

1 **Assessing the energetic and environmental impacts of the operation and**
2 **maintenance of Spanish sewer networks from a life-cycle perspective**

3 Anna Petit-Boix^{a,*}, David Sanjuan-Delmás^a, Sergio Chenel^b, Desirée Marín^c, Carles M.
4 Gasol^{a,d}, Ramon Farreny^{a,d}, Gara Villalba^{a,e}, María Eugenia Suárez-Ojeda^e, Xavier
5 Gabarrell^{a,e}, Alejandro Josa^{f,g}, Joan Rieradevall^{a,e}

6 ^aSostenipra (ICTA-IRTA-Inèdit; 2014 SGR 1412), Institute of Environmental Science
7 and Technology (ICTA), Universitat Autònoma de Barcelona (UAB), Edifici ICTA-
8 ICP, Carrer de les Columnes, 08193 Bellaterra, Barcelona, Spain.

9 ^bCETqua, Water Technology Centre, Edificio Emprendia. Campus Sur, s/n,
10 Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

11 ^cCETqua, Water Technology Centre, Carretera d'Esplugues 75, 08940 Cornellà de
12 Llobregat, Barcelona, Spain.

13 ^dInèdit Innovació SL, Research Park of the Universitat Autònoma de Barcelona,
14 Carretera de Cabrils, km 2, 08348 Cabrils, Barcelona, Spain.

15 ^eDepartment of Chemical Engineering, Xarxa de Referència en Biotecnologia (XRB),
16 School of Engineering (ETSE), Universitat Autònoma de Barcelona (UAB), Campus of
17 the UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Catalonia, Spain.

18 ^fDepartment of Geotechnical Engineering and Geosciences, School of Civil
19 Engineering, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Barcelona,
20 Spain.

21 ^gInstitute of Sustainability, Universitat Politècnica de Catalunya-Barcelona Tech (UPC),
22 Barcelona, Spain.

23 *Corresponding author: Anna Petit Boix (anna.petit@uab.cat;
24 anna.petitboix@gmail.com). Sostenipra (ICTA-IRTA-Inèdit; 2014 SGR 1412), Institute
25 of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona
26 (UAB), Edifici ICTA-ICP, Carrer de les Columnes, 08193 Bellaterra, Barcelona, Spain.
27 Telephone number: (+34) 935868644

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44 **Abstract**

45 The environmental impacts resulting from sewer networks are best analysed from a life-
46 cycle perspective to integrate the energy requirements into the infrastructure design. The
47 energy requirements for pumping wastewater depend on the configuration of the city
48 (e.g., climate, population, length of the sewer, topography, etc.). This study analyses
49 and models the effect of such site-specific features on energy consumption and related
50 effects in a sample of Spanish cities. The results show that the average annual energy
51 used by sewers (6.4 kWh/capita and 0.014 kWh/m³ of water flow) must not be
52 underestimated because they may require up to 50% of the electricity needs of a typical
53 treatment plant in terms of consumption per capita. In terms of Global Warming
54 Potential, pumping results in an average of 2.3 kg CO₂eq./capita. A significant positive
55 relationship was demonstrated between the kWh consumed and the length of the sewer
56 and between other factors such as the population and wastewater production. In
57 addition, Atlantic cities can consume 5 times as much energy as Mediterranean or
58 Subtropical regions. A similar trend was shown in coastal cities. Finally, a simple
59 predictive model of the electricity consumption was presented that considers the
60 analysed parameters.

61

62 **Keywords:** Energy, sewer, LCA, operation, city

63

64 **Highlights**

- 65 The electricity consumption in sewers varies depending on the city.
- 66 On average, Spanish sewers consume 6.4 kWh per capita.
- 67 Atlantic cities require more energy to pump wastewater than Mediterranean regions.
- 68 The electricity needs depend on the length of the sewer and the wastewater production

69

70 **1. Introduction**

71 **1.1 The urban water cycle**

72 Urban regions are high-populated areas in which more than 50% of the world's
73 population lives (The World Bank 2014), and the urban exodus is expected to increase
74 in the coming years (Pacione 2009). Cities can be envisioned as an urban ecosystem
75 with certain metabolic requirements, namely "the materials and commodities needed to
76 sustain the city's inhabitants at home, at work and at play" (Wolman 1965). One of
77 these material flows is the supply and treatment of water. Considering that urban
78 regions are expected to host a greater share of inhabitants in the future, coping with
79 more efficient water infrastructure is essential to sustainably satisfy these demands.
80 Hence, the different stages of the urban water cycle must be analysed (**Fig. 1**).

81 <Fig. 1>

82 In the current situation of climate change and urban growth, water and energy
83 challenges are closely related. If urban sprawl increases because of the construction of
84 new settlements, the structural configuration of the cities and pipe networks may vary,
85 as well as the energy requirements for pumping water. In addition, urban expansion may
86 cause certain networks to be obsolete and inefficient; hence, urban planning is essential
87 to optimise these systems. As a consequence, the water-energy relationship should be
88 thoroughly analysed to discover environmentally friendly solutions in the design of
89 these networks (in this case the sewer system) to minimise the environmental burdens in
90 urban areas.

91 **1.2 Energy impacts of the sanitation infrastructure**

92 Among the stages of the urban water cycle, the analysis of sanitation infrastructure is
93 important because of the effects wastewater can potentially cause to the environment
94 and human health. Sanitation infrastructure consists of (1) the sewer and stormwater
95 network, which collect and transport wastewater and stormwater runoff, and (2) the
96 Wastewater Treatment Plant (WWTP), in which wastewater is treated.

97 The energy consumed in the operation and maintenance (O&M) of sanitation
98 infrastructure has been addressed in the past, notably for WWTPs, which are generally
99 thought to be energy-intensive consumers. A study conducted on Japanese water
100 networks revealed that the wastewater treatment process requires nearly 40% of the
101 energy consumed in sanitation (Shimizu et al. 2012), whereas only 9% of the energy is
102 consumed by the pumping of the wastewater. Similarly, Roberts et al. (2008) considered
103 the O&M of Potable Water Treatment Plants (PWTP) and WWTPs relevant because it
104 accounted for 35% of the energy used by the municipality.

105 The energy and environmental impacts can be analysed using Life Cycle Assessment
106 (LCA) (ISO 2006) to determine the stage of the water cycle with the greatest impacts.
107 From a life-cycle point of view, the contribution of sanitation infrastructure to the
108 burden of the entire urban water cycle varies depending on the city. WWTPs in Oslo
109 (Norway) require 82% of the electricity used in the entire water cycle (Venkatesh and
110 Brattebø 2011). In Alexandria (Egypt), 18% of the impacts of the urban water cycle
111 derived from WWTPs with high energy consumption (Mahgoub et al. 2010). In the case
112 study of Aveiro (Portugal), the electricity consumption exceeded 80% of the impact for
113 most indicators for water extraction and treatment, but not in the case of the WWTP,
114 where the role of wastewater discharge is much more relevant (Lemos et al. 2013). This
115 variability could be because of the water consumption, the population density, the
116 climate and the wastewater composition.

