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Summary paragraph  34 

Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic 35 

respiration, and production of non-structural compounds for multiple purposes
1
. The fraction 36 

of photosynthetic production used for biomass production, the biomass production 37 

efficiency
2
, is a key determinant of the conversion of solar energy to biomass. In forest 38 

ecosystems, biomass production efficiency was suggested to be related to site fertility
2
. Here 39 

we present a global database of biomass production efficiency from 131 sites compiled from 40 

individual studies using harvest, biometric, eddy covariance, or process-based model 41 

estimates of production - dominated, however, by data from Europe and North America.  We 42 

show that instead of site fertility, ecosystem management is the key factor that controls 43 

biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, 44 

grasslands, tundra, boreal peatlands and marshes biomass production efficiency is 45 

independent of vegetation, environmental and climatic drivers. This similarity of biomass 46 

production efficiency across natural ecosystem types suggests that the ratio of biomass 47 

production to gross primary productivity is constant across natural ecosystems. We suggest 48 

that plant adaptation results in similar growth efficiency in high and low fertility natural 49 

systems, but that nutrient influxes under managed conditions favour a shift to carbon 50 

investment from the belowground flux of non-structural compounds to aboveground biomass.  51 

 52 

 53 

Main text  54 

The fraction of gross primary production (GPP) used for biomass production (BP) of 55 

terrestrial ecosystems has recently been coined biomass production efficiency (BPE)
2
. BPE is 56 

typically used as a proxy for the carbon-use efficiency or NPP-to-GPP ratio, where NPP refers 57 

to net primary production i.e. BP plus the production of non-structural organic compounds
1
. 58 
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Current knowledge about BPE is mainly derived from research on forests. Earlier work 59 

reported BPE to be conservative across forests
3
, whereas more recent syntheses suggest high 60 

inter-site variability
2,4

. The variation in BPE was first attributed to vegetation properties 61 

(forest age) and climate variables
4
. More recently, it was shown that forest BPE in a range of 62 

natural and managed sites was correlated with site fertility, with management as a secondary 63 

BPE driver
2
.  64 

Fertility and management are strongly correlated as management enhances 65 

productivity by increasing plant-available resources, including nutrients. For instance, 66 

fertilization of grasslands directly increases the ecosystem nutrient stock, whereas forest 67 

thinning indirectly increases nutrient availability at the tree level by reducing plant-plant 68 

competition. In addition, fertile sites are more likely than infertile sites to be managed. 69 

Atmospheric deposition of nutrients, especially nitrogen (N), might further complicate the 70 

relationship between BPE, fertility and management. The influence of site fertility and 71 

management on BPE has not been disentangled in previous studies, and the impact of N 72 

deposition on BPE is largely overlooked. Here, we postulate that the impact of management 73 

on BPE is underestimated. In addition to a direct effect on BPE through selection of the most 74 

efficient plants
2,5

, management can indirectly affect BPE through effects on site fertility and 75 

related belowground dynamics
2
. Understanding of these dynamics not only will clarify the 76 

controls of BPE but also elucidate the human impacts on BPE.  77 

 We compiled a new BPE dataset comprising 131 sites, including forests, grasslands, 78 

croplands, wetlands (temperate marshes and boreal peatlands) and tundras (Methods). All 79 

major climatic zones (from polar to tropical) were represented but managed sites were located 80 

almost entirely in the temperate and boreal zone of North America and Europe 81 

(Supplementary Fig. 1, Supplementary Table 1). For each site, our dataset also included 82 

vegetation characteristics, environmental data and information on anthropogenic impacts such 83 
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as management and atmospheric N deposition (Supplementary Table 2). With regard to 84 

management, we adopted a binary classification (Methods), distinguishing natural sites 85 

(pristine sites or sites with a low human impact that largely reproduced naturally occurring 86 

processes, e.g. grasslands with low grazing) from managed sites (sites dominated by human 87 

activity with impacts that would not occur in nature, e.g. newly established and fertilized 88 

grasslands). The utility of this classification was tested against more complex classifications 89 

(Methods), whereas its reproducibility was assured by the definition of several sub-categories 90 

within the ‘managed’ and ‘natural’ classes (Supplementary Table 3). The BPE dataset, 91 

comprising the ancillary site information, is available in Supplementary Data. Our data 92 

analysis consisted of (i) multinomial ordered logistic regressions to examine the relationship 93 

between fertility and management (code available in Supplementary Information) and (ii) 94 

linear (univariate analysis, multiple linear regressions) and non-linear approaches (Random 95 

