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Abstract

Drought-related tree die-off episodes have been observed in all vegetated continents.
Despite much research effort, however, the multiple interactions between carbon
starvation, hydraulic failure and biotic agents in driving tree mortality under field
conditions are still not well understood.

We analysed the seasonal variability of non-structural carbohydrates (NSC) in four
organs (leaves, branches, trunk and roots), the vulnerability to embolism in roots and
branches, native embolism (PLC) in branches and the presence of root rot pathogens in
defoliated and non-defoliated individuals in a declining Scots pine (Pinus sylvestris L.)
population in the NE Iberian Peninsula in 2012, which included a particularly dry and
warm summer.

No differences were observed between defoliated and non-defoliated pines in hydraulic
parameters, except for a higher vulnerability to embolism at pressures below -2 MPa in
roots of defoliated pines. No differences were found between defoliation classes in
branch PLC.

Total NSC (TNSC, soluble sugars plus starch) values decreased during drought,
particularly in leaves. Defoliation reduced TNSC levels across tree organs, especially
just before (June) and during (August) drought.

Root rot infection by the fungal pathogen Onnia spp. was detected but it did not appear
to be associated to tree defoliation. However, Onnia infection was associated with
reduced leaf specific hydraulic conductivity (Kp) and sapwood depth, and thus
contributed to hydraulic impairment, especially in defoliated pines. Infection was also
associated with virtually depleted root starch reserves during and after drought in
defoliated pines. Moreover, defoliated and infected trees tended to show lower Basal

Area Increment (BAI).
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Overall, our results show the intertwined nature of physiological mechanisms leading to
drought-induced mortality and the inherent difficulty of isolating their contribution

under field conditions.

Introduction

Drought-induced tree die-off is emerging as a global phenomenon, affecting a great
variety of species and ecosystems in all vegetated continents of the world (Allen et al.
2010). Recent episodes of crown defoliation and tree mortality have been related to an
increase of mean annual temperature and a decrease of annual rainfall in southern
European forests (Carnicer et al. 2011) and with increasing severe droughts in the
southwestern United States (Van Mantgem et al. 2009, Williams et al. 2012). Extreme
drought events are expected to become more frequent (IPCC 2013), which could
accelerate drought-related tree mortality. These responses can be amplified in many
regions by current trends towards increased stand basal area, associated with changes in
forest management (Martinez-Vilalta et al. 2012). There are important feedback loops
between forest dynamics and climate due to the key role of forests on the global water
and carbon cycles (Bonan 2008) and thus widespread forest mortality can have rapid
and drastic consequences for ecosystems (Anderegg et al. 2013a). Nonetheless, and
despite these potential effects on ecosystem functioning, the mechanisms causing tree
die-off are still poorly understood (Sala et al. 2010, McDowell 2011, McDowell et al.
2011).

McDowell et al. (2008) introduced a framework with three main, non-exclusive
mechanisms that could cause drought-induced mortality in trees: 1) carbon starvation, 2)
hydraulic failure and 3) biotic agents. They also hypothesized that plants with a strict

control of water loss through stomatal closure (isohydric species) would be more likely
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to die of carbon starvation during a long drought, whereas anisohydric species would
more likely experience hydraulic failure during intense droughts, due to more negative
xylem water potentials (McDowell et al. 2008). However, the evidence for or against
these proposed mortality mechanisms is inconclusive, and recent reports have urged
adoption of a more integrated approach focusing on the interrelations between plant
hydraulics and the economy and transport of carbon in plants (McDowell and Sevanto

2010, Sala et al. 2010, McDowell 2011, McDowell et al. 2011, Sala et al. 2012).

Xylem vulnerability to embolism has been found to place a definitive limit on the
physical tolerance of conifers (Brodribb and Cochard 2009) and angiosperms (Urli et al.
2013) to desiccation. A recent global synthesis has shown that many tree species
operate within relatively narrow hydraulic safety margins in all major biomes of the
world (Choat et al. 2012). Although structural and physiological acclimation to drought
may result in large safety margins from hydraulic failure preceding death (Plaut et al.
2012), high levels of hydraulic dysfunction associated with drought-induced desiccation
have been reported (Hoffmann et al. 2011, Nardini et al. 2013). In addition, evidence of
hydraulic failure linked to canopy and root mortality has been found in declining
trembling aspen (Populus tremuloides Michx.), without evidence of depletion of
carbohydrate reserves (Anderegg et al. 2012), and in some Eucalyptus species (Mitchell
et al. 2013).

The dynamics and role of non-structural carbohydrate (NSC) stores during drought are
still under debate but some agreement is emerging in that NSC concentrations tend to
increase under moderate drought because growth ceases before photosynthesis, whereas
they may decline sharply if drought conditions become extreme (McDowell 2011).

Recent reports show that the same drought conditions can have contrasting effects on
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NSC concentrations even on species of the same genus (Nothofagus) (Piper 2011). On
the other hand, Galiano et al. (2011) reported extremely low NSC concentrations in the
stem of defoliated Scots pine (Pinus sylvestris L.) trees and higher probability of
drought-induced mortality in pines with lower NSC concentrations. Also, Adams et al.
(2013) observed an association between tree mortality and reduced NSC levels in leaves
in a drought simulation experiment on pifion pine (Pinus edulis Engelm.). In addition,
drought-related reductions in stored NSC pools may affect tree organs differentially.
For instance, Hartmann et al. (2013a) showed a reduction of NSC in Norway spruce
(Picea abies (L.) Karst.) roots but not in leaves, which could be attributed to changes in
carbon allocation.