117 However, the different components in sanitation infrastructure (i.e., sewer and WWTP)
118 are not always accounted for in the most appropriate manner. Several studies aggregate
119 the impacts of the sewer and the WWTP (Cohen et al. 2004; EA 2008; Griffiths-
120 Sattenspiel and Wilson 2009). Further, a single entity is usually responsible for
121 managing the sewer and WWTPs as a whole. As a result, the identification of their
122 respective contributions becomes difficult. Several publications focus exclusively on
123 WWTPs; the aim of this paper is to study the sewerage network separately.

124 **1.3 Environmental assessment of sewer networks**

125 Applying the LCA methodology to sewers, the impacts resulting from the raw material
126 extraction, pipe and appurtenance production, transport, installation, O&M, demolition
127 and end-of-life can be estimated (**Fig. 2**) as reported in previous literature (Venkatesh et
128 al. 2009; Roux et al. 2011; Petit-Boix et al. 2014). Among all life-cycle stages, the focus
129 of the present analysis is on the O&M. Energy consumption patterns might vary
130 depending on different variables such as the geography and sewer design. Therefore, a
131 standard electricity value cannot be assumed in the entire LCA of sewers.

132 <Fig. 2>

133 In particular, the O&M consists of different activities, namely the energy used to pump
134 wastewater and clean the infrastructure by specialised maintenance vehicles, and the
135 material and energy requirements for rehabilitating and repairing damaged sections of
136 the network.

137 Barjoveanu et al. (2014) reported that pumping energy accounted for 77% of the
138 environmental effects experienced during the O&M of a sewer network in Romania,
139 whereas 23% derived from maintenance activities. Considering the entire life cycle of a
140 sewerage network, Roux et al. (2011) reported low electricity consumption during the

141 O&M in France. The effect was only notable in the radiation indicator due to nuclear
142 power generation in this country. By contrast, a comparative analysis of the entire cycle
143 with and without O&M showed that the pumping energy can account for 92% of the
144 Greenhouse Gas emissions. However, if O&M is excluded from the analysis, 98% of
145 the emissions originate from construction and installation (Strutt et al. 2008).

146 In addition, if the construction of new sewerage pipelines ceases, the effects of the
147 O&M stage are 3 times higher than the pipe production and installation stages on an
148 annual basis as forecasted in the city of Oslo (Venkatesh et al. 2009). However, this
149 increase might depend on the lifespan of the network and the structural design. With
150 regard to other parameters such as density, the annual energy consumption per capita
151 can be reduced by 10% if the population density is increased from 10 to 275
152 inhabitants/ha (i.e., the energy used to manufacture, repair and dispose of pipes and to
153 pump water) (Filion 2008). In the case of water supply systems, it was also observed
154 that cost-efficiency varied among scenarios considering different urban configurations
155 (Farmani and Butler 2014).

156 Although most studies show the contribution of the O&M to the total impact of the
157 sewer system, the environmental burdens of this stage are not homogeneous and vary by
158 city. Following the hypothesis presented by Petit-Boix et al. (2014) in a previous study
159 on sewer infrastructure, 3 parameters potentially affect the pumping requirements in a
160 city: the length of the system, the topography and the location of the WWTP. In general,
161 if a municipality is located at a high elevation and the WWTP is at the bottom of a
162 valley or at sea level, wastewater flows gravitationally; as a result, little energy is
163 required, except in the occasional changes of slope. No significant effects were found in
164 French cities by Roux et al. (2011); however, flat areas displayed radiation indicators
165 50% lower than uneven regions, which is because of lower nuclear-power consumption.

166 Therefore, the O&M stage of sewer networks should be addressed independently of
167 WWTPs. Each life-cycle stage is conditioned by different factors, which may vary
168 depending on the area under study. The electricity consumed during wastewater
169 pumping can be heterogeneous depending on the city whereas the effects of sewer
170 construction are less diffuse (Petit-Boix et al. 2014). Consequently, this paper aimed to
171 describe the energy consumption patterns in sewers of different cities, the implications
172 of local features on pumping requirements and the consequent environmental impacts
173 from a life-cycle perspective. Considering that urban population is constantly
174 increasing, guiding urban planners in determining a suitable configuration of sewers
175 might reduce the environmental impacts of this system and increase their efficiency.

176 **2. Objectives**

177 The main goal of this study was to analyse and model the effect of regional and physical
178 features on the energy consumption in and the environmental impacts of the O&M stage
179 of urban wastewater- and stormwater-transport networks in Spanish cities from a life-
180 cycle perspective. To achieve this goal, the specific objectives were as follows:

181 • To collect and analyse data on the electricity consumption in a representative sample
182 of Spanish municipalities;

183 • To identify the physical (e.g., location of the WWTP, length of the sewer and
184 wastewater flow) and regional features of the network (e.g., climate, seasonality,
185 distance to the coast, population density and income) that affect the energy consumption
186 and environmental impacts through a statistical analysis;

187 • To model the energy consumption of urban sewer systems depending on physical
188 and regional parameters and analyse optimisation strategies;

189 • To compare the contribution of the electricity consumption to the construction phase
190 of a specific case study.

191 **3. Material and Methods**

192 **3.1 Sample selection**

193 To analyse the effects of different physical and regional parameters, a representative
194 sample of municipalities was selected. Spain was chosen to develop the study because
195 the country displays an important climatic variability and because data covering 2011
196 were easily obtained. The data were supplied and retrieved by CETaqua (Water
197 Technology Centre) from the CONTEC and GISAgua (2012) databases in the
198 framework of the LIFE+ AQUAENVEC Project that supports this study.

199 To be included in the sample, the cities had to meet the following requirements:

200 1. Reside in Spain (including the islands);
201 2. Be exclusively supplied by a sewer network not serving other cities to clearly
202 define the burdens of one network in one city.
203 3. Provide data for at least the following parameters: population, electricity
204 consumption for pumping wastewater and length of the network.

205 As a result, 68 cities were selected for analysis. The total population and population
206 density of these cities are in a medium range with respect to all cities (395) with records
207 in the databases (see **Online Resource 1**). Other parameters needed to perform the
208 analysis are also presented in **Online Resource 2**. The required parameters were
209 occasionally reported as zero, but it could not be determined whether this was a true
210 zero or an unavailable result. Therefore, cases containing this exception were

211 maintained in the sample but zeros were not accounted for in the statistical analysis. As
212 a result, 48 cities were studied in terms of electricity consumption (36 depending on the
213 data availability of other variables), whereas all 68 cities were considered in the analysis
214 of other parameters such as population or wastewater production.