Forest) to extract emerging relationships between BPE and its potential predictors (Methods).  96 

The analysis proceeded in five steps, using different sub-sets of our database. (1) We 97 

analyzed all natural sites to test whether BPE is driven by natural variation in site fertility. The 98 

results showed that this hypothesis was not true. First, BPE did not differ significantly 99 

(p=0.83) among natural ecosystem types of contrasting fertility status i.e. tundra and boreal 100 

peatlands (nutrient-poor), temperate marshes (nutrient-rich) and forests and grasslands (with 101 

variable but overall intermediate fertility status), showing an average BPE (and s.e.m) of 102 

0.46±0.01 (Figure 1; Supplementary Table 4). Second, the impact of fertility on the BPE of 103 

natural ecosystems remained non-significant when accounting for variation in fertility among 104 

forests (p=0.24, n=43), grasslands (p=0.72, n=16) or all natural sites lumped together (p=0.23, 105 

n=75; Supplementary Fig. 2). (2) We analyzed the relationship between fertility and 106 

management in natural and managed forests to verify their correlation and disentangle (i) the 107 

impact of management on fertility from (ii) the fertility status unrelated to management. This 108 
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analysis confirmed that management was a significant explanatory variable for site fertility 109 

(likelihood ratio test of models with and without management as covariate: chi-square=17.33, 110 

p=0.00017), whereas the relationship between N deposition and fertility was weak (likelihood 111 

ratio test: chi-square=4.80, p=0.091). This led us to model fertility as a function of 112 

management (taking into account that the fertility status was the result of both the impact of 113 

management operations on soil nutrient availability and the management choice of which 114 

land, e.g. high or low fertility, to manage) and to obtain model residuals for each site 115 

representing the ‘fertility status not explained by management’ and defined hereafter as 116 

‘unexplained natural fertility’ (Methods). (3) Once the effect of fertility and management were 117 

disentangled, we evaluated their relative importance as controllers of BPE and compared them 118 

to other possible BPE drivers (e.g. vegetation and environmental characteristics, N 119 

deposition) within the forest dataset. This analysis revealed that management was the key 120 

determinant of the differences in BPE among forests, N deposition was the second most 121 

important driver, and the unexplained natural fertility was insignificant (Supplementary Table 122 

5, Supplementary Fig. 3). The analysis also showed that stand age had a significant (negative) 123 

impact on BPE which however became negligible when compared to the effect of 124 

management and N deposition (Supplementary Table 6). (4) We compared the BPE of key 125 

natural and managed ecosystem types (grasslands, forests and croplands) that typically share 126 

similar environmental characteristics and are regularly converted into one another, and 127 

observed that the BPE of managed sites was substantially greater than the BPE of natural sites 128 

(Figure 1, Figure 2; Supplementary Table 7). (5) Last, we studied the impact of the potential 129 

drivers of BPE on all natural ecosystems and found that BPE of natural unmanaged sites was 130 

independent not only of the observed site fertility (see above point 1) but also of N deposition 131 

and largely independent of all the vegetation and environmental drivers examined 132 

(Supplementary Table 8, Supplementary Fig. 3). Climate showed an influence on BPE but this 133 
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effect was weak (0.05<p<0.10) and not consistent across statistical methods (Supplementary 134 

Table 8, Supplementary Fig. 3).  135 

The observed positive impact of management on BPE does not come as a surprise in 136 

itself. Rather, the novelty of this study is the finding that management is by far the ‘key’ 137 

driver of BPE and more important than any other vegetation or environmental factors. This 138 

observation calls for a refinement of the hypothesis, which previously postulated that greater 139 

BPE in more fertile sites is related to reduced C allocation to symbiotic fungi, as plants in 140 

nutrient-rich conditions invest less in processes facilitating nutrient uptake
2
. Our revised 141 

hypothesis relies on the fact that adaptation processes in natural ecosystems
6
 could allow 142 

plants in both nutrient-poor and nutrient-rich environments to have similar growth efficiency. 143 