Biotic agents and drought can interact to accelerate tree mortality. Drought-stressed
trees may be more vulnerable to infection by fungal pathogens (Desprez-Loustau et al.
2006, La Porta et al. 2008) or to insect attacks (Matthias et al. 2007, Gaylord et al.
2013). Although pathogens can directly kill trees through the production of toxic
metabolites, they can also induce hydraulic failure, e.g. via occlusion of the xylem, or
carbon starvation by altering NSC demand or supply. The interactions between
pathogen infection and the physiological mechanisms of drought-induced mortality
depend on the trophic interaction (biotrophic, necrotrophic or vascular wilts) established
with the tree (Oliva et al. 2014). For instance, blue-stain fungi infection can cause
outright hydraulic failure via xylem occlusion (Hubbard et al. 2013) while root rot fungi
may lead to a gradual tree decline and eventually to death because of chronic growth
reductions and subsequent constraints on water transport (Oliva et al. 2012). In addition,
root rot fungi can reduce carbon reserves by fungal consumption of stored
carbohydrates or by the induction of carbon-expensive defences, causing tree growth

reductions (Cruickshank et al. 2011).
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Field studies on mature trees examining all three hypothesized mechanisms of drought-
induced mortality are still scarce and rarely explore explicitly the interactions between
different mechanisms and their occurrence in different plant organs. Here we compare
the hydraulic properties and the dynamics of NSC and embolism as a function of
defoliation and infection by fungal pathogens in Scots pine trees growing together in a
site affected by drought-induced decline (Martinez-Vilalta and Pifiol 2002, Heres et al.
2012) and close to the dry limit of the distribution of the species. Previous studies have
shown that defoliation precedes drought-induced mortality in Scots pine trees from the
same or similar sites (Galiano et al. 2011, Poyatos et al. 2013), and that defoliation
seems to be an inevitable consequence of drought in the most susceptible individuals
rather than an (effective) strategy to cope with it (Poyatos et al. 2013). In this context,
we address the following questions: 1) are defoliated Scots pines intrinsically more
vulnerable to xylem embolism than non-defoliated ones, providing evidence in favour
of hydraulic failure as an important component of the decline process? and, if so, do
defoliated trees experience higher levels of native embolism under dry summer
conditions? (i.e., are leaf area reductions enough to compensate for their intrinsically
higher vulnerability?); 2) do defoliated pines have lower seasonal NSC concentrations
in all organs, supporting carbon starvation being involved in the mortality process?; and
3) is infection by fungal pathogens likely to enhance hydraulic dysfunction through
increased levels of native embolism, or carbon depletion directly or indirectly lowering

NSC levels through increased consumption, reduced sapwood depth or low growth?.

Materials and methods

Study site
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The study was conducted in Tillar valley (41° 19° N, 1° 00* E; 990 m a.s.l.) within
Poblet Forest Natural Reserve (Prades Mountains, NE Iberian Peninsula). The climate is
typically Mediterranean, with a mean annual precipitation of 664 mm (spring and
autumn being the rainiest seasons and with a marked summer dry period), and
moderately warm temperatures (11.3 °C on average) (Poyatos et al. 2013). The soils are
mostly Xerochrepts with fractured schist and clay loam texture, although outcrops of
granitic sandy soils are also present (Hereter et al. 1999). Our experimental area is
mostly located on a NW-facing hillside with a very shallow and unstable soil due to the
high stoniness and steep slopes (35° on average). More detailed information about the
study area can be found in Hereter and Sanchez (1999).

The dominant canopy tree species in the study site is Scots pine and the understory
consists mainly of the Mediterranean evergreen holm oak (Quercus ilex L.). Severe
droughts have affected the study site since the 1990’s (Martinez-Vilalta and Pifiol 2002,
Heres et al. 2012). Scots pine average standing mortality and crown defoliation in the
Tillar valley are currently 12% and 52%, respectively. However, in some parts of the
forest standing mortality is >20% and cumulative mortality is as high as 50% in the last
20 years (J. Martinez-Vilalta, unpublished data). The Scots pine population studied is
more than 150 years old and has remained largely unmanaged for the past 30 years
(Heres et al. 2012). No major insect infestation episode associated with the forest
decline in the area has been detected (Mariano Rojo, Catalan Forest Service, pers com.).
A mixed Holm oak — Scots pine stand with a predominantly northern aspect was
selected for this study where defoliated and non-defoliated pines were living side by
side. A total of 10 defoliated and 10 non-defoliated Scots pine trees were sampled (see
Supplementary Table S1). In order to minimize unwanted variation, all trees had a

diameter at breast height (DBH) between 25 and 50 cm (average DBH 36.08 + 1.53 cm;
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similar between defoliation classes (P>0.05; data not shown)) and the distance between
sampled trees was always >5 m (the average minimum distance was 41.99 + 13.74 m).
In this study, defoliation was visually estimated relative to a completely healthy tree in
the same population (cf. Galiano et al. 2011). A tree was considered as non-defoliated if
the percentage of green needles was >60% (average green leaves of the sampled non-
defoliated trees = 77%) and defoliated if the percentage of green needles was <40%
(average green leaves of the sampled defoliated trees = 26%). The average height of
Scots pines in the population studied was 14.1 = 0.5 m (Poyatos et al. 2013). All
measurements, in combination with a continuous monitoring of the main meteorological
variables and soil moisture (cf. Poyatos et al. 2013 for details), were carried out during
2012. Sampling from defoliated trees avoided dead or dying branches (i.e., those with
no green leaves), so our sampling can be considered representative only of the living

part of the crown.

Non-structural carbohydrates sampling and analysis

Trees were sampled in March (late winter), June (late spring), August (mid summer)
and October (early autumn). Four organs (leaves, branches, trunk and coarse roots) were
sampled from every tree to measure non-structural carbohydrates (NSC). Sun-exposed
branches (0.5 — 1 cm of diameter with bark removed) were excised with a pole pruner
around noon (12:00 pm — 3:00 pm, local time) to minimize the impact of diurnal
variation in NSC concentrations due to photosynthetic activity (Li et al. 2008, Gruber et
al. 2012). One-year-old leaves were sampled from these branches. Trunk xylem at
breast height and coarse roots at 5-10 cm soil depth were cored to obtain sapwood.
Sapwood portion was visually estimated in situ from all the extracted cores. We also

used these cores to measure the Basal Area Increment (BAI) corresponding to the three
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most recent annual rings (see Supplementary Table S1). All samples were placed
immediately in paper bags and stored in a portable cooler containing cold accumulators.
One of the defoliated Scots pine trees (tree 1637; see Supplementary Table S1) died
during the study period and leaves could not be sampled in August and October;
whereas branches could be sampled in August but not in October.