215 **3.2 Modelling the electricity consumption**

216 **3.2.1 Statistical analysis**

217 The electricity consumption was studied under different physical and regional
218 conditions that may potentially affect the pumping requirements in the sewer network of
219 a municipality (**Online Resource 3**). Data for the year 2011 was considered.

220 First, energy issues were analysed considering the regional features of the sample to
221 qualitatively identify trends. Therefore, cities were classified according to their
222 population, population density, income per capita, climate, seasonality and location, and
223 the results are presented using a box plot displaying the minimum, mean and maximum.

224 Second, the electricity consumption was correlated to all quantitative parameters to
225 identify the strongest Pearson's coefficient (R; a measure of the linear correlation
226 between two variables). Finally, linear and multiple regression models were run for
227 those factors that presented stronger correlations with the electricity consumption. A p-
228 value <0.01 or <0.05 indicated a significant relationship. The entire statistical analysis
229 was performed in PASW Statistics 18 (2009) from the Statistical Package for the Social
230 Science (SPSS).

231 **3.2.2 Assumptions**

232 Some variables were estimated considering different assumptions. The height difference
233 was calculated considering the altitudes of the WWTP and the middle of the city

234 because other topographic variations in the network could not be incorporated; thus, this
235 assumption deviates from reality. Regarding wastewater, no flow metres were installed
236 in the municipalities, therefore the wastewater production was assumed to be equal to
237 the water supplied to the households. Further, the stormwater runoff was estimated
238 considering the stormwater catchment area, a runoff coefficient equal to 0.9 (CEDEX
239 2009) and the annual mean rainfall in the region (AEMET 2013). Economically, the
240 income per capita was obtained from the Statistical Institutes of Catalonia (Idescat
241 2013), Extremadura (ieex 2011), Murcia (CREM 2011), Andalusia (IECA 2010) and
242 Galicia (IGE 2009).

243 The results of the analysis are presented in absolute (i.e., total electricity consumption)
244 and relative terms, namely the consumption per capita and per m³ of water flow per
245 year. To account for the tourist population, the consumption per capita was expressed in
246 terms of total equivalent population (TEP). TEP consists of the registered population
247 plus the seasonal population linked to second residences. The latter was estimated
248 considering the number of second residences in the city, an average occupancy of 2.6
249 people per household (INE 2013) and an average occupancy of these second residences
250 of 30 and 120 days in inland and coastal cities, respectively, based on the assumptions
251 made in a report by the Galician Water Agency (Augas de Galicia 2011).

252 **3.2.3 Environmental impacts**

253 To account for the environmental impacts deriving from the electricity consumption, the
254 impact category Global Warming Potential (GWP) was used to estimate the CO₂eq.
255 emissions from a life-cycle perspective. Considering the CML IA method (Guinée et al.
256 2002) and the ecoinvent 2.2 (ecoinvent 2009) database, the Spanish electricity mix

257 adapted to 2011 (IEA 2014) had an emission factor of 366 g of CO₂eq per kWh of
258 electricity.

259 **3.3 Maintenance activities**

260 When studying the O&M stage of a sewer network, different elements must be
261 accounted for in the overall impacts: (1) the electricity consumption, (2) the
262 rehabilitation rate, i.e., the length of the system that must be replaced because of
263 failures, and (3) the cleaning tasks.

264 Similar to the pumping requirements, the rehabilitation rate varies by site. Siltation
265 problems, protruding connections, infiltration, fat deposition, encrustation, root
266 infestation and the slope may affect the performance of small pipelines (Fenner 2000).
267 Therefore, a consideration of these factors assists in determining the best time to
268 rehabilitate the network. Because of insufficient data, neither the rehabilitation nor the
269 cleaning activities were analysed using a statistical approach, but these parameters
270 should be monitored in the future.

271 A city with potentially large maintenance needs (i.e., coastal, seasonal, flat and with a
272 WWTP located further inland) was selected to determine the relevance of the
273 maintenance activities with respect to pumping (ID = 15, see **Online Resource 2**). Field
274 work in the city showed that 400 L of diesel were required to clean the network every 3
275 months. Given that approximately 1,400,000 kWh of electricity were consumed in 2011
276 in the pumping of wastewater, the maintenance accounts for 1.2% of the total impacts of
277 the O&M stage. The contribution of the diesel is also expected to be negligible in other
278 cities, and this contribution was therefore not analysed through a statistical approach.
279 However, further analyses should consider possible variations depending on the city.

280 **4. Results and Discussion**

281 **4.1 General descriptive analysis of the electricity consumption**

282 To establish a general view of the electricity consumption in the case study cities, a
283 description of the annual energy use in the sewer systems is presented in **Table 1**.
284 According to the results, 50% of the sample municipalities consume between 0.5 and
285 8.1 kWh per TEP and between $1.7 \cdot 10^{-3}$ and $2.6 \cdot 10^{-2} \text{ kWh}$ per m^3 of water flow. In terms
286 of environmental impacts, the average electricity consumption per TEP and m^3 of water
287 flow are 2.3 kg and $5.1 \cdot 10^{-3} \text{ kg}$ of $\text{CO}_2\text{eq.}$, respectively. The deviations suggest that not
288 all cities have identical configurations or other aspects affect the pumping requirements;
289 as a result, the sample must be analysed in small groups that share similar
290 characteristics (Section 4.2) to determine the factors that may have a significant effect
291 on the electricity consumption.

292 <Table 1>

293 However, these values also represent other findings for sanitation infrastructure. The
294 selected Spanish sewers consume an average of 6.4 kWh/TEP and 0.014 kWh/m^3 of
295 water flow; these values could be compared to the consumption patterns of WWTPs.
296 For instance, Hospido et al. (2008) found that Galician WWTPs that serve 72,000-
297 125,000 inhabitants required 13.2-36.6 kWh per capita. This means that a sewer
298 network might require between 18 and 50% of the electricity used by a treatment plant.

299 Additionally, a Catalan WWTP that serves a large city consumed an average of 0.382 kWh/m^3 (Abril and Argemí 2009). According to data retrieved from CONTEC (2012),
300 Galician and Catalan WWTPs consume an average of 0.53 and 0.86 kWh/m^3 ,
301 respectively. By contrast, the average value calculated in terms of m^3 of water flow is
303 much lower than that of WWTP because of the estimates of the water flow.
304 Nevertheless, two case studies were thoroughly analysed in the framework of the LIFE

305 project, and the real water flow entering the WWTP was obtained. A Catalan city (ID
306 =15) consumed 0.46 kWh/m³ in the sewer and 0.35 kWh/m³ in the WWTP in 2011,
307 whereas a Galician city (ID = 12) consumed 0.11 kWh/m³ in the sewer and 0.46
308 kWh/m³ in the WWTP in 2011. Therefore, energy issues in wastewater transport
309 infrastructures should not be underestimated.