However, belowground C transfers to symbionts are not static
7
 and the greater nutrient 144 

availability caused by management could make root symbiotic associations less important for 145 

plants and thus reduce the flux of C from plants to symbionts. This pattern would favor C 146 

investment in biomass production, particularly aboveground, since light may become the most 147 

limiting resource. This hypothesis is supported by (i) the allocation pattern available for a 148 

subset of our forests showing that management substantially increased allocation to 149 

aboveground wood BP (+13%, p<0.001) and marginally decreased allocation to fine root BP 150 

(-4%, p=0.083) (Table 1) and by (ii) forest C allocation meta-analyses
8
 which reported 151 

increased C partitioning to aboveground BP and decreased partitioning to belowground C flux 152 

in response to fertilization. Declines in mycorrhizal fungi following fertilization are well 153 

known
9
. Similarly, thinning can negatively affect the standing crop of mycorrhizal fungi

10
 and 154 

ectomycorrhizal metabolic activity
11,12

, which is consistent with our new interpretation. In 155 

addition, the larger BPE in managed ecosystems might also reflect decreased allocation of 156 

GPP to autotrophic respiration (Ra), thus lower Ra-to-GPP ratio
2
. However, as previous 157 

research does not support this hypothesis
3,8

 and the variability of the Ra-to-GPP ratio might be 158 
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small, ad-hoc experiments combining the assessment of C transfer to mycorrhizal fungi and 159 

ecosystem Ra will be needed to ascertain the importance of these dynamics in managed 160 

ecosystems. Similarly, further research should explore (i) if the hypothesized reduction in C 161 

allocation to mycorrhizae (and exudates) might have a long-term negative feedback on the site 162 

nutrient availability where management does not include external input of nutrients and (ii) 163 

the impact of ecosystem degradation on BPE, especially in tropical areas that are often 164 

overexploited.  165 

Nitrogen deposition also appeared to have a positive effect on BPE. Like management, 166 

elevated N deposition represents an artificial change in natural fertility and a perturbation of 167 

the nutrient cycle. The apparently contrasting evidence that N deposition does not affect BPE 168 

of natural ecosystems (when considered separately from the managed ecosystems) is likely 169 

related to the intensity of the deposition and the fact that N deposition might influence BPE 170 

(like other ecosystem processes
13

) only at higher deposition rates. Natural sites are typically 171 

found in less urbanized locations and in our dataset they were characterized by deposition 172 

rates 43% lower than those of managed ecosystems. Furthermore, adaptation responses to N 173 

deposition are more likely to occur in natural ecosystems where succession is much longer 174 

than rotations in managed ecosystems.  175 

Little information was previously available about BPE of non-forest ecosystems
14

. Our 176 

analysis showed that BPE of natural ecosystems is independent of ecosystem type, vegetation 177 

and environmental characteristics (including natural site fertility). The lack of sensitivity of 178 

BPE to these potential drivers points to a rather conservative BPE across natural ecosystems. 179 

Our study supports the (highly debated) physiological argumentation for a constant ratio 180 

between BP and GPP in natural ecosystems
3,4

 and provides important constraints for the 181 

global models that simulate high variability in BPE or NPP-to-GPP ratio.  182 
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Finally, our findings have practical applications, particularly for Europe and North 183 

America. (i) The quantification of BPE for managed ecosystems can improve yield 184 

simulations by models (e.g. timber in forests, grains in crops), particularly for algorithms that 185 

derive BP as a proportion of GPP
15,16

. (ii) The land surface component of Earth system 186 

models currently does not take into account differences between natural and managed 187 

ecosystems which might introduce biases in BP projections. In fact, a case study based on the 188 

model ORCHIDEE
17

 showed that taking into account a BPE difference of 8% between natural 189 

and managed ecosystems resulted in a 24% increment in BP for Europe (Supplementary 190 