At the end of every sampling day, samples were microwaved for 90 s in order to stop
enzymatic activity and oven-dried for 72 h at 65 °C. Samples were then ground to fine
powder in the laboratory. Total NSC (TNSC) was defined as including free sugars
(glucose and fructose), sucrose and starch, and were analyzed following the procedures
described by Hoch et al. (2002) with some minor variations (cf. Galiano et al. 2011).
Approximately 12-14 mg of sample powder was extracted with 1.6 ml distilled water at
100 °C for 60 min. After centrifugation, an aliquot of the extract was used for the
determination of soluble sugars (glucose, fructose and sucrose), after enzymatic
conversion of fructose and sucrose into glucose (invertase from Saccharomyces
cerevisae) and glucose hexokinase (GHK assay reagent, 14504 and G3293, Sigma-
Aldrich). Another aliquot was incubated with an amyloglucosidase from Aspergillus
niger at 50 °C overnight, to break down all NSC (starch included) to glucose. The
concentration of free glucose was determined photometrically in a 96-well microplate
reader (Sunrise Basic Tecan, Mannedorf, Switzerland) after enzymatic (GHK assay
reagent) conversion of glucose to gluconate-6-phospate. Starch was calculated as TNSC
minus soluble sugars. All NSC values are expressed as percent dry matter. Throughout
the manuscript NSC is used to refer generically to non-structural carbohydrates, while
TNSC is used to refer specifically to the total value of NSC (sum of starch and soluble
sugars). The relationship between soluble sugars and TNSC will be expressed as

SS:TNSC. Finally, we note that due to the current uncertainty in NSC quantification
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methodologies (Quentin et al., in review), our results should be considered valid in
relative terms (as used here) but not necessarily comparable to the values obtained by

other laboratories or using different methods.

Hydraulic conductivity and vulnerability to xylem embolism

Hydraulic measurements were taken on the same Scots pine individuals as NSCs,
except for one defoliated tree that could not be sampled for hydraulics. Branches and
roots were sampled in April and May 2012, respectively, for determining xylem
vulnerability curves. We selected branches and roots containing internodal segments 0.4
— 1.1 c¢m in diameter and ~15 c¢m in length. Branches were always sampled from the
exposed part of the canopy and were 3-5 years old. Root samples were taken at a soil
depth of ~20 cm and always from the down slope side of the trunk, in order to control
for differences in water availability or soil properties. Sampled branches and roots were
always longer than 40 cm and were immediately wrapped in wet cloths and stored
inside plastic bags until they were transported to the laboratory on the same day. Once
in the laboratory, samples were stored at 4 °C until their vulnerability curves were
established within less than three weeks. Right before that, all leaves distal to the
measured branch segments were removed and their total area measured with a Li-Cor
3100 Area Meter (Li-Cor Inc., Lincoln, NE, USA).

Vulnerability curves relating the percentage loss of hydraulic conductivity (PLC) as a
function of xylem water potential were established using the air injection method
(Cochard et al. 1992). Hydraulic conductivity (water flow per unit pressure gradient)
was measured using the XYL’EM embolism meter (Bronkhorst, Montigny-Les-
Cormeilles, France) using deionised, degassed water (Liqui-Cel Mini-Module degassing

membrane) and a pressure head of 4.5 KPa. The bark was removed from all
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measurement segments and their ends were cleanly shaved with a sharp razor blade
before connecting to the XYL’EM apparatus.

Branch segments were rehydrated with deionized, degassed water prior to determining
maximum hydraulic conductivity (Kyax) (Espino and Schenk 2011), leading to stable
and consistent K,x measurements. Afterwards, all segments (four to six each time)
were placed inside a multi-stem pressure chamber with both ends protruding. Then, we
raised the pressure inside the chamber to 0.1 MPa (basal value) during 10 min, lowered
the pressure, waited 10 min to allow the system to equilibrate, and measured hydraulic
conductivity under a low pressure head (4.5 kPa). Stable conductivity readings were
usually achieved within 3 min. These measurements were considered to represent the
maximum hydraulic conductivity (Kp.x) and were used as reference conductivity (PLC
= 0) for the purpose of establishing vulnerability curves. We repeated this process,
raising the injection pressure stepwise by 0.5 MPa (roots) or 1 MPa (branches), until the
actual conductivity of the segment was less than 20% of Kp.x, or when we reached 4
MPa. Due to technical limitations, we could not increase the pressure in the chamber
over 4 MPa, but only five samples (out of 38) had not reached 80% PLC at this pressure.
We fitted vulnerability curves with the following function (Pammenter and Van Der

Willigen 1998):

100 .
PLC = m Equatlon 1

In this equation, PLC is the percentage loss of hydraulic conductivity, P the applied
pressure, Psy the pressure (i.e. —y) causing a 50% PLC, and a is related to the slope of
the curve. Parameters were estimated with nonlinear least squares regression. Some
vulnerability curves lead to inconsistent results, due to technical problems, and were

removed from the analyses. Final sample size was 15 roots (six from defoliated and nine
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from non-defoliated trees) and 15 branches (seven from defoliated and eight from non-
defoliated trees).

Measurements of Kp,x were used for calculating specific hydraulic conductivity (Ks, in
m” MPa™ s, as the ratio between maximum hydraulic conductivity and mean cross-
sectional area of the segment (without bark); and leaf specific conductivity (Ki, in m*
MPa" s™), as the quotient between maximum hydraulic conductivity and distal leaf area.
Finally, we calculated the ratio between distal leaf area and cross-sectional area (A :As)

of each branch segment.

