

1 **Adapting through glacial cycles: insights from a long-lived tree (*Taxus baccata* L.)**

2

3

4

5 Maria Mayol^{*1}, Miquel Riba^{1,2}, Santiago C. González-Martínez³, Francesca Bagnoli⁴,
6 Jacques-Louis de Beaulieu⁵, Elisa Berganzo¹, Concetta Burgarella⁶, Marta Dubreuil¹,
7 Diana Krajmerová⁷, Ladislav Paule⁷, Ivana Romšáková⁷, Cristina Vettori⁸, Lucie
8 Vincenot¹, Giovanni G. Vendramin⁸

9

10 1) CREAF, Cerdanyola del Vallès 08193, Spain

11 2) Univ Autònoma Barcelona, Cerdanyola del Vallès 08193, Spain

12 3) INIA, Forest Research Centre, Madrid 28040, Spain

13 4) Plant Protection Institute, National Research Council, Via Madonna del Piano 10,
14 50019 Sesto Fiorentino (FI), Italy

15 5) CNRS-UMR7263-IMBE, Université Paul Cézanne, Aix-en-Provence, France

16 6) Institut de Sciences de l'Evolution de Montpellier, Université Montpellier 2, CNRS
17 UMR 5554

18 7) Faculty of Forestry, Technical University, SK-96053 Zvolen, Slovakia

19 8) Institute of Biosciences and Bioresources, National Research Council, Via Madonna
20 del Piano 10, 50019 Sesto Fiorentino (FI), Italy

21

22 *Corresponding author: Phone: +34935814679; E-mail: Maria.Mayol@uab.es

23

24 Total word count: 6474

25 Summary: 194

26 Introduction: 905

27 Materials and Methods: 2018

28 Results: 1656

29 Discussion: 1548

30 Acknowledgements: 153

31 Figures: 5 (all figures should be published in color)

32 Tables: 3

33 Supporting information: 8 Figures; 6 Tables; 2 Notes.

34

1 **Summary**

2

3 • Despite the large body of research devoted to understand the role of Quaternary
4 glacial cycles in genetic divergence of European trees, the differential
5 contribution of geographic isolation and/or environmental adaptation in creating
6 population genetic divergence remains unexplored. In this study, we used a
7 long-lived tree (*Taxus baccata* L.) as a model species to investigate the impact
8 of Quaternary climatic changes on genetic diversity via neutral (IBD) and
9 selective (IBA) processes.

10 • We applied Approximate Bayesian Computation to genetic data to infer its
11 demographic history, and combined this information with past and present
12 climatic data to assess the role of environment and geography in the observed
13 patterns of genetic structure.

14 • We found evidence that yew colonized Europe from the East, and that European
15 samples diverged into two groups (*Western*, *Eastern*) at the beginning of the
16 Quaternary glaciations, ~2.2 Myr before present (BP). Apart from the expected
17 effects of geographical isolation during glacials, we discovered a significant role
18 of environmental adaptation during interglacials at the origin of genetic
19 divergence between both groups.

20 • This process may be common in other organisms, providing new research lines
21 to explore the effect of Quaternary climatic factors on present-day patterns of
22 genetic diversity.

23

24 **Key words:** Approximate Bayesian Computation; cpDNA; demography; evolutionary
25 history; environment-dependent selection; interglacial; microsatellites; *Taxus baccata*.

26

1 **Introduction**

2

3 It is currently accepted that Quaternary climatic oscillations have played a major role in
4 shaping the geographical distribution of European species and their patterns of genetic
5 structure (Hewitt, 2004). In the particular case of temperate taxa, geographical isolation
6 and long-term persistence in southern refugia during the glacial episodes have been
7 considered essential for population divergence and the emergence of new lineages
8 (Hampe & Petit, 2005). However, climatic conditions experienced during glacial and
9 interglacial intervals could also have provided opportunities for genetic divergence
10 through selective pressures and adaptation associated with different local or regional
11 environments. In populations adapted to ecologically dissimilar habitats, gene flow can
12 be limited by selection against maladapted immigrants (Nosil *et al.*, 2005), and this
13 might in turn have indirect effects on the whole genome, since reduction of gene flow
14 promotes neutral divergence through increased genetic drift (Wright, 1931). In this case,
15 genetic differentiation inferred from neutral markers is expected to be correlated with
16 differences in local environments, a pattern that has been described as “Isolation-By-
17 Adaptation” (IBA, Nosil *et al.*, 2008), in analogy to standard patterns of genetic
18 differentiation with geographical distance, i.e. “Isolation-By-Distance” (IBD).

19 Despite the large body of research devoted to understand the effects of climatic
20 changes of the Quaternary, few studies to date have investigated the differential
21 contribution of geographic isolation and/or climatic adaptation in creating population
22 genetic divergence in temperate species. Long-lived organisms, such as trees, are
23 especially well suited models to address these questions. Many temperate trees are
24 distributed over large areas characterised by a wide heterogeneity of both biotic and
25 abiotic factors, and show local adaptation to environmental gradients at multiple spatial
26 scales (Savolainen *et al.*, 2007), which can generate IBA patterns. Because of the
27 buffering effects of their life history traits (great longevity, overlapping generations,
28 prolonged juvenile phase) on changes in genetic structure (Austerlitz *et al.*, 2000), long-
29 lived trees offer additional advantages over short-lived organisms to investigate the
30 generation of IBA along the Quaternary, allowing to explore how much genetic
31 variation is associated with current or past environmental conditions. For instance, the
32 effects of climate during the last glaciation are still evident on contemporary patterns of
33 genetic variation of long-lived *Quercus engelmannii* (Ortego *et al.*, 2012) and *Q. lobata*
34 (Gugger *et al.*, 2023), suggesting that the genetic signal of past climate can persist over

1 extended time periods in organisms with large effective population sizes and long
2 generation times. Nevertheless, unravelling the effect of different climatic periods on
3 spatial genetic divergence is challenging, because current observed patterns may result
4 from the interplay among processes acting at different temporal scales. Assessing the
5 most likely time course for the appearance of environmental barriers to gene flow is the
6 first step to accurately dissect their role as actual contributors to IBA. Today, the
7 existence of various palaeoclimatic databases allows to evaluate the effect of period-
8 specific climatic conditions on neutral genetic diversity by testing each period
9 separately, and recently developed Approximate Bayesian Computation (ABC) methods
10 can be used to elucidate complex demographic scenarios with relatively low demands in
11 terms of computation effort (Beaumont, 2010), as well as to estimate the time of the
12 inferred demographic processes.

13 English yew (*Taxus baccata* L.) is a long-lived, slow growing Tertiary relict
14 (Hao *et al.*, 2008) native of Eurasian temperate and Mediterranean forests. Extending
15 from North Africa to Scandinavia, and from the Iberian Peninsula to the Caspian Sea,
16 yew grows under a wide range of environmental conditions, from oceanic to continental
17 and Mediterranean climate (Thomas & Polwart, 2003). Although palaeoecological
18 information on past yew distribution is scarce, some of the longest European
19 Pleistocene pollen records indicate that *Taxus* expanded its range during several
20 interglacials and made a much more significant contribution to vegetation in Europe
21 than today (Mamakova, 1989; Turner, 2000; de Beaulieu *et al.*, 2001; Müller *et al.*,
22 2003; Koutsodendris *et al.*, 2010). Palynological records also indicate that yew was able
23 to persist during the last glaciation, not only in southern refugia (Allen *et al.*, 2002;
24 Carrión, 2002; Carrión *et al.*, 2003), but also in Central and Eastern Europe (Stewart &
25 Lister, 2001; Willis & van Andel, 2004), although some debate still exists on the
26 presence of cryptic refugia in northern Europe (Tzedakis *et al.*, 2013). The wide extent
27 of environmental heterogeneity within the species' range, together with its long
28 presence in Europe, make English yew an ideal species to investigate the impact of
29 Quaternary climatic changes on genetic diversity via neutral and selective processes.

30 In this study, we used an integrated approach combining genetic and
31 palaeoenvironmental data to (1) elucidate the demographic history of *T. baccata*
32 throughout its range, and (2) determined the role of environmental and geographical
33 factors in generating the observed patterns of genetic structure. About five thousand
34 trees from 238 localities covering yew natural range were genotyped with neutral

1 microsatellite markers to identify distinct genetic clusters. ABC was used to select the
2 most likely scenario shaping genetic diversity in this species and to set an approximate
3 time frame for the inferred history. Finally, we used the available climatic information
4 for three time periods, i.e. the last interglacial (LIG, ~120,000-140,000 yrs BP), the last
5 glacial maximum (LGM, ~21,000 yrs BP), and present conditions (PRE, ~1950-2000),
6 to evaluate the relative importance of current and past climatic conditions on the
7 observed patterns of genetic variation. Coupling these approaches helped to determine
8 whether standing patterns of genetic divergence are the result of historical isolation or,
9 alternatively, of local adaptation to ecologically differentiated areas.

10

11 **Materials and Methods**

12

13 *Sampling, DNA extraction and nuclear microsatellite genotyping*

14 A total of 4,992 samples ($N=1-60$ per locality, mean 21) were collected at 238 localities
15 covering the entire distribution range of *Taxus baccata* L. (Fig. 1; Table S1). Total
16 DNA was isolated from 50-100 mg of dry leaf material using the DNeasy Plant Mini
17 Kit (Qiagen, Hilden, Germany) or a modified protocol from Dellaporta *et al.* (1983).
18 Seven primer pairs for the amplification of nuclear microsatellites (nuSSRs) developed
19 specifically for *T. baccata* were used for the genetic analysis following conditions
20 described in Dubreuil *et al.* (2008).