Methods). (iii) Our study indicates new ways to indirectly derive BPE at regional and 191 

continental scales from maps of land use and human management. (iv) While C assimilation 192 

and BP are extensively studied, the ways to maximize BPE are less explored. However, 193 

substantial changes in yield are potentially associated with small changes in BPE. For 194 

instance, for a forest with a GPP of 1500 g C m
-2

 y
-1

, an increase of 12% in BPE 195 

(Supplementary Table 7) would enhance BP by 180 g C m
-2

 y
-1

, mainly in wood (Table 1). 196 

These examples show that our elucidation of BPE dynamics advances our understanding and 197 

quantification of the biomass production of terrestrial ecosystems.  198 

 199 

 200 
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Figure captions 280 

 281 

Figure 1. Biomass production efficiency of natural and managed ecosystems. BPE (mean ± 1 282 

s.e.m.) of (a) natural ecosystem types that can be regularly managed such as forests and 283 

grasslands; (b) natural ecosystem types that are not commonly managed such as temperate 284 

marshes, boreal peatlands and tundras, and (c) anthropogenic ecosystem types, such as 285 

croplands, that are not in a natural state but are maintained through management. Difference 286 

within forest types was significant at p<0.001 (***), whereas difference within grassland 287 

types was significant at p<0.05 (*). Light grey columns indicate natural (‘nat.’) conditions and 288 

dark grey columns managed (‘man.’) conditions.  289 

 290 

Figure 2. Relationship between biomass production and gross primary production of natural 291 

and managed ecosystems. Annual values of BP and GPP with uncertainty intervals (sBPij and 292 

sGPPij) reflecting measurement uncertainty and sample size (Methods) for 93 sites worldwide 293 

comprising forests, grasslands and croplands, according to the management status: managed 294 

(black, M) or natural (red, N). The slope of the linear regressions equals the biomass 295 

production efficiency,.  296 

 297 

Table 1 298 

Title. Carbon allocation pattern in natural and managed forests as expressed by the ratio of BP 299 

to GPP.  300 

Footnote. Values are mean ± 1 s.e.m, in percentage; replicates (n): 12 and 19 for natural and 301 

managed forests, respectively; notations: ‘other aboveground’: reproductive organs and 302 

understory; +: 0.05<p<0.10, *: p<0.05, and ***: p<0.001.  303 

  304 



14 

 

Methods 305 

 306 

Dataset 307 

Our analysis required site estimates of biomass production (BP), gross primary production 308 

(GPP), and their uncertainty, to derive the biomass production efficiency (BPE) and its 309 

uncertainty. The key rule for selecting the sites was the availability of site-specific estimates 310 

of BP and GPP. Therefore, the dataset did not include values obtained from generic algorithms 311 

(e.g. global models, remote sensing products). BP included above- and belowground growth. 312 

In most cases, BP was obtained from harvest or biometric methods (comprising empirical 313 

models as e.g. allometric relationships, root growth as function of soil conditions
18,19

) and in 314 

5% of the cases from process-based models with site-specific parameterization and/or 315 

validation against growth or biomass data. Minor gap-filling was done for BP estimates at 316 

some sites (see below). BP methodologies can be divided into broad classes according to 317 

method uncertainty (i.e. low, medium or high uncertainty
1
; Supplementary Table 9) related in 318 

particular to the approach to determine fine root BP (the component of ecosystem BP most 319 

difficult to assess; see Supplementary Methods) or the use of process-based models 320 

(Supplementary Table 9). However, additional tests showed that the key results of our analysis 321 

were independent of the BP methodology employed (Supplementary Table 10). GPP was 322 

mostly estimated from eddy covariance (73% of the cases) or process-based models with site-323 

specific parameterization and/or validation (20% of the cases). Explanation about the 324 

preference of these GPP methods instead of other approaches (e.g. GPP derived from the sum 325 

of all carbon sinks within the ecosystem such e.g. BP, autotrophic respiration, carbon transfer 326 

to mycorrhizal symbionts) is reported extensively in Supplementary Methods. Additional tests 327 

showed that the alternative use of eddy covariance- or model-based estimates of GPP did not 328 
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affect the key results of our analysis (Supplementary Table 10). Detailed information on 329 

uncertainty calculations are reported in Statistical analysis.  330 

The integrated dataset provided BPE for 96 ‘golden’ sites, for which BP and GPP were 331 

available from the same measuring period (53 forests, 14 grasslands, 24 croplands and 5 332 

wetlands) and 35 additional natural sites for which BP and GPP were both available but not 333 

for the same measuring period (16 forests, 6 grasslands, 8 wetlands, 5 tundra). Wetlands were 334 

divided into marshes (herbaceous-dominated vegetation of the temperate zone mainly affected 335 

by flooding from river, sea or irrigation; 6 in total) and peatlands (ombotrophic or 336 

minerotrophic inland boreal ecosystems rich in herbs, shrubs or mosses; 7 in total). An 337 