Monitoring water potentials and native embolism

We sampled one exposed branch from each of the trees that had been sampled for
vulnerability curves (nine defoliated and 10 non-defoliated individuals) monthly from
May to August and in October 2012. Midday and predawn leaf water potentials were
usually measured in situ on nearby defoliated and healthy pines on the same sampling
dates. We selected branches at least 40 cm long and containing internodal segments of
4-10 cm length (0.3 — 0.9 cm in diameter). Immediately following excision, branch
samples were placed in plastic bags with a small piece of damp paper towel, stored in a
bigger bag containing cold accumulators, and transported to the laboratory within 3 h.
All branches were sampled before 8 a.m., solar time.

Once in the laboratory, we measured shoot water potential on one terminal shoot per
sampled branch using a Scholander-type pressure chamber (PMS Instruments, Corvallis,
OR, USA) (except for the initial, May sampling). To measure native embolism, we cut
wood segments (4-10 cm in length) underwater from each sampled branch. The bark
was removed from the measurement segments and their ends were cleanly shaved with

a sharp razor blade before connecting them to the tubing system of the XYL’EM
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apparatus to measure native hydraulic conductivity (K;) under a pressure head of ca. 4.5
kPa. Measurement samples were rehydrated overnight and their maximum hydraulic
conductivity (Kpyax) was measured with the XYL’EM apparatus as described above. The

percentage loss of conductivity due to embolism (PLC) was computed as:

Ki .
PLC=100(1- m) Equation 2

Root rot pathogens

We focused on root and butt rot pathogens as possible contributors to the decline
process observed in the forest studied. From each tree, we extracted two cores with an
increment borer, one at stump height and the other in one of the large roots. Decay
presence was noted and cores were kept in sterile conditions. Within 48 hours, they
were placed onto Hagem medium amended with benomyl (10 mg/l) and cloramphenicol
(200 mg/l). Plates were checked weekly during the following 3 months, and any
mycelia growth was sub-cultured. Identification of fungal isolates was first attempted
by sequencing the ITS region. Some of our isolates showed an equally low similarity
(95%) to other isolates classified as either Onnia tomentosa (Fr.) P. Karst. or O.
circinata (Fr.) P. Karst. in reference databases such as Genbank or UNITE. We
identified our cultures as Omnnia spp., as morphological characters in culture and
comparison with reference cultures from CBS-KNAW Fungal Biodiversity Centre
(CBS 246.30 Onnia circinata, CBS 278.55 Onnia tomentosa) did not yield a conclusive
identification.

We found signs of fungi infection after the cultivation of the extracted cores in seven
pines; three of them were non-defoliated and the other four were defoliated (see

Supplementary Table S1). One defoliated and one non-defoliated tree were infected by
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a heart rot fungi (Porodaedalea pini (Brot.) Murrill). These fungi mainly cause
heartwood decay with no major known physiological effects (Garbelotto 2004), so we
considered these two trees as ‘non-infected’ in our analyses. The other trees (two non-
defoliated and three defoliated) were infected by Onnia sp., which causes root rot and
physiological impairment, and we considered those trees as ‘infected’ in subsequent

analyses.

Data analysis

We used different types of linear models to test the effects of defoliation and fungal
infection on the measured response variables (RV). In each case we included the main
covariates (measured organ and sampling month, as appropriate) and the most
biologically plausible interactions. Please note that model complexity, in terms of the
number of interactions that could be included, is subject to sample size limitations.
Preliminary analyses showed that DBH effects were never significant in the models and
therefore were not included in the final models reported here. General linear models
were fitted to study the effects of defoliation class (two levels: defoliated or non-
defoliated) and infection occurrence (two levels: infected or non-infected) on K, A :As,
BAI and root and trunk sapwood depths. Separate linear models were fitted for each of
the five response variables (see Supplementary data, equation 1). Linear mixed models
were used to analyze vulnerability curve parameters («¢ and Psg) and Ks as a function of
defoliation class, organ (branch or root) and infection occurrence. Tree identity was
included in the models as a random factor (see Supplementary data, equation 2). Similar
mixed models were used to analyze shoot water potential, PLC, TNSC and SS:TNSC as
a function of defoliation class, sampling date, organ (only for TNSC and SS:TNSC),

and infection occurrence, including again tree identity as a random factor (see

http://mc.manuscriptcentral.com/tp

Page 14 of 80



Page 15 of 80

©CoO~NOUTA,WNPE

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

Manuscripts submitted to Tree Physiology

Supplementary data, equation 3 and equation 4). Finally, starch concentration in roots
was also analysed using similar models (without the organ effect) to study in detail the
impact of root rot pathogens on this NSC fraction and how it developed over time (and
hence in this model we included the interaction between defoliation class, infection
occurrence and sampling date) (see Supplementary data, equation 5).

Variables K, K1, Ar:As, TNSC and root and trunk sapwood depth were log-tranformed,
and starch concentration in roots was square root-transformed, to achieve normality
prior to all analyses. All analyses were carried out with R Statistical Software version

3.1.0 (R Core Team 2014) using the Im and Ime functions.
Results

Meteorological conditions

The summer of 2012 was particularly dry and warm compared to the climatic average
for the period 1951-2010: average air temperature (June-August) was 20.56 °C and total
precipitation only 56 mm (Fig. 1), compared to climatic values (1951-2010) of 19.30 °C
and 135.23 mm, respectively. High values of daytime-averaged temperatures and VPD's
(vapour pressure deficit) occurred in mid-August, followed by very low SWC (soil
water content) values (~0.08 m® m™) at the beginning of September, compared to a

spring maximum soil moisture of 0.33 m’ m” (Fig. 1).

Non-structural carbohydrates

Concentrations of total non-structural carbohydrates varied among tree organs, in the
following order: TNSC (leaves)>TNSC (branches)>TNSC (roots)>TNSC (trunk) (Fig.
2; Table 1). In general, non-defoliated Scots pine trees showed higher concentrations of

TNSC throughout the study period and across all organs (Fig. 2). TNSC values
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increased from March to June (except for leaves of defoliated pines) to reach a seasonal
peak and then declined in August. Seasonal variation in TNSC was greater in leaves,
especially for non-defoliated pines, which showed a more than fourfold decline in
TNSC between the June peak and the minimum value in August. Post-drought October
TNSC only slightly increased in trunks and leaves (Fig. 2). Infection by fungal
pathogens was not associated with significant differences in TNSC levels in any organ
or month (Table 1).