21

22 *Chloroplast DNA sequencing*

23 Six chloroplast regions were tested following the PCR conditions given in Shaw *et al.*
24 (2005): *rbcL*, *rpl36-rps8*, *trnH-psbA*, *trnC-ycf6*, *trnT-trnL* and *trnL-trnF*. Additionally,
25 the *trnS-trnQ* spacer region was amplified as in Schirone *et al.* (2010). Only three of
26 them were successfully amplified: *rbcL*, *trnS-trnQ* and *trnL-trnF*. The amplified
27 products were screened for polymorphism using 1-2 individuals from 18-26 populations
28 (Tables S2, S3) sampled across the distribution range of the species. PCR products were
29 purified using the QIAquick gel extraction kit (Qiagen, Hilden, Germany), and
30 sequenced from both ends with an ABI 377 automated sequencer using the ABI
31 BigDyeTM Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems,
32 Foster City, California, USA). Sequences available from previous studies (Shah *et al.*,
33 2008; Schirone *et al.*, 2010) were downloaded from GenBank and aligned with the
34 newly obtained sequences (accession numbers KP115899-KP115935).

1

2 *Genetic diversity and structure based on nuclear microsatellites*

3 In all populations with at least 8 individuals (195 locations, $N=4,829$), observed (H_O)
4 and expected (H_E) heterozygosity were computed using GENETIX v.4.04 (Belkhir *et* *al.*, 2001). The number of private alleles and allelic richness (A_R) were calculated using
5 GENALEX v.6.5 (Peakall & Smouse, 2012) and FSTAT v.2.9.3.2 (Goudet, 2001),
6 respectively. Linkage disequilibrium among all pairs of loci within each population was
7 assessed by the Markov-chain approximation of the Fisher's exact test implemented in
8 GENEPOP v.4.0.7 (Rousset, 2008).

9
10 The same 195 populations were used to investigate genetic structure using
11 different approaches. AMOVA (Excoffier *et al.*, 1992) was used to partition total
12 molecular variance within and among populations using ARLEQUIN v.3.5.1.2
13 (Excoffier *et al.*, 2005). Significance was obtained by non-parametric permutation using
14 10,000 replicates. Multi-locus F_{ST} was estimated correcting for the possible presence of
15 null alleles with the program FREENA (Chapuis & Estoup, 2007), using 1,000
16 bootstraps to compute 95% confidence intervals. IBD was evaluated by testing the
17 correlation between the matrix of pairwise [$F_{ST}/(1-F_{ST})$] and the matrix of geographic
18 distances (logarithmic scale) using the Mantel test implemented in GENETIX v.4.04,
19 with 10,000 permutations. Finally, Jost's estimator D_{est} (Jost, 2008) was computed to
20 assess population differentiation using GENALEX v.6.5, and significance was
21 evaluated using 1,000 replicates.

22
23 Two Bayesian clustering methods were used to infer distinct gene pools within
24 the full dataset (238 locations, $N=4,992$). The program STRUCTURE v.2.2 (Pritchard *et* *al.*, 2000) was run without prior population information, selecting the correlated allele
25 frequencies model and assuming admixture. Ten independent runs for each K cluster
26 (from $K=1$ to 7) were performed, setting burn-in and run lengths of 50,000 and 500,000
27 iterations, respectively. The best number of clusters was determined following the
28 recommendations by Pritchard & Wen (2004) and Evanno *et al.* (2005). Mean F_{ST}
29 values measuring the divergence of each inferred cluster from a single hypothetical
30 "ancestral population" were also obtained (Falush *et al.*, 2003). Additionally, TESS
31 v.2.3 (Fran ois *et al.*, 2006) was employed to estimate the number of genetic clusters
32 (K) present in the data incorporating the geographical location of individuals as a prior
33 information. Both admixture (BMY model; spatial interaction parameter: 0.6) and non-
34 admixture models were used to perform five independent runs for K ranging from 1 to

1 7, with a burn-in of 10,000 and a total number of 50,000 sweeps. The optimal value of
2 K was determined by plotting the deviance information criterion (DIC) against K and
3 choosing the values of K_{\max} corresponding to a plateau of the curve (François &
4 Durand, 2010). To graphically represent the results obtained, the averaged results of the
5 assignments of STRUCTURE and TESS were plotted on maps generated with ARCGIS
6 v.9.1. (ESRI, Redlands, California).

7

8 *Demographic history (ABC models)*

9 We applied the ABC framework implemented in DIYABC v.1.0.4.46 (Cornuet *et al.*,
10 2010) to nuSSRs to infer the demographic history of *T. baccata*. The information
11 obtained from the above analyses was the starting point for designing the different
12 scenarios to test (for further details, see Results). STRUCTURE and TESS identified
13 slightly different best number of clusters ($K=2$ (*Western, Eastern*) and $K=3$ (*Western,*
14 *Eastern, Iran*), respectively), but both supported (i) a first partition between *Western*
15 and *Eastern* samples, and (ii) the presence of *Admixed* populations at the intersection of
16 both clusters, suggesting a secondary contact of divergent lineages. However, a clear
17 westward cline of decreasing diversity from Iran to the Mediterranean area was also
18 detected, which might be indicative of a colonization pattern. Thus, we designed four
19 scenarios to test alternative hypotheses considering two or three genetic pools (Fig. 2).
20 Scenario A tested a “secondary contact” of two separated gene pools (*Western,*
21 *Eastern*). Scenarios B and D tested a “colonization” event from the east, the former
22 considering two genetic pools (*Western, Eastern*), and the latter with three (*Western,*
23 *Eastern, Iran*). Scenario C considered a “colonization” from *Iran*, the separation of
24 European samples into two genetic pools (*Eastern, Western*), and a posterior “secondary
25 contact”.

26 For Scenarios A and B, three groups of populations were created: *Eastern*,
27 *Western* and *Admixed*. A population was considered as admixed when the proportion of
28 individuals assigned to the eastern or the western cluster was less than 70%. The
29 proportion of membership and the assignment of populations to each specific group are
30 reported in Table S1. Given that recent studies suggest that pooling data across
31 populations can be a problem to infer demography (Chikhi *et al.*, 2010), the following
32 procedure was designed to avoid the potential confounding effects of population
33 structure on the inference of demographic parameters. Ten different sets of populations
34 were constructed, each containing approximately 500 individuals, i.e. representing

1 about 10% of the whole dataset (Fig. S1). Each set was composed by ~200 individuals
2 belonging to the *Eastern* pool, ~200 individuals from the *Western* one, and ~100 of
3 *Admixed* composition (hereafter called “500-sample datasets”). To minimize the effect
4 of spatial genetic structure, we sought that the populations included in each dataset were
5 geographically close or that genetic divergence among populations was low. For
6 Scenarios C and D, two additional datasets with four groups of populations were
7 constructed (Fig. S1), i.e. considering the *Iran* pool (Iran, Georgia) to be independent
8 from the *Eastern* one, as inferred using TESS for $K=3$ and STRUCTURE for $K=4$. In
9 this case, datasets were composed by ~200 individuals belonging to the *Eastern*,
10 *Western* and *Iran* pools, respectively, and ~100 of *Admixed* composition (hereafter
11 called “700-sample datasets”). The composition of these two datasets for each ABC run
12 was different for all pools except for the *Iran* one, where only 199 individuals were
13 available.

14 One million simulations were run for each dataset. Prior parameter distributions
15 were chosen as broad as possible to explore a wide range of population sizes and time
16 frames (measured in generations): Uniform [10; 100,000] for current effective
17 population sizes, Uniform [1; 100,000] for divergence times t_1 , t_2 and t_3 (with $t_3 > t_2$
18 and $t_2 > t_1$), Uniform [10; 1,000,000] for ancestral effective population size, and
19 Uniform [0.001; 0.999] for admixture rate. A generalized stepwise mutation model was
20 assumed and default values were used for all prior mutation parameters, except for the
21 mean mutation rate, for which minimum and maximum default values (10^{-4} - 10^{-3}
22 mutations per locus per generation) were enlarged to 10^{-5} - 10^{-3} after previous runs giving
23 biased posteriors towards the lower mutation rate. Each simulation was summarized by
24 the following statistics: mean number of alleles and mean genetic diversity (Nei, 1987)
25 for each cluster, and mean number of alleles, mean genetic diversity, F_{ST} , mean index of
26 classification (Rannala & Mountain, 1997), and shared allele distance (Chakraborty &
27 Jin, 1993) between pairs of clusters. After ensuring that this combination of scenarios
28 and priors was able to produce datasets similar to the observed one (Fig. S2), the
29 posterior probabilities of each scenario were calculated with a local logistic regression
30 procedure using the 1% closest simulated points. Retained simulations were used to
31 infer parameter posterior distributions by local linear regression using a logit
32 transformation of the parameters. The reliability of the model and chosen scenario was
33 evaluated for each of the twelve simulations by performing model checking and
34 computing the confidence in scenario choice (see Notes S1 for further details).

1

2 *Past and present impact of environmental factors on genetic structure*

3 We used the climatic information available at the WorldClim database (Hijmans *et al.*,
4 2005) to evaluate the effect of past and present climatic conditions on current genetic
5 structure. For the present time (PRE, ~1950-2000), nineteen bioclimatic variables were
6 downloaded for the 195 populations with $N \geq 8$. Two bioclimatic variables that were
7 highly correlated with the others ($r > 0.9$) were excluded, and the remaining variables
8 were summarized into the first two axes of a Principal Component Analysis (PCA)
9 using R (R Core Team, 2013). The environmental variables with loadings on the PCA
10 axes higher than 0.5 (Table S4) and the 238 occurrence points were used to model
11 current climatically suitable areas for English yew with maximum entropy
12 (MAXENTv.3.3.3) and BIOCLIM (DIVA-GIS v.7.5.) algorithms. Predictions were also
13 generated separately for the *Western* (153 sampling sites) and *Eastern* (64 sampling
14 sites) gene pools to examine whether genetic divergence among them was
15 environmentally induced. The modelled distributions were generated with 75% of the
16 points (training data) and cross-validated with 25% of the remaining localities (test
17 data), averaged over ten runs. The performance of the models was tested by measuring
18 the area under the Receiver Operating Characteristic curve (AUC). The logistic outputs
19 of MAXENT models were transformed to presence-absence maps using the maximum
20 training sensitivity plus specificity (MTSS) threshold. For BIOCLIM, maps were
21 obtained leaving only values with high, very high or excellent suitability (i.e., within the
22 5-95th percentile interval).