excerpt from the study dataset is shown in Supplementary Table 1 and the geographical 338 

distribution of the sites in Supplementary Fig. 1. The key data used in the analysis are 339 

provided in Supplementary Data.  340 

Ancillary data such as vegetation characteristics, climate, environmental conditions 341 

and anthropogenic impacts were needed for each site to determine the possible effect of these 342 

factors on BPE. Such information was retrieved mostly from the literature, open-access 343 

databases
1,20-27

 or modelling
28

 (Supplementary Table 2). For N deposition, data for Western 344 

Europe and the conterminous USA were retrieved from interpolated gridded maps based on 345 

ground observations
25

, whereas simulated values were used for the rest of the world
22,23

.  346 

 347 

Management classification  348 

The sites were divided into two categories: natural and managed. Natural sites are defined as 349 

those characterized by none or low-to-moderate human impact, whereas managed sites are 350 

heavily affected by human activity. We defined ‘low-to-moderate human impacts’ as human 351 

activities that largely reproduce naturally occurring processes e.g. low grazing, occasional fire 352 

in grasslands, forest regeneration. On the other hand, we considered sites ‘heavily affected by 353 
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human activity’ to be those with impacts that would not occur in nature e.g. intense 354 

fertilization of poor soils, sowing of cropland monocultures, thinning of healthy trees. The 355 

classification was straightforward for marshes, peatlands and tundras (pristine or with 356 

minimal human impact except in two managed wetlands) and for croplands (inherently 357 

managed) (Supplementary Table 3). For forests and grasslands, the classification included 358 

sub-categories for both the natural and managed classes (Supplementary Table 3). For 359 

instance, for forests, we considered as natural the following types of forests: (i) old-growth 360 

with minimal disturbance, (ii) natural succession due to fire/windthrow and at least 10 years 361 

after the disturbance, (iii) unmanaged or with low human impact (e.g. understory grazing) in 362 

the 50 years before measurement and (iv) planted forests without any intervention after 363 

planting and at least 10 years old at the time of measurement. On the other hand, we 364 

considered as managed forests: (i) forests with thinning/harvest in the 50 years before 365 

measurement, (ii) newly (<10 years old) established plantations, (iii) forests fertilized in the 366 

25 years before measurement, or (iv) forests managed for fruit/rubber production at time of 367 

measurement. Similar sub-categories were defined for grasslands (Supplementary Table 3).  368 

We tested the validity of our approach by comparing our binary management 369 

classification to a more complex three-level classification According to the latter approach, 370 

we considered ‘pristine natural’ the sites that were pristine or with minimal impacts and 371 

‘semi-natural’ the sites with low-moderate human impacts (these classes were considered 372 

jointly in the binary classification as ‘natural’). For forests, for instance, we considered as 373 

semi-natural the forests that were: (i) unmanaged or with low human impact (e.g. understory 374 

grazing) in the 50 years before measurement and (ii) planted forests without any intervention 375 

after planting and at least 10 years old (see above). The statistics of this additional test clearly 376 

showed that (i) BPE of pristine natural and semi-natural forests did not differ and that (ii) the 377 

BPE difference between pristine natural and semi-natural forests was considerably lower than 378 
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the difference between semi-natural and managed forests (Supplementary Fig. 4, 379 

Supplementary Table 11). This confirmed that our standard binary classification is sound and 380 

that our key result about the impact of management on BPE is robust. In addition, this 381 

exercise revealed that the introduction of more levels in the management classification would 382 

not be advantageous, but rather would make the entire statistical analysis more complex and 383 

less robust. This was evident for grasslands, for which the three-level classification did not 384 

alter the BPE pattern but substantially reduced the statistical power because of the smaller 385 

sample size and associated higher uncertainties (Supplementary Fig. 4, Supplementary Table 386 

11). 387 

 388 

Gap-filling  389 

Some of the selected sites lacked BP measurements of minor ecosystem biomass components 390 