The ratio of soluble sugars to TNSC (SS:TNSC) differed among tree organs but showed
consistent seasonal dynamics across organs (Fig. 2, Table 1). The value of SS:TNSC
declined slightly from March to June, it increased in August, especially in leaves, and
then declined in October. In August, SS:TNSC values were above 0.8 for all organs and
defoliation classes, indicating that most of the TNSC were in the form of soluble sugars
(Fig. 2). Starch levels at peak drought were virtually depleted in leaves (i.e. SS:TNSC
was nearly 1). Moreover, there were significant differences in SS:TNSC between
defoliation classes in some organs and months, whereby defoliated pines tended to show
higher SS:TNSC values before the onset of drought but similar or lower values in
August (Fig. 2, Table 1). No differences in SS: TNSC were observed associated to fungi
infection (Table 1).

Throughout the season, root starch tended to be lower in defoliated pines compared to
non-defoliated ones (Fig. 3). Root rot infection was associated with higher root starch
levels in non-defoliated pines, but this effect was not observed in defoliated pines (Fig.
3, Table 1). The triple interaction between month, defoliation and infection was
statistically significant (Table 1). Interestingly, our results show that root starch
concentration in October was virtually depleted in infected, defoliated pines, and it was

much lower than in non-infected ones (Fig. 3).
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Vulnerability curves and hydraulic properties

Roots were more vulnerable to embolism than branches, reaching 50% PLC slightly
below -2 MPa, compared to a value close to -3 MPa for branches (Fig. 4). This effect
was statistically significant (overall P-value for Organ = 0.0062 in a least significant
means multiple comparison), although the difference was not significant for all the
combinations of defoliation and infections classes (cf. Table 2). The vulnerability to
embolism of branches was similar between defoliation classes (Fig. 4b, Table 2). In
roots, there was no difference between defoliation classes in Psy, but the slope of the
vulnerability curve was steeper in defoliated trees (Table 2). This result implies that the
roots of non-defoliated pines would begin to lose conductivity at higher (i.e., closer to
zero) water potentials than those of defoliated individuals, but the latter would lose
conductivity faster than non-defoliated pines as water potentials declines (Fig. 4a).
Infection did not affect vulnerability to xylem embolism (Table 2).

No differences in specific hydraulic conductivity (K;) were found between roots and
branches (Table 2), possibly due, at least in part, to the large variability in K observed
for roots. Likewise, there were no significant differences in either Kg, Ki, or Ap:Ag
between defoliated and non-defoliated pines (Table 2). However, we found lower

branch K in infected trees (Table 2).

Water potentials and native embolism

Shoot water potentials measured in the morning, at the time of sampling for PLC
measurements, increased from June to July (Fig. 5b, Table 3), consistent with the
rainfall events occurring in late June (Fig. 1). Afterwards, water potentials declined

sharply down to values around -2 MPa in August, coinciding with the driest part of the
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study period. These water potentials were usually between the corresponding predawn
and midday shoot water potentials measured in simultaneous sampling campaigns in
nearby Scots pine individuals (Fig. 5c¢). We did not find any significant effect of
defoliation or infection on water potential (Table 3).

Native PLC varied significantly among sampling dates, following the variation in shoot
water potentials. PLC was particularly low in July, with values around 20%, and it was
highest in August, with average values around 65% (Fig. 5a, Table 3). In August, six
branches (four from non-defoliated, and two from defoliated pines) showed PLC values
above 85%. Native embolism was not significantly different between defoliation or
infection classes (Table 3), except for October when non-defoliated pines showed

higher PLC (Fig. 5b) (P = 0.048).

Basal area increment and sapwood depth

We found a marginally significant reduction of BAI associated with defoliation (P =
0.064) and this effect tended to be larger in infected trees as shown by the marginally
significant (P = 0.083) interaction between defoliation and infection (Fig. 6a).

Trunk sapwood depth showed patterns similar to those for BAI, but with significantly
lower values for defoliated and infected individuals (Fig. 6b). Finally, infected trees
showed a significantly lower root sapwood depth compared to non-infected trees (P =
0.039), regardless of defoliation class; whereas defoliation had no significant effect on

root sapwood depth (Fig. 6¢) (P = 0.89).

Discussion

Our results show that both high levels of embolism and low carbohydrate reserves

occurred in the studied trees during a particularly dry summer. In addition, we show that
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defoliation was more associated with reduced carbohydrate reserves than with greater
hydraulic impairment at the branch level. We also report that drought-induced
defoliation and infection by a root rot fungus occur independently, but they both interact
to determine the mode of physiological failure in Scots pine at the dry edge of its
distribution. We note, however, that some of these results (particularly those regarding

pathogen infection) should be interpreted with caution due to the low sample size.

Defoliation is associated with lower carbon availability, but not with higher hydraulic
impairment at the branch level

We found no consistent differences between defoliated and non-defoliated pines in
terms of their vulnerability to embolism according to Psy values. This is consistent with
previous studies comparing Scots pine populations suffering different levels of drought-
induced decline in the same area (Martinez-Vilalta et al. 2002). Although we found
steeper vulnerability curves for roots of defoliated pines, which would yield
comparatively higher root PLC at water potentials lower than ca. -2 MPa (Fig. 4a),
these conditions only occur during exceptional droughts (Poyatos et al. 2013). In
addition, branch-level leaf Kg and A;:Ag were similar for defoliated and non-defoliated
pines, in contrast with different values observed across Scots pine populations within
the same study area (Martinez-Vilalta and Pifiol 2002) and with the lower Aj-Ag
reported at the tree level for defoliated pines (Poyatos et al. 2013). It should be
emphasized, however, that our sampling design is representative at the branch level, but
not necessarily at the whole crown level, as we were forced to sample living (as
opposed to random) branches in heavily defoliated crowns.