310 Even so, the relevance of the sewer with respect to the WWTP is variable and it might
311 depend on the features of the system, such as the length of the sewer, and the type of
312 treatment technologies required. Moreover, when cities are analysed individually,
313 apparent differences can be detected, but there tend to be different management
314 practices that influence the sewer performance. So far, authorities have generally given
315 preference to ensuring the transport of wastewater instead of optimising the system. At
316 the end, this decision can lead to increasing environmental and economic costs and the
317 maintenance of inefficient networks. The identification of these aspects was not possible
318 in the sample of cities; however, it is a matter to consider when assessing the electricity
319 consumption in different scenarios.

320 In line with the LCA for sewer construction developed by Petit-Boix et al. (2014), the
321 environmental impact of the operation of the sewer in a city was compared to its
322 construction. The study considered a representative stretch of the network made of
323 plastic (60%) and concrete (40%) and an estimated number of appurtenances (i.e.,
324 pumps, manholes and inspection chambers). When comparing the annual impacts of the
325 system in this city, the pumping energy represents 18-25% of the total environmental
326 impact on an annual basis. This value deviates substantially from previous literature
327 (Strutt et al. 2008). However, variations among cities and design parameters are
328 responsible for these changes in the contributions of the operation phase to the total
329 impact of the system (Section 4.2 and 4.3).

330 **4.2 Electricity required by city clusters**

331 The cities were classified into clusters according to regional features shown in **Online**
332 **Resource 3**, and the electricity consumption was studied. No significant differences
333 were found between clusters when the analysis was conducted in absolute terms
334 (**Online Resource 4**) and electricity per m^3 of water flow (**Online Resource 5**).
335 However, regional differences were noted in the electricity per capita. A correlation
336 analysis might provide an explanation to this finding (Section 4.3). The extreme values
337 were not excluded from the analysis because few cases would remain in the dataset and
338 the outcome would worsen.

339 In terms of electricity per capita (**Fig. 3**), differences were detected for climatic
340 conditions and city locations. In the former, Atlantic cities displayed greater pumping
341 requirements (19.8 kWh/TEP) than Mediterranean and Subtropical regions (~4
342 kWh/TEP). This higher pumping requirement is because of intense precipitation in the
343 North and North-West of the country with combined sewer networks that cannot
344 separate stormwater runoff from wastewater. In line with the results of Hospido et al.
345 (2008), the consumption patterns in sewers and WWTPs are in the same order of
346 magnitude (13.2-36.6 kWh/capita).

347 Similarly, coastal municipalities consume more electricity (9.4 kWh/TEP) than inland
348 cities (2.8 kWh/TEP). The lack of slope in sea level cities can cause sediment
349 blockages. Therefore, water must be pumped more often to maintain the flow. In
350 addition, coastal cities tend to pump wastewater upwards to WWTPs located further
351 inland to preserve the landscape and prevent odour issues.

352 The remaining variables did not show significant differences and presented a p value
353 greater than 0.2 in most cases. However, several trends could be identified. For instance,

354 more pumping takes place in high-income cities, likely because of higher water
355 consumption patterns (Section 4.3) and, as a result, more wastewater production. This
356 could also be related to the population density, given that cities with high-income are
357 usually organised in low-density neighbourhoods. However, differences were hardly
358 seen in this case.

359 <Fig. 3>

360

361 **4.3 Identifying the main variables**

362 A correlation analysis was performed to identify strong and weak relationships between
363 the electricity consumption and the factors described in Section 3.2. All significant
364 results are presented in **Table 2**.

365 <Table 2>

366 Three factors displayed a significant ($p<0.05$) positive relationship with the electricity
367 consumed in the pumping of wastewater: the total length of the sewer network, the
368 number of inhabitants and the total wastewater production. As expected, the length of
369 the sewer plays an important role in terms of energy. Longer networks may require
370 more pumping stations along the pipeline to prevent stagnation and blockages of the
371 main water flow. Additionally, the length of the system shows a strong correlation with
372 the wastewater production ($R=0.92$) and the population ($R=0.91$) (data not shown). This
373 finding is not surprising because these 2 parameters are key in the design of sewer
374 networks (CEDEX 2009). Furthermore, wastewater production is highly correlated with
375 the number of inhabitants ($R=0.97$), whereas the wastewater production per capita is
376 significantly ($p<0.01$) affected by socioeconomic parameters such as the income per
377 capita ($R=0.51$) and the population density ($R=0.29$). Higher-income inhabitants tend to

378 consume more water for various activities such as filling swimming pools or watering
379 gardens (Domene and Saurí 2003). The electricity use per unit of volume has a positive
380 correlation with income. These findings are also consistent with the results shown in
381 Section 4.2.

382 However, the water flow (i.e., wastewater plus stormwater runoff) is not correlated with
383 total energy. The transport of stormwater was not significantly related; therefore,
384 climatic differences in terms of rainfall could not be modelled. In this case, both the
385 precipitation intensity and the catchment area are considered. Hence, an Atlantic city
386 with a relatively small catchment area and a high annual mean rainfall could transport
387 an amount of water similar to that collected in a drier Mediterranean city with a greater
388 rainwater catchment area. In terms of energy per capita, the stormwater and total water
389 flow transported per capita are correlated ($R=0.35$ and $R=0.44$, respectively) because
390 population is a more site-specific feature.

391 As predicted, the slope did not display a significant relationship with the electricity used
392 because this parameter only considered the height difference between the middle of the
393 city and the WWTP. Internal slope variations along the network need to be considered
394 (Haghghi and Bakhshipour 2012); however, given the size of the sample and limited
395 data availability, they could not be easily calculated. Therefore, the slope will most
396 likely present a strong effect on the pumping requirements if it is analysed more
397 thoroughly.

398 **4.4 Approach to running energy use models**

399 After identifying the most relevant parameters using correlation analyses, simple and
400 multiple regression models were run (**Table 3**). Models 1-4 represent the factors and
401 equations potentially affecting the total electricity consumption of a sewer network,

402 whereas models 5-7 assess the electricity per capita and per m³ according to the findings
403 presented in Section 4.3.

404 <Table 3>

405 In terms of total energy, the length of the network (model 1) is the variable with the
406 highest effects on electricity consumption ($R^2=0.62$). The total population (model 2) and
407 the wastewater production (model 3) explain 38 and 35% of the electricity consumption
408 of a city, respectively. Additionally, important data dispersion is noted.

409 However, given that all these factors interact, as presented in Section 4.3, a multiple
410 regression model was considered. The effects of population, length of the sewer and
411 wastewater production were addressed together. The R^2 increased to 0.66, higher than
412 the other models. Additionally, the standard error of the estimate slightly reduced.
413 Despite these improvements, the population coefficient was not significant ($p=0.84$)
414 and, therefore, not included in Model 4, which only contains the significant variables.
415 Nevertheless, the effect of population is implicitly represented in wastewater production
416 (Section 4.3).