23 To determine the contribution of present environment on genetic differentiation,
24 we tested for the relationship between pairwise F_{ST} and climatic distance while
25 controlling for geographic distance. We computed climatic (Euclidian) distance
26 matrices based on population scores for both PCA axes (PC1, PC2), and for each
27 environmental variable. Tests were performed for the whole dataset and for each genetic
28 cluster (*Eastern*, *Western*) using partial Mantel tests (“mantel.partial” function; R Core
29 Team, 2013) and Multiple Matrix Regressions (MMRR script; Wang, 2013).
30 Significance tests were based on 10,000 permutations. To reduce the risk of spurious
31 correlations, in particular for less conservative MMRR tests, we only considered those
32 correlations that were significant with both methods.

33 The same procedures were applied to investigate the contribution of past climate
34 to current genetic differentiation. We projected the models for the present onto three

1 paleoclimate layers, the Community Climate System Model (CCSM) and the Model for
2 Interdisciplinary Research on Climate (MIROC) for the last glacial maximum (LGM,
3 ~21,000 yrs BP), and the model for the last interglacial (LIG, ~120,000-140,000 yrs
4 BP). Then, to investigate the correlation of past climate and observed genetic
5 differentiation (F_{ST}), we retained only those populations where suitable environment
6 have existed for yew persistence during these periods. Although distribution of *T.*
7 *baccata* may have not been exactly the same across the Quaternary, projections suggest
8 a rather stable distribution of the species in relatively large parts of its range (see
9 Results), so using only populations that could have been located at or near the present
10 locations can be considered a reasonable approximation of the distribution of the species
11 in the past. Thus, we selected those occurrence points with logistic output values in
12 MAXENT above the respective MTSS thresholds in each model, and with suitability
13 values above the 5-95th percentile interval in BIOCLIM. Because of the present
14 distribution of English yew was more accurately predicted when combining modelled
15 distributions of single gene pools than from the full model (see Results), we constructed
16 datasets combining the predicted suitable populations obtained for *Western* and *Eastern*
17 models of past climate (indicated in Table S1), and used them to perform partial Mantel
18 and MMRR tests as for the present time.

19

20 **Results**

21

22 *Chloroplast DNA sequencing*

23 Chloroplast regions comprised 1,359, 656 and 344 aligned positions for *rbcL*, *trnS-trnQ*
24 and *trnL-trnF*, respectively. No polymorphism was found for the *rbcL* gene, and *trnS-*
25 *trnQ* and *trnL-trnF* showed two closely related haplotypes, respectively (Tables S2, S3).
26 For both markers, populations harbouring different haplotypes were located at Guilan
27 and Golestan provinces (Iran), at the eastern extreme of the distribution of English yew
28 (Fig. S3).

29

30 *Genetic diversity and structure based on nuclear microsatellites*

31 Allelic richness (A_R), expected (H_E) and observed (H_0) heterozygosity ranged from
32 2.243 to 5.295, 0.354 to 0.855, and 0.171 to 0.768, respectively (Table S1). Among a
33 total of 3,957 tests for linkage disequilibrium between pairs of loci, 98 were significant
34 ($P<0.05$) after sequential Bonferroni corrections, but almost all involved the same eight

1 populations. Since the application of Bayesian methods rely on the assumption of
2 linkage equilibrium between loci, we performed additional runs with STRUCTURE
3 program excluding these populations.

4 Very similar pairwise F_{ST} were obtained when correcting or not for the presence
5 of null alleles. Corrected values ranged from 0.001 to 0.599, with an overall $F_{ST}=0.149$.
6 Only 84 out of 18,915 population pairs were not significantly ($P<0.05$) differentiated
7 from each other after a sequential Bonferroni correction for multiple tests (Table S5).
8 These results were in agreement with AMOVA, with a 16.41 % of the total variance
9 explained by differences among populations (Table S6). Overall Jost's D_{est} was 0.478,
10 indicating that the proportion of allelic differentiation among populations was higher
11 than the proportion of variance in allele frequencies. The correlation between genetic
12 and geographic distances was highly significant ($r=0.281$, $P<0.001$), suggesting the
13 existence of an isolation-by-distance pattern.

14 STRUCTURE runs including or excluding populations with significant linkage
15 between loci produced almost identical results. The method identified an optimal
16 partition in two genetic pools with a clear geographical pattern: populations from central
17 Europe to Iran (*Eastern*) and populations from the western range (*Western*), with a
18 contact zone of admixed populations (*Admixed*) located along Central Europe, Italy and
19 the Mediterranean islands (Fig. 3). An additional partition ($K=3$) subdivided the western
20 group into two differentiated pools, predominantly located in Central Europe and the
21 Mediterranean area, respectively (Fig. S4). Increasing the number of partitions ($K=4$)
22 produced the splitting of samples from Iran and Georgia as an independent pool (*Iran*)
23 within the *Eastern* one (Fig. S4). The F_{ST} values obtained by the correlated frequencies
24 model in STRUCTURE increased toward the west, suggesting that eastern populations
25 were closer to the hypothetical “ancestral population”.

26 The best model with TESS was the one considering admixture, and generated a
27 very similar population clustering for $K=2$ (Fig. S4), but the best number of clusters was
28 inferred at $K=3$ (Fig. 3), and the splitting of the easternmost group (*Iran*) occurred
29 earlier (i.e. for $K=3$ in TESS, and for $K=4$ in STRUCTURE). Nevertheless, the same
30 trends were identified with both approaches: (i) the first level of divergence produced
31 the partition of *Western* and *Eastern* samples, (ii) populations showing higher levels of
32 admixture were located at the intersection of both clusters, (iii) divergence from the
33 hypothetical “ancestral population” increased towards the west, and (iv) increasing

1 number of partitions led to the split of the easternmost samples (Georgia, Iran) as an
2 independent group (*Iran*).

3 Mean genetic diversity of populations assigned to the *Eastern* pool and those of
4 *Admixed* composition was significantly higher than that of the *Western* cluster (mean
5 $A_{R(E)}=4.46$, $A_{R(A)}=4.36$, $A_{R(W)}=3.61$; mean $H_{E(E)}=0.773$, $H_{E(A)}=0.759$; $H_{E(W)}=0.653$;
6 Duncan's test after ANOVA: $P<0.001$), indicating a pattern of decreasing genetic
7 diversity from east to west (Fig. 4). In addition, the number of populations displaying
8 private alleles was higher in the *Eastern* pool than in the *Western* one (23 vs. 15), as
9 well as the number of private alleles (43 vs. 17). Of these 43 private alleles, 23 were
10 detected in populations from Iran and Georgia (*Iran* pool). Only 7 *Admixed* populations
11 had private alleles, and the proportion was low (7 out of 67). Jost's estimator indicated
12 higher differences in allele composition among populations in the east ($D_{est(E)}=0.489$,
13 $D_{est(A)}=0.387$, $D_{est(W)}=0.351$), while greater deviations from panmixia (F_{ST}) were
14 detected in the west ($F_{ST(E)}=0.127$, $F_{ST(A)}=0.103$, $F_{ST(W)}=0.147$).

15

16 *Demographic history (ABC models)*

17 All the ABC simulations were able to discriminate between the tested scenarios, with
18 high posterior probabilities and 95% confidence intervals never overlapping those of the
19 other scenario (Table 1). The most likely scenario using the “500-sample datasets” was
20 Scenario A, with a strong support in almost all cases ($PP\geq 0.8$; Table 1). However,
21 scenario B was always chosen when the datasets used for simulations included the
22 easternmost samples (Georgia, Iran) as representatives of the *Eastern* pool (sim4, sim5
23 and sim8, see Fig. S1), albeit with lower support (Table 1). This was in accordance with
24 genetic diversity distribution and, together, suggest an eastern colonization of Europe,
25 with easternmost populations constituting an independent gene pool (*Iran*) that was not
26 the source of admixture in Central Europe. Similarly, simulations performed on the two
27 “700-sample datasets”, i.e. considering three differentiated pools (*Iran*, *Eastern*,
28 *Western*), unambiguously indicated support for Scenario C (>0.9 ; Table 1), which tested
29 a first migration wave from the east (*Iran*), a more recent separation of European
30 samples in two distinct pools (*Eastern*, *Western*), and a secondary contact (*Admixed*)
31 between them (Fig. 2). Model testing procedures further supported the reliability of this
32 scenario (see Notes S1 for further information). Parameter posterior distributions are
33 shown in Fig. S5.

1 Under this model (Scenario C), estimated time of divergence among Iranian and
2 European samples would have occurred, on average, about 6 Myr BP (90% credible
3 intervals: 1.35-14.78 Myr BP, Table 1), assuming a generation time of ~100 years for
4 English yew. Although reproduction can begin earlier when growing under open canopy
5 conditions, yew usually grows as isolated understory tree, and reach maturity later,
6 between 70-120 yr (Thomas & Polwart, 2003; L. Paule & M. Riba, unpublished data).
7 The posterior separation of *Eastern* and *Western* clusters, and the subsequent admixture
8 event would have taken place about 2.2 Myr BP (90% credible intervals: 0.5-7.5 Myr
9 BP) and 200,000 years BP (90% credible intervals: 50,000-800,000 years BP),
10 respectively (Table 1). These estimates are mostly in agreement with those obtained
11 with the “500-sample datasets”, with averaged estimates of both events around 2 Myr
12 BP and 230,000 years BP, respectively (Table 1). Although 90% credible intervals are
13 large for all the simulations, model checking confirmed that the model was consistent
14 with the observed data, suggesting that large confidence intervals are due to data
15 information content and not to a model misfit (Notes S1).