It is also interesting to note that our results show a slightly higher branch vulnerability

to embolism compared to the Psy of ~-3.2 MPa reported previously for the same
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population (Martinez-Vilalta and Pifiol 2002). This result may be related to some sort of
filtering at the population level (i.e., preferential mortality of pines with higher
resistance to embolism) or a by-product of the large variability in Psy observed across
branches. But it is also possible that vulnerability to embolism may be increasing over
time as a result of repeated droughts (i.e. cavitation fatigue; Hacke et al. (2001)), as it
has been reported in the case of aspen die-off (Anderegg et al. 2013Db).

The decline in PLC observed after a rainy period in July (Fig. 5a) suggests some partial
embolism reversal (e.g. McCulloh et al. 2011), but we cannot rule out the possibility
that sampling artefacts may be causing an overestimation of this PLC recovery (e.g.
Sperry 2013). Although our results imply that defoliation may be relatively effective in
avoiding further increases in branch PLC, maximum PLC values were still within a
range (ca. 50-90%) associated with canopy dieback in several angiosperms (Hoftfmann
et al. 2011, Anderegg et al. 2012, Anderegg et al. 2013b, Nardini et al. 2013) and
gymnosperms (Klein et al. 2012, Plaut et al. 2012). Overall, these results also suggest
that the steeper declines in whole-plant hydraulic conductance observed for defoliated
pines during drought (Poyatos et al. 2013) may occur primarily belowground, as

observed in other pine species prior to death (Plaut et al. 2013).

Defoliated pines showed consistently lower TNSC values than non-defoliated pines for
most combinations of organ and season, as already observed in early autumn
measurements of stem TNSC in other declining Scots pine populations (Galiano et al.
2011), including the study site (Poyatos et al. 2013). Interestingly, we did not observe
increased TNSC in leaves of defoliated pines, despite their higher assimilation rates

(Mencuccini et al., unpublished data). TNSC decreased in all organs during drought,
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and most dramatically in leaves, tracking the seasonality of gas exchange (Poyatos et al.
2013).

The observed seasonal variation of the fraction of soluble sugars (SS:TNSC) (Fig. 2) is
consistent with starch concentration building up prior to bud-break and then decreasing
during the summer period (Hoch and Kémer 2003, Gruber et al. 2012). During August,
the greater mobilization of starch to soluble sugars could be attributed to several causes,
including osmoregulation (Sala et al. 2012), the de novo synthesis of carbon-rich
compounds into defence against root rot pathogens (Oliva et al. 2012), the energy-
dependent process of embolism repair (Brodersen and McElrone 2013) and the growth
of new tissue. The two latter processes are consistent with the reduction of native
embolism after August, reaching pre-drought values in October (Fig. 5a).

Despite the combination of drought and defoliation, our results did not show a complete
depletion of TNSC in any of the organs studied (Fig. 2), even in the tree that died during
the monitoring period (data not shown). Values of trunk TNSC as low as 0.1% were
measured in Scots pine one year prior to death in a nearby population (Galiano et al.
2011) while our trunk TNSC values were always >0.4%. Experimental studies on
conifer saplings (Hartmann et al. 2013b), including pine species (Mitchell et al. 2013),
have found evidence for drastic reductions in TNSC (especially starch) in stems and/or
roots at mortality, without actually showing completely depleted carbohydrate storage.
Phloem impairment may preclude the translocation of NSC and its availability for the
maintenance of xylem transport or for the production of defence compounds (Sala et al.
2010, Sevanto et al. 2013, Hartmann et al. 2013a). A recent modelling analysis in the
same study system predicts slow, but not disrupted, phloem transport under extreme

drought (Mencuccini et al., unpublished data).
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Root rot pathogens exacerbate hydraulic and carbon-related constraints at the tree
level

We did not find a clear BAI reduction in Onnia-infected trees (Fig. 6a), contrary to
other studies reporting growth reductions caused by root rot pathogens from the
Armillaria (Cruickshank et al. 2011) and Heterobasidion genus (Oliva et al. 2012).
Although the interaction between infection and defoliation was only marginally
significant, the trend towards lower BAI in trees that were both defoliated and infected
would be consistent with the reduced sapwood depth observed in these trees (Fig. 6b).
Hence, post-drought recovery of xylem specific hydraulic conductivity would be
severely constrained in the long-term. Lower sapwood depth in the roots of infected
trees (Fig. 6¢), could be the ultimate consequence of the decay progress, due to the
reduction of tree growth caused by the formation of a reaction zone (Oliva et al. 2012).
Infection-driven reductions in sapwood depth in roots (and in the trunk of infected,
defoliated trees) may also result in lower tissue capacitance and a decreased ability to
buffer short-term variations in water potential under drought (McCulloh et al. 2014).
Even though Omnnia infection did not affect the vulnerability to embolism, it was
associated with reduced K, particularly in defoliated pines (Table 2). Hence, infection
by a root rot pathogen likely exacerbated hydraulic constraints through effects on
growth and sapwood depth but also more directly through its impact on hydraulic
conductivity.

Our results show a complex picture of the root rot infection effects on NSC pools. We
did not find any evidence for consistent reductions in TNSC across tree organs
associated with Onnia infection. However, for non-defoliated pines, infection appeared
to drive starch accumulation in roots, rather than depletion, possibly as a response to

increased sink strength in the roots associated to higher C demand (de novo synthesis of
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defence compounds; Oliva et al. 2014). Presumably, defoliated pines were so severely
carbon-limited that this starch sink in the roots could not be maintained, and they ended
the year with extremely low levels of starch in roots (Fig. 3). These findings are in line
with a recently proposed framework, which postulates that the net effect of the infection
by a necrotrophic pathogen, such as Onnia, is strongly dependent on tree C availability

and the timing of drought events (Oliva et al. 2014).