(e.g. nonvascular plants, understory) or were affected by minor systematic measurement 391 

biases (e.g. neglecting litterfall decomposition in tropical forests). These missing BP portions 392 

were gap-filled for completeness in analogy to Vicca et al 2012
2
.  393 

Production of reproductive organs in forests. When missing, this BP component was 394 

derived from a relationship between reproductive BP versus aboveground BP
2
 derived from 395 

the Global Forest Database
1
.  396 

Leaf biomass production in tropical forests. Estimates of leaf BP in tropical forests are 397 

systematically underestimated because of within-canopy decomposition of leaf litter during 398 

the collection period. We estimated this missing portion of BP as 12% of total foliage 399 

production
2
.  400 

Understory biomass production in forests. BP due to understory vegetation is 401 

significant for boreal forests and thus boreal forests lacking this BP component were not 402 

considered in our analysis
2
. However, the contribution of understory BP to total ecosystem BP 403 
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is more limited for temperate and tropical forests
2
. Thus, we did not discard temperate and 404 

tropical forests lacking understory BP but gap-filled this missing BP component as done in 405 

previous studies
2
. In particular, understory BP was estimated as a fixed ratio of the forest tree 406 

BP: 0.043 for temperate and 0.073 for tropical forests
2
.   407 

Nonvascular biomass production in tundra. Missing nonvascular BP was derived from 408 

a nonvascular productivity ratio (BP-to-biomass ratio, the portion of biomass renewed every 409 

year). This ratio was calculated for wet (0.50 years
-1

) and mesic tundra (0.42 years
-1

) as the 410 

average of six observations for each tundra type (Supplementary Table 12).  411 

Shrub biomass production due to stem secondary growth in peatland. Missing BP due 412 

to unaccounted shrub secondary growth (i.e. increase in stem/branch diameter) was estimated 413 

to be 29% of the shrub aboveground primary growth (i.e. BP due to current-year leaves and 414 

stem/branches) from data for subarctic shrubs
29

.  415 

The gap-filling concerned 31 forests of the 96 golden sites and 17 sites (14 forests, two 416 

tundra and one peatland) of the additional 35 natural sites. For 69% of the cases, the gap-filled 417 

BP differed by less than 5% than the original BP; for 13% of the cases the gap-filled and 418 

original BP differed by 5-10%, whereas for 17% of the cases this difference was 10-15%. 419 

Herbivory was not taken into account because it was negligible (e.g. for forests
2
) or because 420 

BP measurements were from experiments that excluded large herbivores (e.g. for all 421 

grasslands examined).  422 

The gap-filling procedure avoided small secondary biases in the analysis but did not 423 

alter the primary results (Supplementary Table 13). Overall, original BPE of managed and 424 

natural forests (the ecosystem type most affected by gap-filling) was 0.52 ± 0.03 and 0.39 ± 425 

0.02 (mean ± s.e.m.), respectively, which was less than 2% smaller than gap-filled BPE 426 

(Supplementary Table 7).  427 

 428 
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 429 

Statistical analysis 430 

 431 

Analysis overview and dataset 432 

Our study consisted of five analyses, using different sub-sets of our database. (1) First, we 433 

analyzed all natural sites (n=75; managed sites were not considered in this analysis) to test 434 

whether BPE is driven by natural variation in site fertility. In particular, we tested whether 435 

BPE differs among ecosystem types and sites of contrasting fertility. (2) Second, we analyzed 436 

the relationship between fertility and management in forests to verify their correlation and 437 

disentangle (i) the impact of management on fertility from (ii) the fertility status not related to 438 

management. This analysis was performed on 53 managed and natural forests for which BP 439 

and GPP were measured during the same period. We focused this analysis only on forests 440 

because they are the ecosystem type best represented in our dataset and allow direct 441 

comparison with previous studies. (3) Third, the relative importance of fertility, management 442 

and N deposition as controllers of BPE was compared to the importance of other possible 443 

BPE drivers. This analysis was performed on the same forest dataset considered in the second 444 

analysis after disentangling the effect of fertility and management. (4) Fourth, we compared 445 

the BPE of key natural and managed ecosystem types (grasslands, forests and croplands) that 446 

typically share similar climatic and environmental characteristics and are regularly converted 447 

into one another. Only sites with BPE obtained from BP and GPP measured during the same 448 

period were used (n=93). (5) Five, we studied the impact of the potential drivers of BPE in all 449 

natural ecosystems (n=75; this analysis did not include the managed sites).  450 

 For the analyses 1 and 5, we considered not only the sites for which BP and GPP were 451 

measured during the same period but also sites with BP and GPP measured during different 452 