16

17 *Past and present impact of environmental factors on genetic structure*

18 The first two PCA axes explained 52% of the variation for the present climate. PC1 was
19 mainly correlated with temperatures, whereas PC2 was positively correlated with
20 precipitation (Table S4). Despite some overlap, populations belonging to *Western* and
21 *Eastern* clusters defined clear groups along the first axis of the multivariate space (Fig.
22 S6), indicating that substantial differences exist in climate for each geographic region.
23 On average, populations within the *Western* cluster experienced smaller seasonal
24 temperature fluctuations, warmer temperatures (annual mean, minimum and maximum),
25 higher temperatures during the driest quarter, and less precipitation during the warmest
26 quarter (ANOVA: $P<0.001$).

27 Averaged AUC values for the replicate runs were >0.870 for all distribution
28 models, supporting their predictive power. The predicted full species model for the
29 present generated with MAXENT was fairly congruent with yew current distribution,
30 (Fig. S7), but this was more accurately predicted when combining modelled
31 distributions of single gene pools, especially with regard to Eastern Europe (Fig. 5).
32 Similar results were obtained using the BIOCLIM algorithm (Notes S2).

33 The CCSM and MIROC models for the LGM yielded large differences in
34 predicted distributions, and were highly dependent on the algorithm used (Figs. 5, S7;

1 Notes S2). MAXENT models suggested much wider suitable areas than BIOCLIM,
2 especially with regard to CCSM. However, all models supported the existence of large
3 suitable areas for English yew in several southern refugia (i.e., the Balkans, Iberia and
4 Italy). Projections for LIG produced similar models with MAXENT and BIOCLIM,
5 showing a westward shift with respect to present-day climatic conditions, both for the
6 *Western* and *Eastern* clusters (Figs. 5, S7; Notes S2).

7 Despite a substantial lack of precision for LGM models, a common trend was
8 that models produced using localities from either *Western* or *Eastern* gene pools alone
9 showed little overlap of their predicted distributions for all periods considered,
10 especially during both interglacials (Fig. 5), suggesting that *Eastern* and *Western*
11 clusters have occupied environmentally different regions since the long past.

12 After controlling for geographic distance, and at the scale of the whole species
13 range, there was a significant positive association between pairwise F_{ST} and the PC1
14 axis for the present climate ($r_{Env-PRE}=0.157$, $b_{Env-PRE}=0.154$, $P<0.001$), while relations
15 with PC2 variables were not significant (Table 2). Analysed separately, annual mean
16 temperature ($r_{Env-PRE}=0.171$, $b_{Env-PRE}=0.161$, $P<0.001$) and minimum temperature of the
17 coldest month ($r_{Env-PRE}=0.141$, $b_{Env-PRE}=0.145$, $P<0.001$) were the most relevant
18 variables explaining population genetic structure. Very similar results were found
19 within the *Western* pool, with a significant correlation among genetic differentiation and
20 PC1 variables ($r_{Env-PRE}=0.174$, $b_{Env-PRE}=0.175$, $P<0.01$), and more specifically with
21 annual mean temperature ($r_{Env-PRE}=0.219$, $b_{Env-PRE}=0.218$, $P<0.01$) and minimum
22 temperature of the coldest month ($r_{Env-PRE}=0.163$, $b_{Env-PRE}=0.165$, $P<0.01$). Within the
23 *Eastern* pool, no significant correlations were found for both tests except for
24 temperature seasonality ($r_{Env-PRE}=0.136$, $b_{Env-PRE}=0.150$, $P<0.05$).

25 MAXENT projections onto past climatic models suggested that suitable
26 conditions would have existed for the persistence of 102-123 and 94 populations during
27 LGM and LIG, respectively (Table 3). In these populations, we found that LIG climate
28 contributed similarly as the present to genetic divergence, with a positive association
29 between F_{ST} and annual mean temperature ($r_{Env-LIG}=0.104$, $b_{Env-LIG}=0.115$, $P<0.05$), and
30 minimum temperature of the coldest month ($r_{Env-LIG}=0.096$, $b_{Env-LIG}=0.106$, $P<0.05$). In
31 addition, we found a significant contribution of mean diurnal temperature range ($r_{Env-
32 LIG}=0.177$, $b_{Env-LIG}=0.170$, $P<0.01$), and no significant correlation with the PC2 axis
33 (Table 3). Positive significant associations for both Mantel and MMRR tests were not

1 detected during LGM models. These results were confirmed when using suitable
2 populations predicted with BIOCLIM (Notes S2).

3

4 **Discussion**

5

6 *Demographic history of English yew*

7 The combination of Bayesian clustering and Approximate Bayesian Computation
8 methods shed light on the demographic history of English yew. According to our ABC
9 results, nuSSRs in *Taxus* seem to retain the imprint of very ancient events, as suggested
10 by the divergence time estimates for the inferred demographic processes. Even so, a
11 near absence of variation and spatial structure for chloroplast DNA markers was
12 observed, in accordance with the slow chloroplast nucleotide substitution rate reported
13 in conifers (Willyard *et al.*, 2007).

14 ABC simulations suggest that the most likely demographic scenario for *T.*
15 *baccata* involves a first migration wave from eastern territories (*Iran*) to the west, a
16 more recent separation of the European samples into two gene pools (*Eastern, Western*),
17 and a secondary contact (*Admixed*) of both clusters along Central Europe, Italy and
18 Mediterranean islands (Fig. 2, Scenario C). The ancient migration from the east is also
19 supported by the westward decline of genetic diversity (Fig. 4), and by the fact that F_{ST}
20 values from the hypothetical “ancestral population” for each inferred cluster always
21 increased towards the west, suggesting that easternmost populations were closer to the
22 ancestral one. In agreement with our results, recent studies set the origin of *Taxus* in
23 North America or South West China during the late Cretaceous to mid Eocene ($66.55 \pm$
24 11.22 Myr BP), from which was dispersed to the current distribution areas (Hao *et al.*,
25 2008). The genus probably reached Europe through the Irano-Turanian region, which
26 has been postulated as a key source for the colonization of the Mediterranean region
27 (Thompson, 2005; Mansion *et al.*, 2008). This event probably occurred before the
28 Lower Miocene, as indicated by the oldest fossil record (16-23 Myr BP; Kunzmann &
29 Mai, 2005). An eastern origin and westward colonization of the Mediterranean, still
30 reflected in current genetic structure, has also been postulated for other tree genera (e.g.
31 *Abies*, Linares, 2011; *Frangula*, Petit *et al.*, 2005; *Laurus*, Rodríguez-Sánchez *et al.*,
32 2009).

33 Our ABC simulations place the separation among the Iranian and European
34 genetic pools around 6 Myr BP, although 90% credible intervals are wide (on average

1 [1.35-14.78] Myr BP, Table 1). In addition, DIYABC does not model continuous gene
2 flow at each generation, which could have led to underestimating the divergence time.
3 Nevertheless, assuming lack or reduced gene flow is a reasonable assumption in English
4 yew (see Dubreuil *et al.*, 2010; González-Martínez *et al.*, 2010; Chybicki *et al.*, 2011;
5 Burgarella *et al.*, 2012), as also suggested by high levels of pairwise genetic
6 differentiation in our study (see Results). An ancient separation is also evident from the
7 results obtained using chloroplast DNA markers, since the only distinct haplotypes were
8 located at the eastern extreme of the distribution (Guilan and Golestan provinces, Iran),
9 suggesting that both groups became isolated long time ago. This is additionally
10 confirmed by the significantly higher number of private alleles detected at nuclear
11 microsatellites within the *Eastern* pool, particularly in populations from Iran and
12 Georgia. This ancient vicariance might be associated to the intense changes that
13 occurred during the Latest Miocene (6.1-5.7 Myr BP; Popov *et al.*, 2006), which could
14 have favoured both migration and differentiation within the Mediterranean Basin.

15 Around two million years before the present (90% credible intervals ~[0.5-7.5]
16 Myr BP), the European populations split into two distinct genetic pools (*Eastern*,
17 *Western*), and a posterior admixture of both lineages seem to have occurred about
18 200,000 years ago (90% credible intervals ~[50,000-800,000] years). These results are
19 consistent with the expected pattern assuming that *T. baccata* survived in two allopatric
20 refugia since the beginning of the Quaternary, from which they expanded and
21 converged further north during warm interglacial periods. Such an east-west pattern of
22 differentiation across the Mediterranean region has been reported for other trees (*Laurus*
23 *nobilis*, Rodríguez-Sánchez *et al.*, 2009; *Olea europaea*, Besnard *et al.*, 2007; *Quercus*
24 *suber*, Lumaret *et al.*, 2002), herbaceous species (*Arabidopsis thaliana*, François *et al.*,
25 2008) and coastal plants (*Carex extensa*, Escudero *et al.*, 2010), and has been
26 interpreted as a result of an east-west isolation during glaciations of the Quaternary
27 (e.g., François *et al.* 2008, Escudero *et al.* 2010). Our results, however, suggest that
28 interglacials could have played a key role in maintaining genetic divergence between
29 both groups, as we discuss in the next section.