417 Given that the models did not display stronger correlations between the factors and the
418 consumption per TEP or per m³ of water flow, equation (1) represents the total
419 electricity used in sewers with an $R^2=0.67$:

420 Equation (1):

421 $TEC = 3,394 L - 0.07 WW - 113,395$

422 where TEC is the total electricity consumption in kWh, L is the total length of sewer in
423 km and WW is the wastewater production in m³.

424 **4.5 Model validation**

425 To estimate the error of Equation (1), the model was validated using data from 35 cities
426 from the sample for the length of the network, the wastewater production and the real
427 electricity consumption in 2011. Two different alternatives were compared to obtain the
428 best approach (Equations 2 and 3).

429 Equation (2):

430 if $3,394 \text{ L} > -0.07 \text{ WW} - 113,395 \rightarrow \text{TEC} = 3,394 \text{ L} - 0.07 \text{ WW} - 113,395$

431 if $3,394 \text{ L} < -0.07 \text{ WW} - 113,395 \rightarrow \text{TEC} = (-1) (3,394 \text{ L} - 0.07 \text{ WW} - 113,395)$

432 Equation (3):

433 if Climate = Atlantic $\rightarrow \text{TEC} = \text{Equation (2)} \cdot 5$

434 if Coastal = Yes $\rightarrow \text{TEC} = \text{Equation (2)} \cdot 1.5$

435 if Coastal = No $\rightarrow \text{TEC} = \text{Equation (2)} / 1.5$

436 The factors included in Equation (3) are related to the differences among clusters in
437 terms of climate and coastal conditions (Section 4.2). When comparing the estimated
438 electricity from these equations to real values, the error of the prediction is reduced by
439 22% on average when Equation (3) is applied. However, only 34 and 29% of the cases
440 presented less than 50% deviation from reality in the predictions of Equations (2) and
441 (3), respectively. Hence, a degree of error remains in the models.

442 To determine the reliability of Equation (3), the confidence interval of the mean was
443 calculated using Student's t-test with 70% confidence (i.e., a 70% chance that the mean
444 is included in $8.6 \cdot 10^5 \pm 2.7 \cdot 10^5 \text{ kWh}$). Further analyses are needed to improve this model
445 and to include other key parameters such as the height difference between the WWTP
446 and the cities that were not accounted for in the present study because of a lack of data.

447 Nevertheless, additional effort should be invested to standardise and improve the data
448 collection process and prevent the use of biased or unknown values.

449 **5. Conclusions**

450 The present paper focuses on the O&M of sewer networks in the framework of the
451 urban water cycle. On average, Spanish sewers consume 6.4 kWh/TEP of electricity
452 (2.3 kg CO₂eq.) in the pumping of wastewater from households to the WWTP. In some
453 cases, this system is not irrelevant when compared to the WWTPs in terms of energy
454 consumption; sewer networks can require up to 50% of the electricity used in the
455 wastewater treatment.

456 Given that the electricity consumption in sewers was thought to be dependent on
457 different regional and physical parameters, a statistical analysis was performed on a
458 sample of Spanish cities. The total electricity consumption was positively and
459 significantly correlated with the length of the network (adjusted R²=0.62) and was
460 weakly correlated with the population (R²=0.38) and wastewater production (R²=0.35).

461 Regional features, such as the stormwater runoff, were identified considering the
462 electricity per capita. The simple model that best predicted the total electricity
463 consumption in a city (R²=0.67) includes the length of the sewer and the wastewater
464 production. The wastewater production depends on other parameters, such as the
465 population and the income per capita, given that social factors also affect the water
466 consumption among collectives.

467 Further, significant differences were noted in the electricity consumption per capita
468 when the cities are compared according to their features. In general, Atlantic cities
469 require almost 5 times more pumping energy than Mediterranean and Subtropical cities
470 because of more rainfall throughout the year. Coastal cities also require more energy

471 than those located further inland because of blockage problems and the location of the
472 WWTP.

473 This study highlights the importance of separately analysing the O&M stage of sewers
474 in the framework of LCA. Moreover, evidence suggested that sewer networks present a
475 great variability because of their configuration in different areas; therefore, a sample of
476 cities presenting different features is important to include in the analysis. The model
477 presented in this paper should assist urban planners in determining the most suitable
478 configuration of the network for a city to reduce the energy requirements and the
479 environmental impacts by using only simple variables. The location of the WWTP and
480 the pumping optimisation should also be considered in new designs. Additionally, a
481 decentralised wastewater management might lead to a reduction in the impacts related
482 to the operation of sewers. However, some improvements should be included in further
483 analyses. The height difference between the WWTP and the city is apparently a critical
484 parameter in the definition of the pumping requirements. However, the topographic
485 complexity of cities limited the analysis of this parameter.

486 In addition, during the O&M stage other impacts can occur. Maintenance activities were
487 excluded from this analysis. Even in theoretically extreme situations, maintenance
488 accounted for only 1% of the CO₂ emissions of the O&M. Furthermore, direct
489 greenhouse gas emissions can be generated in the system because of the degradation of
490 wastewater (e.g., the formation of methane, hydrogen sulphide and nitrous oxide).
491 Therefore, future studies must integrate these emissions into the LCA to determine their
492 relative contribution to the impacts and the variability between sewer networks.

493 **6. Acknowledgements**

494 This study was performed in the framework of the AQUAENVEC Project
495 (LIFE10/ENV/ES/520) "Assessment and improvement of the urban water cycle eco-
496 efficiency using LCA and LCC". The authors are grateful for the support of the Spanish
497 Ministry of Education and Science through the projects BIA2010-20789-C04-01 and
498 CTM2010-17365, and the grant awarded to A. Petit-Boix (FPU13/01273) to conduct
499 this research.

500 **7. References**

501 Abril P, Argemí R (2009) Application of an energy saving and efficiency programme to
502 wastewater treatment plants: methodology and first results (Aplicació del programa
503 d'estalvi i eficiència energètica a les estacions de depuració d'aigües residuals:
504 metodologia i primers resultats). IV Jornades tècniques de gestió de sistemes de
505 sanejament d'aigües residuals. Volum de Ponències, Generalitat de Catalunya

506 AEMET. Spanish National Meteorological Agency (2013) Standard Climate Values.
507 <http://www.aemet.es/en/serviciosclimaticos/datosclimatologicos/valoresclimatologicos> Accessed November 2013.

509 Augas de Galicia. Xunta de Galicia (2011) Annex III: Water use and demand. Galicia-
510 Costa Hydrological Demarcation (Anejo III: Usos y demandas de agua.
511 Demarcación Hidrográfica de Galicia-Costa).
512 <http://augasdegalicia.xunta.es/PHGC/PHGC->
513 ES/PHGC_Anexo_3_Usos_Demandas.pdf Accessed January 2014.