(or only partially overlapping) periods (35 out of the 75 sites) to investigate a large set of 453 
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ecosystem types (e.g. from forest to tundra) and environmental conditions (e.g. climate from 454 

tropical to polar, soil from waterlogged to very dry). For sites without management operations 455 

(and mostly at mature-old stage) the temporal mismatch in BP and GPP was less crucial, 456 

dampened at several sites by multi-year measurements (we used averages of BP and GPP for 457 

multi-year observations) and, most importantly, comparative tests revealed that the results of 458 

the analyses did not differ when all sites or only sites with temporal match in BP and GPP 459 

were considered (e.g. Supplementary Table 14).  460 

 461 

Relationship between fertility and management  462 

Site fertility and site management are highly correlated factors that are both potentially crucial 463 

for BPE. For this study, we wanted to separate both drivers to test for BPE responses to (1) 464 

the fertility status induced by management and (ii) the fertility status unrelated to 465 

management. To disentangle both effects, we applied an approach commonly used to deal 466 

with multicollinearity
30

: the observed fertility status was modeled as a function of 467 

management and the residuals from this model were used as explanatory variables of BPE 468 

(instead of the original fertility status). Hence, the residuals reflect the information on fertility 469 

not explained by management, which we termed ‘unexplained natural fertility’. Initially, the 470 

model also included N deposition as an additional covariate, but we removed it in the final 471 

model as the relationship between N deposition and fertility was weak (see Main text). 472 

A multinomial ordered logistic regression model (or ‘proportional odds logistic 473 

regression model’
30

) was fitted with fertility as outcome (ordinal categorical variable with 474 

category high, H, medium, M, and low, L) and management (yes/no) as covariate. The model 475 

estimates the log odds of falling into or below a fertility category as a function of 476 

management:  477 

 478 
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Logit P(fertility=L)=interceptL + βL × management (1) 479 

Logit P(fertility<M)=interceptM + βM × management (2) 480 

 481 

where interceptL and interceptM were -2.01 and -0.511, respectively, and βL and βM were 2.84 482 

and -0.0488, respectively. In other words, this model estimates the possible fertility 483 

distribution of each site according to its management status (given its management status, the 484 

probability to be H, M or L). Also three sets of residuals were obtained for each site, which 485 

reflect the deviation of the fertility status of the site from the distribution estimated by the 486 

model. The independence of these three residuals on management (unlike the original fertility 487 

variable) was proven with t-tests (all p-values > 0.05).  488 

 489 

BPE drivers 490 

The relationships between BPE and its potential drivers were explored with three statistical 491 

approaches: univariate analysis, multiple linear regressions and Random Forest, which are 492 

described below. We used the following predictors: management status, observed natural 493 

fertility, climate zone, ecosystem type, growth form (five categorical variables) and N 494 

deposition, unexplained natural fertility (the three model residuals described above), soil 495 

available water content, annual precipitation and dry months per year (seven continuous 496 

variables) (Supplementary Table 2). All analyses were performed with R
31

.  497 

Univariate analysis. This analysis tested the significance of the relationships between 498 

single predictors and BPE. For continuous variables, this was done with single linear 499 

regressions, whereas for categorical variables we used one-way ANOVAs with post-hoc 500 

Tukey’s HSD test. Normality of residuals was tested with Shapiro-Wilks’ test and the 501 

assumption of homoscedasticity with Levene’s test (for ANOVAs) or Breusch-Pagan test (for 502 

regressions). For the few cases for which these conditions were not met, data were 503 
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transformed (e.g. log(x), 1/x or x
2
) or treated with alternative methods (Kruskal-Wallis test for 504 

non-normality and applications of White method for heteroskedasticity
32

). 505 

Multiple linear regressions. This method allows a comparison of the effect of the 506 

potential BPE predictors considering them all together. Whenever a given predictor was 507 

significant in the univariate analysis, but not in the multiple linear regressions, this indicated a 508 

lower importance of that predictor as compared to other predictors. In practice, we opted for 509 

backward stepwise regressions. Accordingly, the best BPE model was determined by starting 510 

from the model with all variables and successively removing the least important. The 511 

selection was done by comparing the new model (without the removed variable) with the 512 

original model (with the original variable) using Likelihood Ratio and Akaike Information 513 