30

31 *Past and present impact of environmental factors on genetic structure*

32 Our analyses support the hypothesis that both geography and climate have played a
33 significant role in shaping genetic structure of English yew. The divergence between
34 *Western* and *Eastern* clusters can be explained by their persistence in spatially isolated

1 refugia during glacial periods. However, species distribution models (Fig. 5) revealed
2 an almost non-overlapping distribution of both groups linked to distinct climatic
3 regimes, particularly during interglacials, which may have reinforced the divergence of
4 the two lineages through differential adaptation to their respective environments. This
5 was in accordance to the results of partial Mantel tests and MMRRs, showing
6 significant positive correlations for the present interglacial between genetic distance and
7 temperature variables, both when considering the whole species range or the *Western*
8 and *Eastern* samples separately (Table 2). Similar correlations were also found for the
9 last interglacial, with temperature variables remaining as significant predictors of
10 genetic distance after accounting for geography at the species level (Table 3). During
11 the last glacial maximum, however, we did not find any significant positive association
12 between climate and present-day patterns of genetic differentiation (Table 3).

13 Contrary to previous ecological studies highlighting the importance of water
14 availability on *T. baccata* demographic processes, such as regeneration success (Sanz *et*
15 *al.*, 2009) or population sex ratio (Iszkuł *et al.*, 2009), our results did not reveal a direct
16 effect of rainfall variables (PC2) on genetic divergence, but rather pointed to a major
17 effect of the temperature. The importance of temperature as a selective agent has been
18 well documented in several tree species, usually linked to altitudinal, latitudinal or
19 longitudinal clines (e.g. Jump *et al.*, 2006; Grivet *et al.*, 2011; Prunier *et al.*, 2013).
20 Even though the IBA patterns detected in this study do not imply causality and selection
21 cannot be explicitly tested with our current data, the importance of temperature as a
22 selective agent on English yew is supported by common garden observations, where
23 significant regional differences associated with temperature clines are found in growth
24 and phenology (own unpublished data). Moreover, in a study comparable in scale to the
25 present work (92 populations), we found a significant association between sex-ratio and
26 temperature, but western (Western Mediterranean and British Isles) and eastern (Central
27 and Northern Europe) populations were clearly clustered into two distinct groups (see
28 Fig. S8, after Berganzo, 2009), suggesting the existence of two evolutionary lineages
29 adapted to contrasted temperature ranges. This gives additional support to the role of
30 climate-driven adaptation in the divergence of *Eastern* and *Western* groups after initial
31 isolation in allopatric refugia.

32 Several studies have reported the joint influence of isolation by distance and
33 environmental adaptation to promote genetic divergence of plant populations (Lee &
34 Mitchell-Olds, 2011; Temunović *et al.*, 2012; Mosca *et al.*, 2013). For example, both

1 geological and climatic changes during the Pliocene and Pleistocene has been proposed
2 to explain the divergence of lineages of some conifers of the Qinghai-Tibet Plateau,
3 such as *Taxus wallichiana* (Liu *et al.*, 2013) of *Picea likiangensis* (Li *et al.*, 2013).
4 Nevertheless, none of them have reported evidence of a differential contribution of
5 warm and cold periods of the Quaternary in generating genetic divergence of
6 populations or groups through geographic isolation and/or climatic adaptation. Our
7 results suggest that environmental factors during warm interglacials could have been
8 crucial in shaping genetic variation of English yew. The correlation of LIG climate with
9 present genetic variation also supports that the effects of past climate on genetic
10 variation can persist for many generations, as already reported for other long-lived trees
11 (Ortego *et al.*, 2012; Gugger *et al.*, 2023). However, unravelling the exact contribution
12 of different interglacials (PRE, LIG) on environmentally-driven isolation is challenging,
13 mainly because of the absence of an extensive fossil record. Although we cannot discard
14 temporally varying selection, there is some evidence suggesting that adaptive processes
15 would most likely have occurred during the last interglacial. Palaeoecological records
16 indicate that English yew was much more abundant than today during interglacials
17 preceding the last glaciation (e.g., Turner, 2000; de Beaulieu *et al.*, 2001; Koutsodendris
18 *et al.*, 2010). After the Eemian (~115,000-130,000 yrs BP), *Taxus* is generally scarce in
19 most of the European pollen records, suggesting a strong and continuous decline in its
20 distribution. Molecular data also support strong reductions in effective population size
21 starting between 100,000-300,000 yrs BP, and continuing up to the present in the
22 Iberian Peninsula (Burgarella *et al.*, 2012). Since large effective population sizes are
23 expected to favor selection processes in relation to drift (Kimura *et al.*, 1963;
24 Charlesworth, 2009), environment-driven adaptation seem to be more likely in the past,
25 when larger effective population sizes of *T. bacata* would have enhanced the efficiency
26 of selection.

27 In conclusion, our results provide a distinct perspective for the climatic impact
28 of Quaternary glaciations, suggesting that, despite being substantially shorter, selective
29 pressures during interglacials could have had additional impacts on population genetic
30 divergence to those of (extensively reported) geographical isolation during glacial
31 periods. This opens new lines of research to explore the effect of Quaternary climatic
32 factors on the present-day patterns of genetic diversity in other long-lived organisms.

33

1 **Acknowledgements**

2 We acknowledge L. Akzell, G. Bacchetta, D. Ballian, J. Bodziarczyk, “Bany-Al-Bahar
3 Association”, R. Brus, R. Crampton, L. Curtu, I.V. Delehan, X. Domene, A. El Boulli,
4 A. Gailis, J. Gamisans, J. Gračan, P.C. Grant, D. Grivet, A. Harfouche, M. Heuertz, T.
5 Hills, E. Imbert, G. Iszkuło, J. Kleinschmit, R. Klumpp, M. Konnert, E. Križová, T.
6 Maaten, J. Mánek, M. Mardi, P. Mertens, T. Myking, M. Pakalne, M. Pridnya, I.
7 Olivieri, B. Revuelta, J.A. Rosselló, G. Samuelsson, N. Shakarishvili, M. Sułkowska, E.
8 Tessier du Cros, P.A. Thomas, U. Tröber, I. Tvauri, K. Ujházy, M. Valbuena-Carabaña,
9 L. Vaško, S. de Vries, N. Wahid, M. Zabal-Aguirre, V. Zatloukal and P. Zhelev for field
10 assistance or providing yew samples. We also thank Michele Bozzano for draft
11 shapefiles of yew distribution. This work was supported by grants CGL2007-
12 63107/BOS, CGL2011-30182-C02-02, CSD2008-00040, 2009SGR608,
13 VEGA1/3262/06, VEGA1/0745/09 and RBAP10A2T4. Part of the dataset presented
14 here was included in I. Romšáková’s PhD thesis.

15

1 **References**

2 **Allen JRM, Watts WA, McGee E, Huntley B. 2002.** Holocene environmental
3 variability – the record from Lago Grande di Monticchio, Italy. *Quaternary
4 International* **88:** 69-80.

5 **Austerlitz F, Mariette S, Machon N, Gouyon P-H, Godelle B. 2000.** Effects of
6 colonization processes on genetic diversity: differences between annual plants and
7 tree species. *Genetics* **154:** 1309-1321.

8 **de Beaulieu JL, Andrieu-Ponel V, Reille M, Grüger E, Tzedakis C, Svobodova H.
9 2001.** An attempt at correlation between the Velay pollen sequence and the Middle
10 Pleistocene stratigraphy from central Europe. *Quaternary Science Reviews* **20:**
11 1593-1602.

12 **Beaumont MA. 2010.** Approximate Bayesian Computation in evolution and ecology.
13 *Annual Review of Ecology, Evolution, and Systematics* **41:** 379-406.

14 **Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. 2001.** GENETIX 4.04,
15 logiciel sous Windows™ pour la génétique des populations. Laboratoire Génome,
16 Populations, Interactions, CNRS UMR 5000, Université de Montpellier II,
17 Montpellier, France.

18 **Berganzo E. 2009.** *Gender variation in Taxus baccata: the combined effects of
19 stochasticity and sex-linked climate sensitivity.* MSc Thesis, Autonomous
20 University of Barcelona, Barcelona, Spain.

21 **Besnard G, Rubio de Casas R, Vargas P. 2007.** Plastid and nuclear DNA
22 polymorphism reveals historical processes of isolation and reticulation in the olive
23 tree complex (*Olea europaea*). *Journal of Biogeography* **34:** 736-752.

24 **Burgarella C, Navascués M, Zabal-Aguirre M, Berganzo E, Riba M, Mayol M,
25 Vendramin GG, González-Martínez SC. 2012.** Recent population decline and
26 selection shape diversity of taxol-related genes. *Molecular Ecology* **21:** 3006-3021.

27 **Carrión JS. 2002.** Patterns and processes of Late Quaternary environmental change in
28 a montane region of southwestern Europe. *Quaternary Science Reviews* **21:** 2047-
29 2066.

30 **Carrión JS, Yll EI, Walker MJ, Legaz AJ, Chain C, López A. 2003.** Glacial refugia
31 of temperate, Mediterranean and Ibero-North African flora in south-eastern Spain:
32 new evidence from cave pollen at two Neanderthal man sites. *Global Ecology &
33 Biogeography* **12:** 119-129.

1 **Chakraborty R, Jin L. 1993.** A unified approach to study hypervariable
2 polymorphisms: statistical considerations of determining relatedness and population
3 distances. In: Pena SDJ, Chakraborty R, Epplen JT, Freys AJ, eds. *DNA*
4 *fingerprinting: state of the science*. Birkhauser, Basel. 153-175.

5 **Chapuis MP, Estoup A. 2007.** Microsatellite null alleles and estimation of population
6 differentiation. *Molecular Biology and Evolution* **24**: 621-631.

7 **Charlesworth B. 2009.** Effective population size and patterns of molecular evolution
8 and variation. *Nature Reviews Genetics* **10**: 195-205.

9 **Chikhi L, Sousa VC, Luisi P, Goossens B, Beaumont MA. 2010.** The confounding
10 effects of population structure, genetic diversity and the sampling scheme on the
11 detection and quantification of population size changes. *Genetics* **186**: 983-995.

