-Caryophyllene (132), a-Cubebene (3.7), a-Ylangene (14.3), Bicycloelemene
(3.3), Bicyclogermacrene (35.2), a-Caryophyllene (95.1), Total (284)

B-Caryophyllene (288), y-Elemene (5358), a-Cubebene (88.7), 8-Isopropanyl-
1,5-dimethyl-cyclodeca-1,5-diene (4045), Bicycloelemene (1327),
Bicyclogermacrene (2383), a-Caryophyllene (86.6), Total (13577)

a-Copaene (6.8 + 3.9), a-Santalene (70.4 + 40.6), B-Caryophyllene (107 + 62),
E-a-Bisabolene (4.9 + 2.8), E-y-Bisabolene (3.2 + 1.8), y-Elemene (2.8 + 2.3), a-
Cubebene (38.4 + 22.1), (-)-B-Elemene (7.8 + 6.4), a-Amorphene (4.5 + 2.6), A-
Elemene (26.2 + 21.4,), 1,5,5-trimethyl-6-methylene-cyclohexene (2.9 + 1.9),E-
a-Bergamolene (2.4 + 2.0), a-Caryophyllene (82.6 + 3.0), a-Muurolene (1.8 +
1.1), Selina-3,7(11)-diene (6.2 + 3.6), Total (273 + 121)

Bicyclogermacrene (10.8), a-Caryophyllene (20.9), Germacrene D (4.7), Total
(36.1)

a-Copaene (1879), B-Caryophyllene (71.2), E-a-Bisabolene (5010), a-Cubebene
(202), (-)-B-Elemene (2079), 8-Isopropanyl-1,5-dimethyl-cyclodeca-1,5-diene
(201), A-Elemene (158), Bicyclo[3,1,1]hept-2-ene-2,6-dimethyl-6-(4-methyyl-3-
pentenyl)- (442), E-a-Bergamolene (4815), B-Sesquiterpene (399), a-
Caryophyllene (1746), y-Cadinene (282), B-Selinene (757), Allomadendrene
(162), B- Bisabolene (4518), Selina-3,7(11)-diene (3869), (+)-Spathulenol (161),
Germacrene D (356), Total (27109)

S. sumatrana (Heymann et
al. 1994; Jang et al. 2004)
[137, 138]

S. aromaticum
(Gopalakrishnan 1994;
Lopez et al. 2006) [139,
140], S. formosanum
(Chang et al. 1999) [141]

T. markgrafiana (Nielsen et
al. 1994) [142]

T. madagascariensis
(Salmoun et al. 2007) [143]



(8.3)

Camphene (93.8), B-Caryophyllene (12.5), a-Guaiene (3.4), Germacrene B (7.5), a-Caryophyllene  U. species (Parmar et al.
Limonene (8.6), Total  (13.8), (+)-Spathulenol (62.1), Total (99.0) 1994) [144], U. lucida
Uvaria sorzogonensis (102) (Weenen & Nkunya 1990)
[145], U. scheffleri (Nkunya

2005) [146], U. tanzaniae
(Weenen et al. 1991) [147]
Xanthophyllum affine

We show only the chemical species that were determined with more than 95% of certainty according with literature spectra. Values between brackets are mean + S.E. (ug g™).
The existence of previous studies on mono- and sesquiterpenes for the same species and genus are reported in the last column.



species of these genera studied here had not been previously reported as mono- and/or sesquiterpene
containing species (Table 2, supplementary material). We did not detect terpenes in the species studied
of the genera Popowia and Xanthophyllum. As far as we know, no previous studies have described
terpene content in species of these genera. We report for the first time that two of the three
Dipterocarpus studied species (D. sarawakensis and D. applanatus), are terpene containing species.
The third studied species, D. gracilis, had already been reported as containing different caryophyllene
isomers [69], but we have determined for the first time a-Cubebene, B-Cubebene, Bicyclogermacrene,
y-Cadinene, Germacrene D and Selina-3,7,(11)-diene for this species. Finally, Cinnamonum
zeylanicum had already been reported as terpene containing species [70].

This high proportion of terpene containing taxa in this old tropical forest suggests that terpene
content can be a favourable selective trait in these environmental conditions. These results also
suggest that terpene accumulation can be widespread in tropical rainforest plants. Further research is
necessary to corroborate whether this higher frequency of species terpene accumulators in tropical
rainforest than in other forest ecosystems is a general trend or not, and to gain knowledge on the
ecological significance of this higher frequency of accumulator species in these tropical ecosystems.
Moreover, Courtois et al. (2009) [67] have also observed in a set of 55 tree species of a rainforest in
the French Guiana that all studied species emitted VOCS, most of them mono- and sesquiterpenes,
further suggesting the widespread terpene production of rainforest trees.