Criterion (AIC). In practice, the new model was not accepted if the Likelihood Ratio was 514 

significant (p<0.05) or the AIC increased. Stepwise multiple linear regression was a suitable 515 

methodology for our analysis, because it can be applied with both continuous and categorical 516 

variables. However, all factors of categorical variables need to be taken into consideration by 517 

introducing dummy variables. Prerequisites (or alternatives) for applying linear regressions 518 

(e.g. residuals normality and homoscedasticity) were tested as described above for Univariate 519 

analysis.  520 

Random Forest. We used this partitioning method to produce a large ensemble of 521 

regression trees considering always our complete BPE dataset but random subsets of predictor 522 

variables
33

. This means that (in contrast to multiple linear regressions) Random Forest 523 

accounts also for non-linear relationships and interactions, and evaluates each predictor 524 

variable (even the least important or redundant), providing a ranking of the predictors’ 525 

importance. However, this analysis does not assign a significance label (contrary to linear 526 

regressions analysis). The importance of a given variable is instead indicated by the mean 527 

decrease in accuracy (or increase in mean squared error, %IncMSE) of model predictions 528 
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when the value of that given variable was changed (permuted within the dataset)
33

. The more 529 

important the variable, the larger the difference between original predictions and new 530 

predictions, and the larger the %IncMSE. We used the standard Random Forest algorithm
34

 531 

setting a large number of trees (50000) to obtain stable results. 532 

 533 

Confounding factors  534 

The response of BPE to N deposition and variables related to the water status (soil available 535 

water content, precipitation, dry months per year) could have been confounded by fertilization 536 

and irrigation / exceptional soil water conditions, respectively, at some sites. To check for the 537 

relevance of confounding factors, the analyses comprising N deposition and the variables 538 

related to the water status were performed both on the entire dataset and on a subset that 539 

excluded sites with fertilization, irrigation, occasional flooding, minerotrophic conditions and 540 

permafrost. Overall, the impact of these sites was negligible (Supplementary Table 15) and 541 

therefore they were not removed in the final analyses. Through the analysis, filtering for 542 

outliers was minimal and we removed only four sites with unrealistic BPE (0.84-0.94). 543 

 544 

Uncertainty  545 

The BP uncertainty for site i (sBPij) depended on (i) a typical range of uncertainty (pBPi) based 546 

on ecosystem type, (ii) the experimental methodology j through a method-specific uncertainty 547 

reduction factor (RFBPj) and (iii) the length of the measurement period in years (lBPij)
1
:  548 

      
            

       
    (3) 549 

In case BP needed to be gap-filled (see above), the uncertainty of the original BP estimate 550 

(sBPij original) was increased by a factor equivalent to 100% of the gap-filling amount
2
: 551 

                                 
 
               

   

 (4) 552 
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where sBPij gapfilled is the uncertainty of the gap-filled BP estimate. The uncertainty of GPP 553 

(sGPPij) was calculated in the same way as sBPij: 554 

       
              

        
    (5) 555 

where pGPPi is the typical range of GPP uncertainty, RFBPj the uncertainty reduction factor 556 

dependent on the experimental methodology j and lGPPij the length of the measurement period 557 

in years. The uncertainty of BPE (sBPEij) was calculated through error propagation:  558 

         
     

    
 
 

  
      

     
 
 

 

   

 (6) 559 

where BPij and GPPij are values of BP and GPP, respectively, for site i and method j. Values 560 

of RFBPj and RFGPPj were determined following Luyssaert et al 2007
1
 and were reported in 561 

Supplementary Table 9. For forest ecosystems, values of pBPi and pGPPi were from Luyssaert et 562 

al 2007
1
, whereas for non-forest ecosystems they were derived from the difference between 563 

the ninth and first decile of BP and GPP samples from ca. 20 to 110 sites according to 564 

ecosystem type (Supplementary Table 16). 565 

 566 
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Figure 1 616 

 617 

 618 
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Figure 2 620 
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Table 1 624 

 625 
BP-to-GPP ratio N (n=12) M (n=19) p diff N-M 

leaves 10±1% 10±1% 0.91 

wood 11±1%  24±3% 0.00019*** 

other aboveground 6±2% 7±3% 0.61  

fine roots 12±2% 8±2% 0.083+ 

coarse roots 3±1% 4±1% 0.29  

whole ecosystem (BPE) 41±2% 53±3%  0.020*  
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