12 **Chybicki IJ, Oleksa A, Burczyk J. 2011.** Increased inbreeding and strong kinship
13 structure in *Taxus baccata* estimated from both AFLP and SSR data. *Heredity* **107**:
14 589-600.

15 **Cornuet JM, Ravigné V, Estoup A. 2010.** Inference on population history and model
16 checking using DNA sequence and microsatellite data with the software DIYABC
17 (v1.0). *BMC Bioinformatics* **11**: 401.

18 **Dellaporta SL, Wood J, Hicks JB. 1983.** A plant DNA minipreparation: Version II.
19 *Plant Molecular Biology Reporter* **1**: 19-21.

20 **Dubreuil M, Riba M, González-Martínez SC, Vendramin GG, Sebastiani F, Mayol
21 M. 2010.** Genetic effects of chronic habitat fragmentation revisited: strong genetic
22 structure in a temperate tree, *Taxus baccata* (Taxaceae), with great dispersal
23 capability. *American Journal of Botany* **97**: 303-310.

24 **Dubreuil M, Sebastiani F, Mayol M, González-Martínez SC, Riba M, Vendramin
25 GG. 2008.** Isolation and characterization of polymorphic nuclear microsatellite loci
26 in *Taxus baccata* L. *Conservation Genetics* **9**: 1665-1668.

27 **Escudero M, Vargas P, Arens P, Ouborg NJ, Luceño M. 2010.** The east-west-north
28 colonization history of the Mediterranean and Europe by the coastal plant *Carex*
29 *extensa* (Cyperaceae). *Molecular Ecology* **19**: 352-370.

30 **Evanno G, Regnaut S, Goudet J. 2005.** Detecting the number of clusters of
31 individuals using the software STRUCTURE: a simulation study. *Molecular
32 Ecology* **14**: 2611-2620.

1 **Excoffier L, Laval G, Schneider S. 2005.** Arlequin ver. 3.0: An integrated software
2 package for population genetics data analysis. *Evolutionary Bioinformatics Online*
3 **1:** 47-50.

4 **Excoffier L, Smouse PE, Quattro JM. 1992.** Analysis of molecular variance inferred
5 from metric distances among DNA haplotypes: application to human mitochondrial
6 DNA restriction data. *Genetics* **131:** 479-491.

7 **Falush D, Stephens M, Pritchard JK. 2003.** Inference of population structure using
8 multilocus genotype data: linked loci and correlated allele frequencies. *Genetics*
9 **164:** 1567-1587.

10 **François O, Ancelet S, Guillot G. 2006.** Bayesian clustering using hidden Markov
11 random fields in spatial population genetics. *Genetics* **174:** 805-816.

12 **François O, Blum MGB, Jakobsson M, Rosenberg NA. 2008.** Demographic history
13 of European populations of *Arabidopsis thaliana*. *PLoS Genetics* **4:** e1000075.

14 **François O, Durand E. 2010.** Spatially explicit Bayesian clustering models in
15 population genetics. *Molecular Ecology Resources* **10:** 773-784.

16 **González-Martínez SC, Dubreuil M, Riba M, Vendramin GG, Sebastiani F, Mayol
17 M. 2010.** Spatial genetic structure of *Taxus baccata* L. in the western
18 Mediterranean Basin: Past and present limits to gene movement over a broad
19 geographic scale. *Molecular Phylogenetics and Evolution* **55:** 805-815.

20 **Goudet J. 2001.** FSTAT, a program to estimate and test gene diversities and fixation
21 indices (version 2.9.3). Available from:
22 <http://www2.unil.ch/popgen/softwares/fstat.html>. Updated from Goudet (1995).

23 **Grivet D, Sebastiani F, Alía R, Bataillon Th, Torre S, Zabal-Aguirre M,
24 Vendramin GG, González-Martínez SC. 2011.** Molecular footprints of local
25 adaptation in two Mediterranean conifers. *Molecular Biology and Evolution* **28:**
26 101-116.

27 **Gugger PF, Ikegami M, Sork VL. 2013.** Influence of late Quaternary climate change
28 on present patterns of genetic variation in valley oak, *Quercus lobata* Née.
29 *Molecular Ecology* **22:** 3598-3612.

30 **Hampe A, Petit RJ. 2005.** Conserving biodiversity under climate change: the rear edge
31 matters. *Ecology Letters* **8:** 461-467.

32 **Hao DC, Xiao PG, Huang BL, Ge GB, Yang L. 2008.** Interspecific relationships and
33 origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses

1 of chloroplast and nuclear DNA sequences. *Plant Systematics and Evolution* **276**:
2 89-104.

3 **Hewitt GM. 2004.** Genetic consequences of climatic oscillations in the Quaternary.
4 *Philosophical Transactions of the Royal Society B-Biological Sciences* **359**: 183-
5 195.

6 **Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005.** Very high resolution
7 interpolated climate surfaces for global land areas. *International Journal of*
8 *Climatology* **25**: 1965-1978.

9 **Iszkul G, Jasińska AK, Giertych MJ, Boratyński A. 2009.** Do secondary sexual
10 dimorphism and female intolerance to drought influence the sex ratio and extinction
11 risk of *Taxus baccata*? *Plant Ecology* **200**: 229-240.

12 **Jost L. 2008.** G_{ST} and its relatives do not measure differentiation. *Molecular Ecology*
13 **17**: 4015-4026.

14 **Jump AS, Hunt JM, Martínez-Izquierdo JA, Peñuelas J. 2006.** Natural selection and
15 climate change: temperature-linked spatial and temporal trends in gene frequency in
16 *Fagus sylvatica*. *Molecular Ecology* **15**: 3469-3480.

17 **Kimura M, Maruyama T, Crow JF. 1963.** The mutation load in small populations.
18 *Genetics* **48**: 1303-1312.

19 **Koutsodendris A, Müller UC, Pross J, Brauer A, Kotthoff U, Lotter AF. 2010.**
20 Vegetation dynamics and climate variability during the Holsteinian interglacial
21 based on a pollen record from Dethlingen (northern Germany). *Quaternary Science*
22 *Reviews* **29**: 3298-3307.

23 **Kunzmann L, Mai DH. 2005.** Die Koniferen der Mastixioideen-Flora von Wiesa bei
24 Kamenz (Sachsen, Miozän) unter besonderer Berücksichtigung der Nadelblätter.
25 *Palaeontographica B* **272**: 67-135.

26 **Lee C-R, Mitchell-Olds T. 2011.** Quantifying effects of environmental and
27 geographical factors on patterns of genetic differentiation. *Molecular Ecology* **20**:
28 4631-4642.

29 **Li L, Abbott R, Liu B, Sun, Li L, Zou J, Wang X, Miehe G, Liu J. 2013.** Pliocene
30 intraspecific divergence and Plio-Pleistocene range expansions within *Picea*
31 *likiangensis* (Lijiang spruce), a dominant forest tree of the Qinghai-Tibet Plateau.
32 *Molecular Ecology* **22**: 5237-5255.

1 **Linares JC.** 2011. Biogeography and evolution of *Abies* (Pinaceae) in the
2 Mediterranean Basin: the roles of long-term climatic change and glacial refugia.
3 *Journal of Biogeography* **38**: 619-630.

4 **Liu J, Möller M, Provan J, Gao L-M, Chandra Poudel R, Li D-Z.** 2013. Geological
5 and ecological factors drive cryptic speciation of yews in a biodiversity hotspot.
6 *New Phytologist* **199**: 1093-1108.

7 **Lumaret R, Mir C, Michaud H, Raynal V.** 2002. Phylogeographical variation of
8 chloroplast DNA in holm oak (*Quercus ilex* L.). *Molecular ecology* **11**: 2327-2336.

9 **Mamakova K.** 1989. Late Middle Polish glaciation, Eemian and Early Vistulian
10 vegetation at Imbramowice near Wroclaw and the pollen stratigraphy of this part of
11 the Pleistocene in Poland. *Acta Palaeobotanica* **29**: 11-176.

12 **Mansion G, Rosenbaum G, Schoenenberger N, Bacchetta G, Rosselló JA, Conti E.**
13 2008. Phylogenetic analysis informed by geological history supports multiple,
14 sequential invasions of the Mediterranean Basin by the angiosperm family Araceae.
15 *Systematic Biology* **57**: 269-285.

16 **Mosca M, González-Martínez SC, Neale DB.** 2014. Environmental versus
17 geographical determinants of genetic structure in two subalpine conifers. *New
18 Phytologist* **201**: 180-192.

19 **Müller UC, Pross J, Bibus E.** 2003. Vegetation response to rapid climate change in
20 Central Europe during the past 140,000 yr based on evidence from the Füramos
21 pollen record. *Quaternary Research* **59**: 235-245.

22 **Nei M.** 1987. *Molecular Evolutionary Genetics*. New York, USA: Columbia University
23 Press.

24 **Nosil P, Egan SP, Funk DJ.** 2008. Heterogeneous genomic differentiation between
25 walking-stick ecotypes: “isolation by adaptation” and multiple roles for divergent
26 selection. *Evolution* **62**: 316-336.

27 **Nosil P, Vines TH, Funk DJ.** 2005. Perspective: reproductive isolation caused by
28 natural selection against immigrants from divergent habitats. *Evolution* **59**: 705-
29 719.

30 **Ortego J, Riordan EC, Gugger PF, Sork VL.** 2012. Influence of environmental
31 heterogeneity on genetic diversity and structure in an endemic southern Californian
32 oak. *Molecular Ecology* **21**: 3210-3223.

1 **Peakall R, Smouse PE.** 2012. GenAIEx 6.5: genetic analysis in Excel. Population
2 genetic software for teaching and research – an update. *Bioinformatics* **28**: 2537-
3 2539.

4 **Petit RJ, Hampe A, Cheddadi R.** 2005. Climate changes and tree phylogeography in
5 the Mediterranean. *Taxon* **54**: 877-885.