A complex pathway to mortality

In this final section we synthesize our current understanding on the process of drought-
induced mortality in the study area, from the perspective of the comparison of
coexisting defoliated and healthy individuals, using the information gathered here and
in other studies conducted at the same site (Fig. 7). Drought-induced defoliation is
associated with drier microenvironments (Vila-Cabrera et al. 2013) and with steeper
reductions of whole-plant hydraulic conductance during seasonal drought (Poyatos et al.
2013). Hydraulic constraints may be related to higher vulnerability to embolism in roots
(steeper vulnerability curves) and can be magnified by cavitation fatigue following
repeated droughts. Defoliation and prolonged periods of near complete stomatal closure
both contribute to reduce NSC in defoliated trees (Poyatos et al. 2013). Defoliated trees
appear to enter a death spiral in which reduced C assimilation constrains radial growth
(Heres et al. 2012) and crown development (Poyatos et al. 2013). Root rot fungi may
further damage hydraulic function through direct effects on sapwood depth and
cumulative growth reductions. Moreover, the demand for C-rich compounds for
osmoregulation, hydraulic repair and defence against root rot infection may contribute
to the depletion of C reserves in defoliated pines, possibly increasing the minimum C

threshold for tree survival and hence accelerating tree mortality (Oliva et al. 2014). It
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remains to be established whether the framework outlined in Fig. 7, which has been
developed for only one species in a given region, can be applied to other species and
study systems. Overall, our study reflects the intertwined nature of physiological
mechanisms leading to drought-induced mortality (McDowell et al. 2011) and the

inherent difficulty of isolating their contribution under field conditions.

Supplementary data

Supplementary data for this article are available at Tree Physiology Online.
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Figure legends

Figure 1. Seasonal course of daily precipitation, soil water content (SWC), vapor
pressure deficit (VPD) and temperature during the study period. Error bars indicate + 1
SE. Arrows in the upper panel indicate sampling days (carbohydrates sampling: solid
arrow; carbohydrates + embolism sampling: dotted arrow; embolism sampling: dashed

arrow).

Figure 2. Seasonal variation of total non-structural carbohydrates (TNSC) and the ratio
between soluble sugars and total non-structural carbohydrates (SS:TNSC) in the four
studied organs. Error bars indicate £ 1 SE. The asterisks indicate significant differences
between defoliation classes within a given sampling month (¢ 0.05<P<0.1; *

0.01<P<0.05; ** 0.001<P<0.01; *** P<0.001).

Figure 3. Seasonal changes in root starch concentration as a function of infection and

defoliation classes. Error bars indicate + 1 SE.

Figure 4. Vulnerability curves for roots (a) and branches (b) of defoliated and non-
defoliated Scots pine trees, showing percentage loss of hydraulic conductivity (PLC) as
a function of applied pressure. Equation 1 was used to fit the curves. Error bars indicate

+ 1 SE.

Figure 5. Seasonal variation of (a) native embolism expressed as percentage loss of
hydraulic conductivity (PLC) and (b) corresponding water potential, measured in the
same branches, of defoliated and non-defoliated Scots pine trees. Panel (¢) shows
predawn and midday water potentials from nearby Scots pine trees from the same
population measured on the same dates, where solid lines and symbols indicate

defoliated trees and dashed lines and open symbols designate non-defoliated individuals.
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Error bars indicate £ 1 SE. Different letters indicate significant differences (P<0.05)

between sampling dates.

Figure 6. Basal area increment (BAI) (a), trunk sapwood depth (b), and root sapwood
depth (c) as a function of infection and defoliation classes. Different uppercase letters
indicate significant differences (P<0.05) between infestation occurrence, and different
lowercase letters indicate significant differences between defoliation classes within a
given infection class. Note that the interaction between defoliation and infection in the

BAI model was marginally significant (0.05<P<0.1). Error bars + 1 SE.

Figure 7. Schematic diagram of the processes associated with drought-induced mortality
in Scots pine at our study site in Prades. Different numbers depict studies where the
relationship has been reported: 1) Vila-Cabrera et al. 2013, Poyatos et al. 2013, 2)
Poyatos et al. 2013, 3) Poyatos et al. 2013, 4) Heres et al. 2013, 5) Heres et al. 2012 and
6) Galiano et al. 2011. Only Galiano et al. 2011 refers to a study conducted in a nearby
population. Arrows indicate relationship between mechanisms. Dashed lines depict the
relationships examined in this study. Question marks identify consequences for which
the evidence is still weak. Letters inside “Tree NSC storage” compartment indicate
different levels of NSC: A) high levels (tree survives), B) medium levels (tree survives),

and C) low levels (tree dies).
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Tables

Table 1. Summary of the fitted linear mixed models with total non-structural carbohydrates
(TNSC), the ratio between soluble sugars and total non-structural carbohydrates (SS:TNSC)
and root starch as response variables. For factors, the coefficients indicate the difference
between each level of a given variable and its reference level. In models the reference organ
was “Leaves” (except in root starch where the effect of organ is not evaluated in the model),
the reference month was “March”, the reference defoliation class was “Defoliated” and the
reference infestation occurrence was “Infected”. The values are the estimate + SE.
Abbreviations: (ns) = no significant differences; * 0.05< P<0.1; * 0.01< P< 0.05; ** 0.001<

P< 0.01; *** P<0.001; ne = not evaluated in the model. Conditional R* values are given for

each model.

Parameter log(TNSC) SS:TNSC sqrt(Starch)
R*=0.90 R*=0.61 R'=0.57

Intercept 2.50 £ 0.19***  (0.54 £ 0.06***  (0.65 £+ 0.13***

Branches -1.31£0.19%%*  0.27£0.07***  ne

Trunk -3.22+£0.19*%%*  0.10+£0.07 (ns) ne

Roots -2.78 £0.19*%**  0.07+0.07 (ns) ne

June -0.15+0.19 (ns) -0.08 £0.07(ns) -0.02 +0.18(ns)

August -1.17 £0.19%** 041 £0.07***  -0.40+0.18*

October -1.28 £ 0.19%*%*  0.37 £0.07*%**  -0.51 £ 0.18**

Non-defoliated 0.15+0.17 (ns) -0.10 +0.05 0.21+£0.21

Non-infected 0.18+0.20 (ns) -0.09 £0.06 (ns) -0.17 £0.16 (ns)