There were poor relationships between leaf terpene concentrations and phylogeny among the 75
studied species. This agrees with results observed in similar studies in other floras such as those for 73
Oahu forest species [26]. Moreover, the number of different mono- and sesquiterpene chemical
species per each plant species did not present phylogenetic signal. As far as we know, there is a lack of
comparable studies on the phylogenetic signal of leaf terpene concentrations in a broad set of plant
species but the results are in accordance with terpenes being found in most plant Families [71], and
also with studies finding genes linked to terpene biosynthesis pathways in several plant groups [72].

Higher nutrient availability may be expected to translate into higher carbon fixation and
activity of the enzymes involved in isoprenoid production [38, 40]. But it might also be expected the
other way around, that a higher nutrient availability translates into more growth than allocation to
carbon based secondary compounds such as terpenes, following the “carbon excess” hypotheses [42,
44]. The available literature does not show clear general relationships between leaf N and P
concentrations and/or availability with leaf terpene concentrations [34, 73]. This study confirms most
of the available literature: Leaf terpene concentration had no relationship with nutrient concentrations.
The lack of relationships between leaf terpene concentration and leaf nutrient concentrations does not
thus support the “nutrient driving synthesis hypothesis” [39, 40], nor the “carbon excess hypotheses”.
In general, previous studies have not detected relationships between N and P concentrations or
availability and leaf terpene concentrations. For example, although NPK fertilization increased terpene
concentrations in Chrysanthemum boreale [33], and increased some monoterpene compounds and
decreased others in Larix lariciana [74], no relationships have been observed between P concentration
and terpene concentration in the leaves of Eucalyptus polybractea [75], or in the leaves of Pinus
halepensis and Quercus ilex [34]. Studies on the relationships between leaf N and terpene
concentrations, although scarce, are more abundant than those of P concentrations and terpene
concentrations relationships. While some studies have observed an increase [76-78] or decrease [79] in
leaf terpene concentrations with increasing N availability and/or concentration, other studies have not
either detected a clear relationship [34, 44, 75, 80], or have shown a different direction of the
relationship depending on the species [32] or depending on the leaf age [81]. Thus, the results of the
study observing no relationships between leaf N concentration with terpene concentration largely
agree with previous literature, suggesting multiple factors affecting the nutrient-terpene relationship
including the strength of the nutrient limitation and the ecological benefits of terpene production in
each environmental circumstance.
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The observed negative relationships between leaf terpene concentration and leaf length
corroborates previous studies that have shown that leaf morphological traits exert some effect on
terpene concentration storage capacity through regulation of gland dimensions [75] or in the
accumulation of enzymes responsible for terpene synthesis per unit of leaf area [82]. However, we did
not find any significant relationship between leaf mono- and sesquiterpene concentration and the other
leaf morphological traits nor with leaf photosynthetic capacity.

Thus, there were not general relationships between leaf terpene concentrations and leaf trais
related to defence and to production capacity. This can be due to the highly diverse functions of
terpenes and not related to a single compound or structure. The relationships between herbivores and
plants in tropical rainforest are very diverse [30, 61]. Previous studies have also observed poor
relationships between leaf anatomical traits and leaf terpene concentrations in tropical rainforest [83].
Certainly, as commented previously, terpenes can act as herbivore deterrents [18, 19] mainly against
generalist herbivores [20-22], but they also have other properties, such as defence against fungi and
pathogens [25] and against abiotic stresses such as high temperature, ozone or excess of radiation [4,
5, 84] and signaling and communication [11, 85]. These roles for terpenes can be advantageous in
tropical ecosystems where the radiation intensity and temperatures are high and where there are
multiple and diverse biotic interactions due to the high species diversity and organisms density.

Summarizing, the high proportion of species that accumulate terpenes and the general lack of
phylogenetic conservatism suggest that terpene accumulation is a widespread trait in this tropical
forest that confers adaptative advantage in all plant taxon spectrum across a wide range of angiosperm
phylogeny. The negative correlation between monoterpene concentration and leaf length might
suggest a link between leaf anatomy and the capacity to store terpenes. Functions such as temperature
protection, radiation protection or signaling and communication could underlie the high frequency of
terpene-containing species of this tropical ecosystem which has multiple and very diverse interactions
among multiple species.
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