6 **Popov SV, Shcherba IG, Ilyina LB, Nevesskaya LA, Paramonova NP,**
7 **Khondkarian SO, Magyar I.** 2006. Late Miocene to Pliocene palaeogeography of
8 the Paratethys and its relation to the Mediterranean. *Palaeogeography, Palaeoclimatology, Palaeoecology* **238**: 91-106.

10 **Pritchard JK, Stephens M, Donnelly P.** 2000. Inference of population structure using
11 multilocus genotype data. *Genetics* **155**: 945-959.

12 **Pritchard JK, Wen W.** 2004. Documentation for STRUCTURE software version 2.
13 Department of Human Genetics. University of Chicago, Chicago, IL. Available
14 from: <http://pritch.bsd.uchicago.edu>.

15 **Prunier J, Pelgas B, Gagnon F, Desponts M, Isabel N, Beaulieu J, Bousquet J.**
16 2013. The genomic architecture and association genetics of adaptive characters
17 using a candidate SNP approach in boreal black spruce. *BMC Genomics* **14**: 368.

18 **R Core Team.** 2013. R: A language and environment for statistical computing. R
19 Foundation for Statistical Computing, Vienna, Austria. URL [http://www.R-
20 project.org/](http://www.R-project.org/).

21 **Rannala B, Mountain JL.** 1997. Detecting immigration by using multilocus
22 genotypes. *Proceedings of the National Academy of Sciences USA* **94**: 9197-9201.

23 **Rodríguez-Sánchez F, Guzmán B, Valido A, Vargas P, Arroyo J.** 2009. Late
24 Neogene history of the laurel tree (*Laurus* L., Lauraceae) based on
25 phylogeographical analyses of Mediterranean and Macaronesian populations.
26 *Journal of Biogeography* **36**: 1270-1281.

27 **Rousset F.** 2008. GENEPOP'007: a complete re-implementation of the GENEPOP
28 software for Windows and Linux. *Molecular Ecology Resources* **8**: 103-106.

29 **Sanz R, Pulido F, Nogués-Bravo D.** 2009. Predicting mechanisms across scales:
30 amplified effects of abiotic constraints on the recruitment of yew *Taxus baccata*.
31 *Ecography* **32**: 993-1000.

32 **Savolainen O, Pyhäjärvi T, Knürr T.** 2007. Gene flow and local adaptation in trees.
33 *Annual Review of Ecology, Evolution, and Systematics* **38**: 595-619.

1 **Schirone B, Caetano-Ferreira R, Vessella F, Schirone A, Piredda R, Simeone MC.**
2 **2010.** *Taxus baccata* in the Azores: a relict form at risk of imminent extinction.
3 *Biodiversity and Conservation* **19:** 1547-1565.

4 **Shah A, Li D-Z, Möller M, Gao L-M, Hollingsworth ML, Gibby M. 2008.**
5 Delimitation of *Taxus fuana* Nan Li & R.R. Mill (Taxaceae) based on
6 morphological and molecular data. *Taxon* **57:** 211-222.

7 **Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder**
8 **CT, Schilling EE, Small RL. 2005.** The tortoise and the hare II: relative utility of
9 21 noncoding chloroplast DNA sequences for phylogenetic analysis. *American*
10 *Journal of Botany* **92:** 142-166.

11 **Stewart JR, Lister AM. 2001.** Cryptic northern refugia and the origins of the modern
12 biota. *Trends in Ecology & Evolution* **16:** 608-613.

13 **Temunović M, Franjić J, Satović Z, Grgurev M, Frascaria-Lacoste N, Fernández-**
14 **Manjarrés JF. 2012.** Environmental heterogeneity explains the genetic structure of
15 Continental and Mediterranean populations of *Fraxinus angustifolia* Vahl. *PLoS*
16 *One* **7:** e42764.

17 **Thomas PA, Polwart A. 2003.** Biological flora of the British Isles. *Journal of Ecology*
18 **91:** 489-524.

19 **Thompson JD. 2005.** *Plant evolution in the Mediterranean.* Oxford, UK: Oxford
20 University Press.

21 **Turner C. 2000.** The Eemian interglacial in the North European plain and adjacent
22 areas. *Netherlands Journal of Geosciences* **79:** 217-231.

23 **Tzedakis PC, Emerson BC, Hewitt GM. 2013.** Cryptic or mystic? Glacial tree refugia
24 in northern Europe. *Trends in Ecology & Evolution* **28:** 696-704.

25 **Wang IJ. 2013.** Examining the full effects of landscape heterogeneity on spatial genetic
26 variation: a multiple matrix regression approach for quantifying geographic and
27 ecological isolation. *Evolution* **67:** 3403-3411.

28 **Willis KJ, van Andel TH. 2004.** Trees or no trees? The environments of central and
29 eastern Europe during the Last Glaciation. *Quaternary Science Reviews* **23:** 2369-
30 2387.

31 **Willyard A, Syring J, Gernandt DS, Liston A, Cronn R. 2007.** Fossil calibration of
32 molecular divergence infers a moderate mutation rate and recent radiations for
33 *Pinus*. *Molecular Biology and Evolution* **24:** 90-101.

34 **Wright S. 1931.** Evolution in Mendelian populations. *Genetics* **16:** 97-159.

1
2
3
4

1 **Supporting Information**

2

3 **Fig. S1** Geographical location of the twelve different sets of populations used for ABC
4 simulations.

5

6 **Fig. S2** Pre-evaluation of scenarios and prior distributions.

7

8 **Fig. S3** Geographical distribution of the chloroplast haplotypes detected in the *trnS*–
9 *trnQ* and *trnL*–*trnF* intergenic spacers.

10

11 **Fig. S4** Summary of the clustering results using TESS for $K=2$, and STRUCTURE for
12 $K=3$ and $K=4$.

13

14 **Fig. S5** Prior and posterior distributions in the ABC analysis.

15

16 **Fig. S6** Principal Component Analysis (PCA) plot of environmental variables for the
17 present time described in Table S4.

18

19 **Fig. S7** MAXENT predicted suitability for *Taxus baccata* at the whole range for present
20 (PRE) and past (LGM, LIG) climatic conditions.

21

22 **Fig. S8** Relationship between sex-ratio and temperature.

23

24 **Table S1** Location, sample size (N), genetic diversity (A_R , H_E , H_O) and genetic cluster
25 assignment of the studied populations. Retained populations for correlations with past
26 climate are indicated (R).

27

28 **Table S2** Sampled populations and polymorphic sites for the *trnS*–*trnQ* intergenic
29 spacer.

30

31 **Table S3** Sampled populations and polymorphic sites for the *trnL*–*trnF* intergenic
32 spacer.

33

1 **Table S4** Bioclimatic variables and standardized loadings for the two first axes of the
2 PCA analysis (present climate).

3

4 **Table S5** Pairwise F_{ST} values corrected for the possible presence of null alleles using
5 the program FREENA.

6

7 **Table S6** Analysis of molecular variance (AMOVA).

8

9 **Notes S1** Details and results of model checking and confidence in scenario choice.

10

11 **Notes S2** Species distribution models and correlations between genetic distance (F_{ST})
12 and environmental variables obtained using the “BIOCLIM” algorithm implemented in
13 DIVA-GIS v.7.5.

1 **Table 1** Demographic ABC models for *Taxus baccata*.

Simulation	Supported scenario (PP)	I (10^4)	E (10^4)	A (10^4)	W (10^4)	NA (10^5)	ra	t1	t2	t3
<i>Considering two gene pools (Western, Eastern)</i>										
sim1_500	A (>0.9) [0.9663,0.9895]	-	7.87 (4.34-9.81)	0.78 (0.18-4.25)	4.43 (2.1-7.13)	8.13 (2.77-9.83)	0.589 (0.204-0.867)	0.071 (0.016-0.281)	2.110 (0.444-7.950)	-
sim2_500	A (>0.9) [0.9165,0.9681]	-	6.39 (2.74-9.53)	3.09 (0.87-8.19)	4.61 (2.12-7.68)	6.42 (1.28-9.59)	0.431 (0.108-0.789)	0.164 (0.037-0.644)	2.480 (0.516-8.380)	-
sim3_500	A (~0.6) [0.5135,0.7619]	-	6.43 (2.83-9.51)	4.26 (1.33-8.89)	2.92 (1.01-6.90)	3.19 (0.33-8.47)	0.207 (0.032-0.661)	0.195 (0.041-0.907)	1.870 (0.365-7.960)	-
sim4_500	B (~0.6) [0.5213,0.7602]	-	6.65 (2.89-9.64)	3.99 (1.87-6.80)	4.21 (1.77-7.67)	6.92 (2.00-9.72)	-	0.313 (0.079-1.150)	1.870 (0.408-7.660)	-
sim5_500	B (~0.7) [0.6357,0.8293]	-	3.31 (0.96-8.38)	4.71 (1.93-8.60)	4.54 (1.83-8.33)	4.77 (0.84-9.19)	-	0.573 (0.145-2.070)	3.200 (0.736-8.620)	-
sim6_500	A (>0.9) [0.8941,0.9701]	-	6.08 (2.67-9.40)	0.62 (0.14-3.93)	4.15 (1.47-8.36)	0.51 (0.04-3.50)	0.414 (0.070-0.871)	0.062 (0.012-0.316)	0.841 (0.151-5.360)	-
sim7_500	A (>0.9) [0.9515,0.9865]	-	7.25 (3.58-9.67)	0.86 (0.20-4.86)	3.58 (1.09-7.28)	4.34 (0.57-9.02)	0.507 (0.112-0.880)	0.069 (0.015-0.346)	1.800 (0.348-7.560)	-
sim8_500	B (>0.9) [0.8454,0.9581]	-	7.39 (3.65-9.76)	2.60 (1.22-4.58)	6.63 (3.40-9.33)	5.95 (1.42-9.57)	-	0.480 (0.138-1.410)	1.730 (0.385-7.350)	-
sim9_500	A (~0.8) [0.6901,0.8630]	-	5.53 (2.11-9.40)	4.83 (1.61-9.00)	3.71 (1.57-6.60)	7.22 (1.95-9.76)	0.285 (0.064-0.622)	0.288 (0.065-1.060)	1.940 (0.376-7.900)	-
sim10_500	A (>0.9) [0.9301,0.9745]	-	6.72 (3.14-9.63)	3.37 (0.92-8.21)	5.08 (2.38-8.18)	5.78 (0.93-9.48)	0.374 (0.088-0.756)	0.124 (0.026-0.500)	2.270 (0.479-8.160)	-
<i>Considering three gene pools (Western, Eastern, Iran)</i>										
sim1_700	C (>0.9) [0.8746,0.9537]	8.06 (5.04-9.78)	4.30 (1.74-8.45)	3.95 (1.36-8.61)	2.96 (1.33-5.85)	3.86 (0.36-9.35)	0.405 (0.065-0.859)	0.193 (0.044-0.826)	2.690 (0.732-8.270)	8.190 (1.640-20.40)
sim2_700	C (>0.9) [0.8837,0.9585]	7.59 (4.24-9.74)	4.00 (1.69-8.00)	2.96 (0.90-7.77)	3.09 (1.56-5.27)	7.42 (2.50-9.76)	0.529 (0.127-0.880)	0.202 (0.054-0.630)	1.790 (0.586-5.070)	4.030 (1.050-9.150)