514 Barjoveanu G, Comandaru IM, Rodriguez-Garcia G, et al. (2014) Evaluation of water
515 services system through LCA. A case study for Iasi City, Romania. Int J Life Cycle
516 Assess 19:449–462. doi: 10.1007/s11367-013-0635-8

517 CEDEX. Centre for Hydrographic Studies (2009) Technical guide on sewer networks
518 and urban drain (Guía técnica sobre redes de saneamiento y drenaje urbano), 3rd
519 ed. Ministerio de Fomento. Secretaría General Técnica, Centro de Publicaciones,
520 Madrid

521 Cohen R, Wolff G, Cousins E, Greenfield B (2004) Energy Down the Drain. The
522 Hidden Costs of California's Water Supply. Natural Resources Defense Council,
523 Pacific Institute, Oakland, California

524 CONTEC (2012) Control Técnico del Ciclo Integral del Agua, ©Aqualogy services
525 company.

526 CREM. Centro Regional de Estadística de Murcia (2011) Evolution of the total Gross
527 Available Income per home and per capita (Evolución de la Renta Disponible
528 Bruta total de los hogares y per cápita).
529 http://www.carm.es/econet/sicrem/PU_datosBasicos/sec167.html Accessed
530 November 2013.

531 Domene E, Saurí D (2003) Urban Models and Water Consumption. Watering of private
532 gardens in the Metropolitan Region of Barcelona (Modelos Urbanos y Consumo de
533 Agua. El Riego de Jardines Privados en la Región Metropolitana de Barcelona).
534 Investig Geográficas 32:5–17.

535 EA. The Environment Agency (2008) Greenhouse gas emissions of water supply and
536 demand management options. 1–100.

537 ecoinvent. Swiss Centre for Life Cycle Inventories (2009) ecoinvent database v3.0.
538 Technical report.

539 Farmani R, Butler D (2014) Implications of Urban Form on Water Distribution Systems
540 Performance. *Water Resour Manag* 28:83–97.

541 Fenner RA (2000) Approaches to sewer maintenance : a review. *Urban Water* 2:343–
542 356.

543 Filion YR (2008) Impact of Urban Form on Energy Use in Water Distribution Systems.
544 *J Infrastruct Syst* 14:337–346.

545 GISAgua (2012) ©Aqualogy Services Company.

546 Griffiths-Sattenspiel B, Wilson W (2009) The Carbon Footprint of Water. 1–54.

547 Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A de, Oers L van,
548 Wegener Sleeswijk A, Suh S, Udo de Haes HA, Bruijn H de, Duin R van HM
549 (2002) Handbook on life cycle assessment. Operational guide to the ISO standards.
550 I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific
551 background. Kluwer Academic Publishers, ISBN 1-4020-0228-9, Dordrecht, 692
552 pp.

553 Haghghi A, Bakhshipour AE (2012) Optimization of Sewer Networks Using an
554 Adaptive Genetic Algorithm. *Water Resour Manag* 26:3441–3456. doi:
555 10.1007/s11269-012-0084-3

556 Hospido A, Moreira MT, Feijoo G (2008) LCA Case Studies A Comparison of
557 Municipal Wastewater Treatment Plants for Big Centres of Population in Galicia (
558 Spain). *Int J Life Cycle Assess* 13:57–64.

559 Idescat. Statistical Institute of Catalonia (2013) No Title.

560 IEA. International Energy Agency (2014) Spain: Electricity and Heat for 2011.
561 <http://www.iea.org/statistics/statisticssearch/report/?country=SPAIN&product=ele>
562 ctricityandheat&year=2011. Accessed April 2014.

563 IECA. Instituto de Estadística y Cartografía de Andalucía (2010) Andalusian
564 Municipalities. Basic Data 2010 (Municipios Andaluces. Datos Básicos 2010).
565 Consejería de Economía y Hacienda.

566 ieex. Instituto Estadístico de Extremadura (2011) Socioeconomic atlas of Extremadura
567 2011 - Summary (Atlas Socioeconómico de Extremadura 2011- Resumen).
568 <http://estadistica.gobex.es/> Accessed November 2013.

569 IGE. Instituto Galego de Estadística (2009) Primary and secondary distribution of the
570 income per council (Contas de asignación primaria e de distribución secundaria da
571 renda por concellos).
572 <http://www.ige.eu/igebdt/esq.jsp?ruta=verEjes.jsp%3fCOD%3d4221%26M%3d%26S%3d%26RET%3d%26ORD%3d&paxina=001&c=0307007004> Accessed
573 November 2013.

575 INE. Instituto Nacional de Estadística (2013) Population and household census, Press
576 notice (Censos de Población y Viviendas 2011, Notas de prensa).
577 <http://www.ine.es/prensa/np824.pdf> Accessed January 2014.

578 ISO. International Organization for Standardization (2006) Environmental
579 management—life cycle assessment —principles and framework. International
580 Standard 14040. Geneva

581 Lemos D, Dias AC, Gabarrell X, Arroja L (2013) Environmental assessment of an
582 urban water system. *J Clean Prod* 54:157–165. doi: 10.1016/j.jclepro.2013.04.029

583 Mahgoub E-SMM, van der Steen NP, Abu-Zeid K, Vairavamoorthy K (2010) Towards
584 sustainability in urban water: a life cycle analysis of the urban water system of
585 Alexandria City, Egypt. *J Clean Prod* 18:1100–1106. doi:
586 10.1016/j.jclepro.2010.02.009

587 Pacione M (2009) *Urban geography: a global perspective*, 3rd ed. London: Routledge

588 Petit-Boix A, Sanjuan-Delmás D, Gasol CM, Villalba G, Suárez-Ojeda ME, Gabarrell
589 X, Josa A, Rieradevall J (2014) Environmental Assessment of Sewer Construction
590 in Small to Medium Sized Cities Using Life Cycle Assessment. *Water Resour
591 Manag* 28:979–997. doi: 10.1007/s11269-014-0528-z

592 Roberts DW, Kubel D, Carrie A, et al. (2008) *Cost and Benefits of Complete Water
593 Treatment Plant Automation*. AwwaRF IWA, London.

594 Roux P, Mur I, Risch E, Boutin C (2011) Urban planning of sewer infrastructure :
595 Impact of population density and land topography on environmental performances
596 of wastewater treatment systems. Present. Life Cycle Conf. 2011, “Policy LCM
597 Public Policy” Sess. Berlin

598 Shimizu Y, Dejima S, Toyosada K (2012) The CO2 Emission Factor of Water in Japan.
599 *Water* 4:759–769. doi: 10.3390/w4040759

