This is the accepted version of the supplementary material of the following article: Campioli, M. et al. "Biomass production efficiency controlled by management in temperate and boreal ecosystems" in Nature geoscience, vol. 8, no. 11 (Nov. 2015), p. 843-6, which has been published in final form at DOI 10.1038/ngeo2553

1 Supplementary Methods

Methodology to estimate GPP

There are three common approaches to estimate annual gross primary production (GPP) at site level. (i) First, GPP as sum of all carbon sinks (sinks-sum) within the ecosystem (e.g. biomass production, (BP), autotrophic respiration (Ra), carbon transfer to mycorrhizal symbionts), which are normally measured with repeated stock inventories, plant growth monitoring and chamber based techniques⁸. (ii) Second, GPP derived from eddy covariance (EC) micrometeorological measurements of the CO₂ exchange between the ecosystem and the atmosphere (net ecosystem production, NEP), with GPP obtained by summing NEP and the ecosystem respiration, which is commonly estimated by extrapolating the nighttime NEP during the day using temperature response functions^{35,36}. (iii) Third, modelling of photosynthesis using process-based models with site-specific parameterization and/or validation^{37,38}. Here, we preferred to use method (ii) and (iii) for the following reasons:

1. For our analysis, it was essential to have site estimates of both GPP and BP, as BPE is the BP-to-GPP ratio. Many EC sites are investigated for ecological measurements as well and measurements of BP are thus often done within the EC footprint area. On the other hand, sinks-sum methods do not consistently provide both GPP and BP estimates. In fact, there are two main types of sinks-sum approaches⁸: (i) methods estimating GPP by summing aboveground BP, aboveground Ra and total belowground carbon flux, and (ii) methods estimating GPP from aboveground BP and Ra and belowground BP and Ra. In the first approach, BP estimates are missing, as belowground BP is not measured. In the second approach, GPP estimates are incomplete for our analysis as carbon flux to mycorrhiza and exudation are not accounted for.

2. In the sinks-sum approach, BP and GPP are not independent as estimates of GPP are derived from measurements of BP. Therefore, any error in BP estimates would propagate into the GPP data, with a potential increase in the uncertainty of BPE. Eddy covariance and models provide GPP estimates independent on BP.

3. Eddy covariance and models can be used to estimate GPP in any type of terrestrial ecosystem, whereas sink-sums methods have been mainly used for forest ecosystems, but not for other ecosystem types. The use of different methods for different ecosystem types might introduce inconsistencies in the analysis.

4. The analysis of 20 forests with estimates of GPP available for both sinks-sum and EC methodology revealed that both approaches provide similar values of GPP with a mean difference of only 7% and GPP estimates based on sinks-sum non-significantly larger than GPP estimates based on EC (Campioli unpublished). This convergence does not imply that sinks-sum and EC are accurate as both approaches can be biased in a similar direction (e.g. EC-based GPP could be underestimated because of loss of nighttime fluxes, whereas GPP estimates from sinks-sum could be underestimated because of poor scaling). However, such convergence indicates that there is no evidence to rank one methodology lower than the other when performing synthesis studies across multiple sites.

5. As a consequence of the latter point, process-based models developed and calibrated using EC or sinks-sum data are not likely to produce unreliable numerical estimates of GPP. In fact, additional tests showed that the alternative use of EC- or model-based estimates of GPP had no impact on the key effect of management on BPE (Supplementary Table 10).

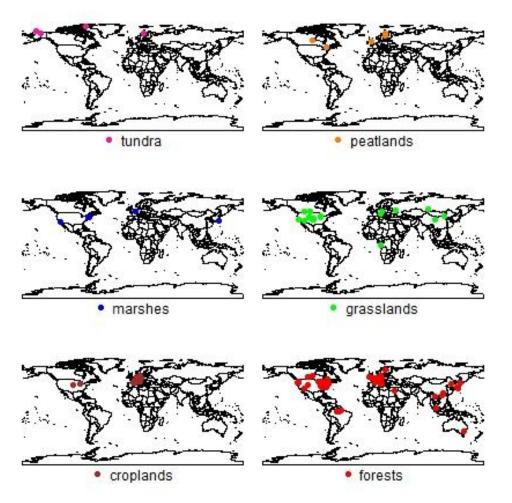
In conclusion, (i) sinks-sum methods are in general less suitable than EC and models for the BPE analysis performed here, (ii) EC and sinks-sum methods provide comparable estimates of GPP, and (iii) there is no evidence to consider unreliable the model-based estimates of GPP that we used in our analysis.