2

3 *PP*=posterior probability and [95% confidence intervals]; I=current effective population size of the *Iran* gene pool; E=current effective population size of the
4 *Eastern* gene pool; A=current effective population size of the *Admixed* samples; W=current effective population size of the *Western* gene pool; NA=ancestral
5 effective population size; ra=admixture rate; t1, t2 and t3 are estimated times of the different events depicted in Fig. 2 (in Myr). Values are medians (5 and
6 95% quartiles) of posterior distributions.

1 **Table 2** Partial Mantel (PM) correlation (r) and Multiple Matrix Regression (MMRR)
 2 coefficients (b) between genetic distance (F_{ST}) and environmental variables for the present time
 3 time (PRE, ~1950-2000). Analyses were conducted considering the 195 populations of *Taxus*
 4 *baccata* with $N \geq 8$ (Whole range), and only populations within *Western* (153 sampling sites) and
 5 *Eastern* (64 sampling sites) gene pools.

		PRE		
		MMRR		PM
		$b_{Geo-PRE}$	$b_{Env-PRE}$	$r_{Env-PRE}$
Whole range	$F_{ST} \sim PC1/Geo$	0.305***	0.154***	0.157**
	$F_{ST} \sim PC2/Geo$	0.355***	-0.043ns	-0.046ns
	$F_{ST} \sim BIO1/Geo$	0.328***	0.161***	0.171***
	$F_{ST} \sim BIO6/Geo$	0.289***	0.145***	0.141***
Eastern pool	$F_{ST} \sim PC1/Geo$	0.406***	0.037ns	0.040ns
	$F_{ST} \sim PC2/Geo$	0.457***	-0.143*	-0.148ns
	$F_{ST} \sim BIO4/Geo$	0.325***	0.150*	0.136*
Western pool	$F_{ST} \sim PC1/Geo$	0.098**	0.175***	0.174**
	$F_{ST} \sim PC2/Geo$	0.126**	-0.002ns	-0.002ns
	$F_{ST} \sim BIO1/Geo$	0.108**	0.218***	0.219**
	$F_{ST} \sim BIO6/Geo$	0.096*	0.165***	0.163**

37 Variables accounting for PC1 (BIO1, BIO4, BIO9, BIO10, B11, BIO18) and PC2 (BIO12,
 38 BIO13, BIO16, BIO19) are described in Table S4. BIO1=Annual mean temperature.
 39 BIO4=Temperature seasonality. BIO6=Min temperature of the coldest month.

40 *** $P < 0.001$, ** $P < 0.01$, * $P < 0.05$, ns=not significant.

41 Positive significant tests for both Multiple Matrix Regressions and Partial Mantel tests are in
 42 bold.

43

44

1 **Table 3** Partial Mantel (PM) correlation (r) and Multiple Matrix Regression (MMRR) coefficients (b) between genetic distance (F_{ST}) and environmental variables
 2 for the last glacial maximum (LGM, ~21,000 yrs BP) and the last interglacial (LIG, ~120,000-140,000 yrs BP). The number of *Taxus baccata* populations retained
 3 for the analyses (i.e., with suitability values of MAXENT predicted distributions above the maximum training sensitivity plus specificity threshold) are indicated in
 4 brackets behind each period considered, and are specified in Table S1.
 5
 6

	LGM-MIROC (102)			LGM-CCSM (123)			LIG (94)		
	MMRR		PM	MMRR		PM	MMRR		PM
	$b_{Geo-MIROC}$	$b_{Env-MIROC}$	$r_{Env-MIROC}$	$b_{Geo-CCSM}$	$b_{Env-CCSM}$	$r_{Env-CCSM}$	$b_{Geo-LIG}$	$b_{Env-LIG}$	$r_{Env-LIG}$
$F_{ST} \sim PC1/Geo$	0.166**	-0.088*	-0.086ns	0.317***	-0.128**	-0.132ns	0.343***	0.056*	0.058 ns
$F_{ST} \sim PC2/Geo$	0.130**	0.077ns	0.077ns	0.285***	0.069ns	0.072ns	0.358***	0.015ns	0.016ns
$F_{ST} \sim BIO1/Geo$	0.164**	-0.062ns	-0.057ns	0.315***	-0.096*	-0.098ns	0.357***	0.115*	0.104*
$F_{ST} \sim BIO2/Geo$	0.137**	0.031ns	0.031ns	0.306***	-0.068ns	-0.070ns	0.318***	0.170***	0.177**
$F_{ST} \sim BIO4/Geo$	0.219**	-0.199***	-0.185ns	0.314***	-0.120***	-0.123ns	0.490***	-0.235***	-0.209ns
$F_{ST} \sim BIO6/Geo$	0.142**	-0.005ns	-0.004ns	0.312***	-0.065ns	-0.065ns	0.303***	0.106**	0.096*

7
 8 Variables accounting for PC1 were BIO1, BIO5, BIO6, BIO9, BIO10, B11 for LGM-MIROC, BIO1, BIO2, BIO5, BIO6, BIO8, BIO9, BIO10, B11 for LGM-
 9 CCSM, and BIO1, BIO2, BIO4, BIO6, BIO9, B11, BIO18 for LIG. Variables accounting for PC2 were the same for all periods considered, and the same as for PRE
 10 (BIO12, BIO13, BIO16, BIO19; Table S4). BIO1=Annual mean temperature. BIO2=Mean diurnal range (mean of monthly (max temp - min temp)).
 11 BIO4=Temperature seasonality. BIO6=Min temperature of the coldest month.
 12
 13

14 *** $P < 0.001$, ** $P < 0.01$, * $P < 0.05$, ns=not significant.

15 Positive significant tests for both Multiple Matrix Regressions and Partial Mantel tests are in bold.

16

17

18

19

20

1 **Figure Legends**

2

3 **Fig. 1** Location of the 238 populations of *Taxus baccata* included in this study (red
4 circles: populations with $N \geq 8$, white circles: populations with $N < 8$). The geographical
5 distribution of the species is shown in blue (kindly provided by EUFORGEN, the
6 European Forest Genetic Resources programme, www.euforgen.org). A feminine cone
7 of the species is shown in the inset.

8

9 **Fig. 2** Demographic scenarios used for *Taxus baccata* in the ABC analyses.
10 Considering two gene pools (*Western, Eastern*): A) populations in central Europe, Italy
11 and the Mediterranean islands were originated from “secondary contact” between those
12 from *Eastern* and *Western* origin; B) “colonization” from the Eastern territories to the
13 Mediterranean area. Considering three gene pools (*Western, Eastern, Iran*): C)
14 “colonization” of eastern Europe from *Iran*, separation of European samples into two
15 genetic pools (*Eastern, Western*), and subsequent “secondary contact” of both pools in
16 central Europe, Italy and the Mediterranean islands; D) as in scenario B, “colonization”
17 from the Eastern territories to the Mediterranean area, but considering three groups of
18 populations. NA=ancestral effective population size; t1, t2 and t3=divergence times for the
19 depicted events.

20

21 **Fig. 3** Best number of genetic clusters (K) obtained for *Taxus baccata* using
22 STRUCTURE ($K=2$) and TESS ($K=3$). The eight populations with significant linkage
23 among loci are excluded. Pie charts show averaged values of the different runs for the
24 proportion of membership to each genetic cluster.

25

26 **Fig. 4** Distribution of genetic diversity (A_R : allelic richness; H_E : unbiased expected
27 heterozygosity) in *Taxus baccata*. Values for A_R and H_E are indicated by the circle size
28 ($\bigcirc > \bigcirc > \bigcirc$) and the colour gradient (red>orange>yellow>green), respectively.

29

30 **Fig. 5** MAXENT predicted suitability for *Western* and *Eastern* gene pools of *Taxus*
31 *baccata* during three time periods: LIG=Last interglacial (~120,000-140,000 yrs BP),
32 LGM-CCSM and LGM-MIROC=Last Glacial Maximum (~21,000 yrs BP),
33 PRE=present conditions (~1950-2000). Darker colours indicate higher probabilities of
34 suitable climatic conditions. Not suitable areas and those with logistic output values

- 1 below the maximum training sensitivity plus specificity (MTSS) threshold are indicated
- 2 in grey.