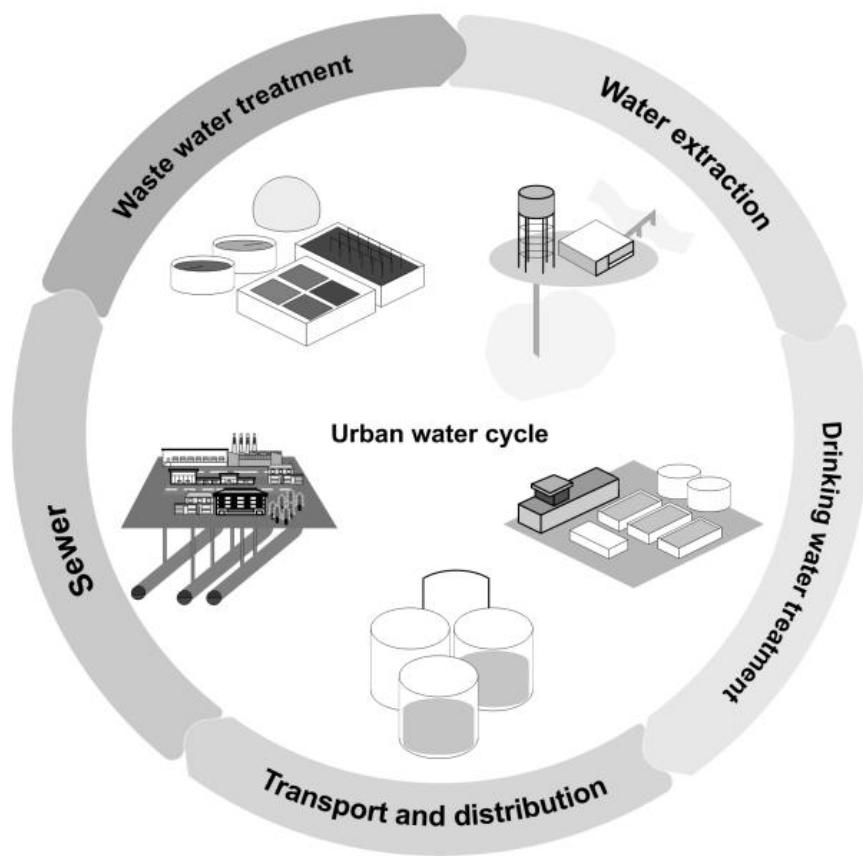
600 SPSS Inc. (2009) *PASW Statistics for Windows*, Version 18.0. Chicago: SPSS Inc.

601 Strutt J, Wilson S, Shorney-Darby H, et al. (2008) Assessing the carbon footprint of
602 water production. *Am Water Work Assoc J* 100:80–91.

603 The World Bank (2014) Urban population (% of total).
604 <http://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS>. Accessed July 2014.

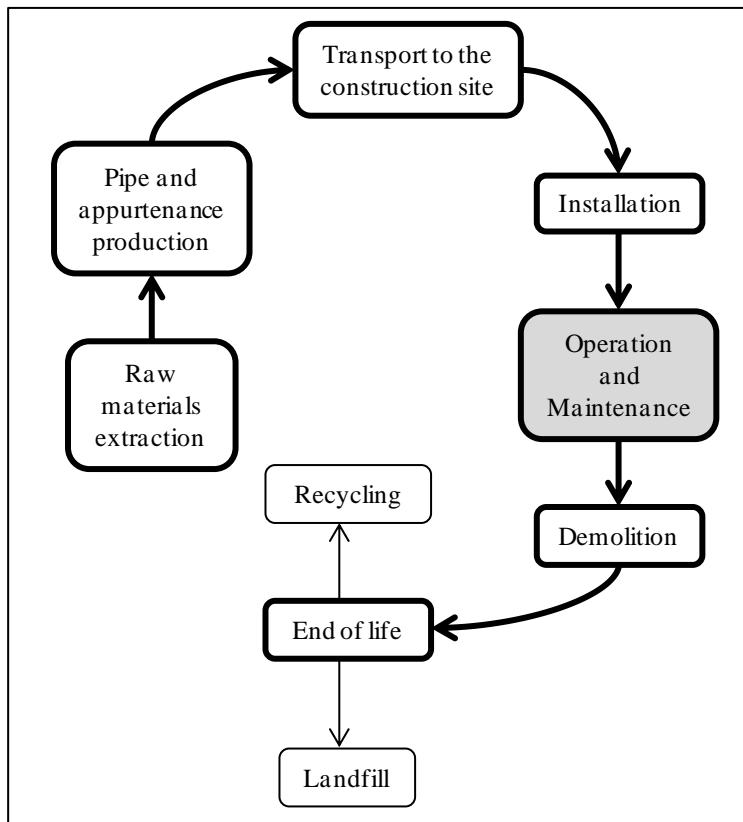
605 Venkatesh G, Brattebø H (2011) Energy consumption, costs and environmental impacts
606 for urban water cycle services: Case study of Oslo (Norway). *Energy* 36:792–800.
607 doi: 10.1016/j.energy.2010.12.040

608 Venkatesh G, Hammervold J, Brattebø H (2009) Combined MFA-LCA for Analysis of
609 Wastewater Pipeline Networks. *J Ind Ecol* 13:532–550. doi: 10.1111/j.1530-
610 9290.2009.00143.x