Branches:June 0.31+0.19 (ns) -0.13+0.07 ne

Trunk:June 0.31 £0.19 (ns) -0.03 £0.07 (ns) ne

Roots:June 0.21+0.19 (ns) 0.01 £0.07(ns) ne
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Branches: August
Trunk:August
Roots:August
Branches:October
Trunk:October
Roots:October
Branches:Non-defoliated
Trunk:Non-defoliated
Roots:Non-defoliated
Branches:Non-infected
Trunk:Non-infected
Roots:Non-infected
June:Non-defoliated
August:Non-defoliated
October:Non-defoliated
June:Non-infected
August:Non-infected

October:Non-infected

Non-defoliated:Non-infected

June:Non-defoliated:Non-infected

1.23 £0.19%**
1.21 £0.19%**
1.26 £ 0.19%**
0.88 + 0.19%**
1.26 £ 0.19%**
0.90 + 0.19%**
0.05 +0.14 (ns)
0.05+0.14 (ns)
0.29 £0.14*
-0.28 £0.16°
-0.36 £ 0.16*
-0.39 £ 0.16*
0.31+£0.14*
0.14 £ 0.14 (ns)
0.27 £0.14 (ns)
0.04 £ 0.16 (ns)
-0.10 £ 0.16*
0.16 £ 0.16 (ns)
ne

ne

August:Non-defoliated:Non-infected ne

October:Non-defoliated:Non-infected ne

-0.37 £ 0.08***
-0.26 + 0.08***
-0.23 £ 0.08**
-0.35 £ 0.08***
-0.33 £ 0.08***
-0.33 £ 0.08%**
0.10 £0.05°
0.02 + 0.05 (ns)
0.04 + 0.05 (ns)
0.04 + 0.06 (ns)
0.03 +0.06 (ns)
0.03 +0.06 (ns)
-0.07 £ 0.05 (ns)
0.11 +£0.05*
0.01 £0.05 (ns)
0.05 £+ 0.06 (ns)
0.12+£0.06
0.07 £ 0.06 (ns)
ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

0.28 £ 0.29 (ns)
0.04 +0.29 (ns)
0.47 £ 0.29 (ns)
0.15+0.22 (ns)
0.14 + 0.22 (ns)
0.59 +0.22%*
0+£0.24 (ns)
-0.22 £ 0.33 (ns)
-0.13 £ 0.33 (ns)

-0.72 £ 0.33*
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Table 2. Summary of the fitted models with the vulnerability-curves parameters (a and Psg), specific hydraulic conductivity (Ks), leaf specific

2 conductivity (K) and leaf-to-sapwood area ratio (Ar:As) as response variables. In the models the reference organ was “Branches”, the reference

O©CO~NOO~WNPEP
[EEN

10 3 defoliation class was “Defoliated” and the infestation occurrence was “Infected”. The values are the estimate + SE. Abbreviations: (ns) = no
12 4  significant differences; " 0.05 < P <0.1; * 0.01 <P <0.05; *** P < 0.001; ne = not evaluated in the model. Conditional R? values are given for

14 5 each model.

Parameter Parameter a Ps log(Ks) log(Ky) log (AL:As)

19 R*=0.37 R’ =0.40 R*=0.10 R =0.36 R’ =0.11

21 Intercept -2.04£1.38 (ns)  2.72 £ (0.42%** -8.70 £ 0.81%** -16.56 £ 0.75%** 7.48 £ 0.64%**
23 Roots -1.80+1.78 (ns) -0.99+0.55(ns) 0.20+1.04(ns) ne ne

25 Non-defoliated -0.12+1.20(ns) -0.51+0.37(ns)  0.01 £0.70 (ns) 1.90 £ 1.30 (ns) -0.73 £ 1.10 (ns)
28 Non-infected 0.36 £ 1.50 (ns) 0.41 £0.46 (ns) 1.12 £ 0.88 (ns) 2.50 £0.89* -0.83 £ 0.75 (ns)
30 Roots:Non-defoliated 426 £1.74* 0.42 £0.54 (ns) 0.16 £1.02 (ns) ne ne

32 Roots:Non-infected 2.74+1.99 (ns) -0.12+0.61 (ns) -0.67+1.16(ns) ne ne

34 Non-defoliated:Non-infected ne ne ne 2,71+ 1.44° 1.29 £ 1.22 (ns)
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Table 3. Summary of the fitted linear mixed models with the percentage loss of conductivity

(PLC) and the water potential as response variables. The reference month was “May” in PLC

and “June” in Water Potential, the reference defoliation class was “Defoliated” and the

infestation occurrence was “Infected”. The values are the estimate = SE. Abbreviations: (ns)

= no significant differences; " 0.05 <P <0.1; * 0.01 <P <0.05; ** 0.001 <P <0.01; *** P <

0.001; ne = not evaluated in the model. Conditional R* values are given for each model.

Parameter PLC Water Potential
R2 =045 R2 =0.82

Intercept 23.01 +£ 10.98%* -1.57 £0.13%**

June 10.95 + 14.96 (ns) ne

July -9.95 + 14.96 (ns) -0.04 £ 0.19 (ns)

August 45.23 + 14.96%* -0.69 + 0.19%**

October -12.74 £ 15.00 (ns) 1.14 £ 0.19%**

Non-defoliated
Non-infected
June:Non-defoliated
July:Non-defoliated
August:Non-defoliated
October:Non-defoliated
June:Non-infected
July:Non-infected
August:Non-infected

October:Non-infected

8.60 = 10.47 (ns)
-0.52 + 11.87 (ns)
0.25 £14.33 (ns)
0.19 + 14.33 (ns)
-5.15+ 14.33 (ns)
14.72 + 14.64 (ns)
4.42 +16.23 (ns)
6.51 +£16.23 (ns)
-5.16 £ 16.23 (ns)

9.13 + 16.38 (ns)

0.14 +0.13 (ns)
0.02 + 0.15 (ns)
ne

-0.07 + 0.18 (ns)
0.01 + 0.18 (ns)
-0.30 + 0.19 (ns)
ne

0.37+021°
0.20 +0.21 (ns)

-0.05 = 0.21 (ns)
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