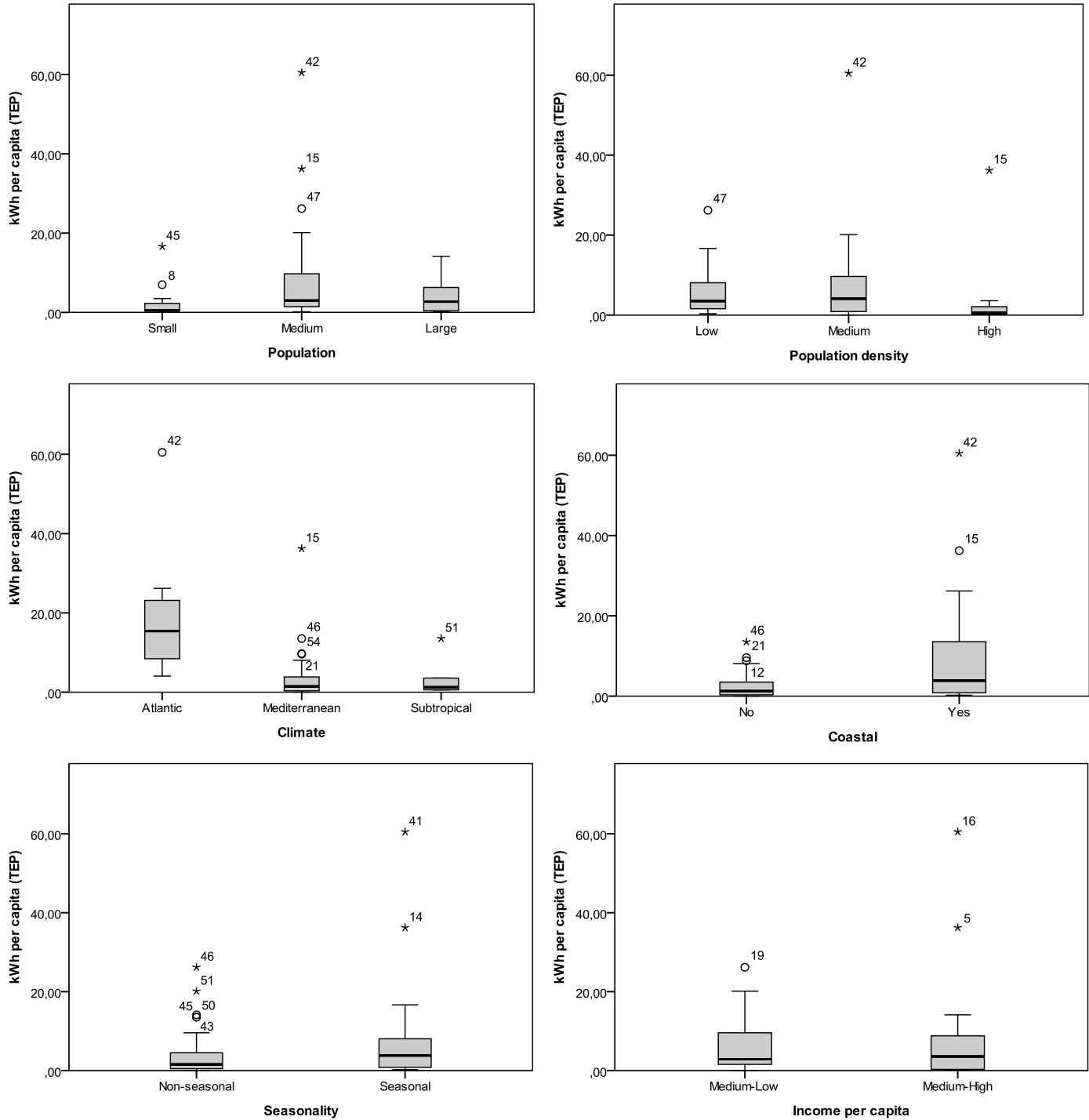

611 Wolman A (1965) The metabolism of cities. *Sci Am* 213:179–190.

612

613


614

615 **Fig. 1** Stages of the urban water cycle and the system under study


616

617 **Fig. 2** Life-cycle stages of the sewer system and studied stage

618

619 **Fig. 3** Comparison of the electricity consumption per TEP in kWh under different
 620 regional conditions. The numbers in the box plot refer to the ID number of the city (see
 621 **Online Resource 2**).

622

623

624 **Table 1** Descriptive statistics of the electricity consumption and environmental impacts
625 in Spanish sewer networks in 2011

Descriptive variable	Total		Per capita (TEP)		Per m ³ of water flow		Per m ³ of wastewater	
	kWh	kg CO ₂ eq	kWh	kg CO ₂ eq	kWh	kg CO ₂ eq	kWh	kg CO ₂ eq
N (size of the sample)	48	48	48	48	36	36	43	43
Mean	3.3E+05	1.2E+05	6.4E+00	2.3E+00	1.4E-02	5.1E-03	1.1E-01	3.9E-02
Standard Error of Mean	1.0E+05	3.7E+04	1.6E+00	5.8E-01	2.9E-03	1.1E-03	3.0E-02	1.1E-02
Standard Deviation	7.0E+05	2.6E+05	1.1E+01	4.0E+00	1.8E-02	6.4E-03	2.0E-01	7.3E-02
Variance	5.0E+11	6.6E+10	1.2E+02	1.6E+01	3.1E-04	4.1E-05	3.9E-02	5.3E-03
Range	4.3E+06	1.6E+06	6.0E+01	2.2E+01	7.7E-02	2.8E-02	9.4E-01	3.5E-01
Minimum	4.8E+01	1.8E+01	1.0E-02	1.9E-03	2.5E-04	1.0E-04	7.9E-05	2.9E-05
Percentile 10	1.7E+03	6.1E+02	2.6E-01	9.5E-02	8.8E-04	3.0E-04	3.0E-03	1.1E-03
Percentile 25	2.2E+04	8.2E+03	5.0E-01	1.8E-01	1.7E-03	1.0E-03	7.2E-03	2.6E-03
Percentile 50	6.4E+04	2.3E+04	2.0E+00	7.5E-01	4.7E-03	1.5E-03	3.1E-02	1.1E-02
Percentile 75	3.6E+05	1.3E+05	8.1E+00	3.0E+00	2.6E-02	9.5E-03	1.3E-01	4.7E-02
Percentile 90	9.0E+05	3.3E+05	1.7E+01	6.2E+00	4.0E-02	1.5E-02	2.2E-01	8.0E-02
Maximum	4.3E+06	1.6E+06	6.0E+01	2.2E+01	7.7E-02	2.8E-02	9.4E-01	3.5E-01

626

627

628 **Table 2** Pearson's correlation coefficient between the electricity consumption and other
 629 variables related to the energy requirements in sewers (only those variables with $p < 0.05$
 630 are shown).

		Total length of sewer	Population (TEP)	Total wastewater production
Total electricity consumption (kWh)	Pearson Correlation (R)	0.79**	0.62**	0.61**
	Sig. (2-tailed)	0	0	0
	N	47	48	43
Electricity consumption per TEP (kWh)	Rainwater per TEP		Water flow per TEP	
	Pearson Correlation (R)	0.35*	0.44**	
	Sig. (2-tailed)	0.031	0.008	
Electricity consumption per m³ of water flow (kWh)	N	39	36	
	Income per capita			
	N	17		

631 **Correlation is significant at the 0.01 level (2-tailed)

632 *Correlation is significant at the 0.05 level (2-tailed)

633

634

635 **Table 3** Regression models between the electricity consumption (y) and causal
 636 variables (x) ($y=ax+bz+c$)

	Variables	Model			Coefficients			
		Adjusted R square	Standard Error	Sig.*	Value	Standard Error	Sig.*	
Total electricity consumption (kWh)	Model 1	Length of the sewer (km)	0.62	439,515	0	1,983	230	0
						-113,841	82,701	0.18
kWh per TEP	Model 2	Population (TEP)	0.38	554,992	0	4.43	0.82	0
						21,016	98,740	0.83
kWh per m ³	Model 3	Wastewater production (m ³)	0.35	592,997	0	0.07	0.01	0
						20,725	114,768	0.86
kWh per TEP	Model 4	Length of the sewer (km)	0.67	423,715	0	3,394	535	0
		Wastewater production (m ³)				-0.07	0.02	0.006
		Constant (c)				-113,395	84,686	0.19
kWh per TEP	Model 5	Rainwater per TEP (m ³)	0.096	10.4	0.03	0.004	0.002	0.03
		Constant (c)				3.49	2.10	0.11
kWh per m ³	Model 6	Water flow per TEP (m ³)	0.17	10.2	0.008	0.007	0.003	0.008
		Constant (c)				1.90	2.31	0.42
kWh per m ³	Model 7	Income per capita (€)	0.21	0.86	0.04	0	0	0.04
		Constant (c)				-2.23	1.11	0.06

637

638 *The model is significant at the 0.05 level (2-tailed). Constant: Intercept
 639

640