Uncertainty of fine root BP

Fine root production is commonly estimated with methods measuring root growth rather directly (e.g. ingrowth cores, minirhizotrons) or from less accurate methods (e.g. based on total belowground C flux, models). However, assessment of fine root BP is difficult and any method for estimating it has uncertainties and is prone to errors. Even we realize that fine root BP may be not wholly accurate for some of our site-year combinations, we do not see a possible source of bias that would systematically affect the comparison between natural and managed ecosystems and cast doubts on our key findings. Three reasons substantiate these considerations. (1) First, in general, the use of multiple years and sites minimizes major biases in synthesis studies (e.g. we used averages of fine root BP for multi-year observations). (2) Second, by examining the key forest dataset as an example (n=53; see Methods), we noted that for both the natural and managed category, fine root BP was measured with direct methods at about half of the sites (48-50%) and with less accurate methods for the other half (50-52% of the sites). Thus, the methods to asses fine root BP did not differ substantially between natural and managed ecosystems, avoiding systematic errors. (3) Third, 31 of the 53 forest sites considered at point 2 had detailed data on C allocation pattern and estimates of fine root BP available independent of the total belowground BP. For natural forests (n=12), this sub-set presented estimates of fine root BP, total BP and GPP of 163, 615 and 1549 gC m⁻ 2 y⁻¹, respectively. For managed forests (n=19), the same variables were 130, 888 and 1683 $gC m^{-2} y^{-1}$, respectively. The sub-set is therefore well representative as the BPE values of the natural and managed sites (0.41 and 0.53, respectively) are equal to the BPE values of the entire forest dataset (Supplementary Table 7). We calculated that such difference in BPE would be offset only if our data were affected by a 90-95% underestimation of fine root BP in natural sites concurrent to an opposite 90-95% overestimation of fine root BP in managed sites. Systematic biases of such opposite directions and degree are unrealistic given the

similar methodologies employed for the determination of fine root BP in natural and managed forests. Moreover, assuming that fine root BP was measured correctly at natural sites and overestimated at managed sites, the BPE difference between natural and managed conditions would still hold even if actual fine root BP was close to zero in managed forests. Therefore, these additional considerations (point 1-3) confirm that the BPE difference between natural and managed ecosystems can not be due significantly to the uncertainty related to fine root BP.

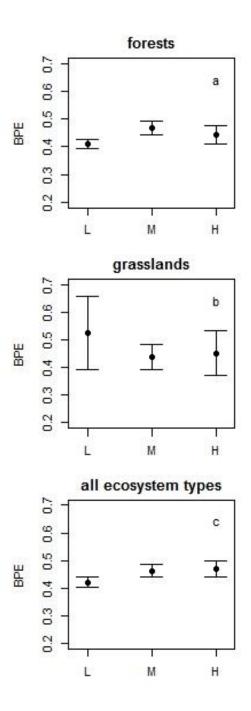
Classification of site fertility


The soil nutrient classification is reported in Supplementary Table 17. The classification was developed following previous studies^{2,39} and it was based on soil type, several physicalchemical proprieties of the soil (e.g. soil structure, nitrogen and carbon content, pH, cation exchange capacity) and fertilization. Data were from the literature (mostly) or directly provided by the site principal investigators (PIs). In 62% of the cases, the assigned soil nutrient availability level (high, medium or low) was explicitly confirmed by the site literature or PIs (in general, for the remaining cases, no information was available in the literature, PIs did not have additional information about site fertility or we were unable to have contact with the PIs). The reliability of this type of classification has been thoroughly evaluated^{2,39}.

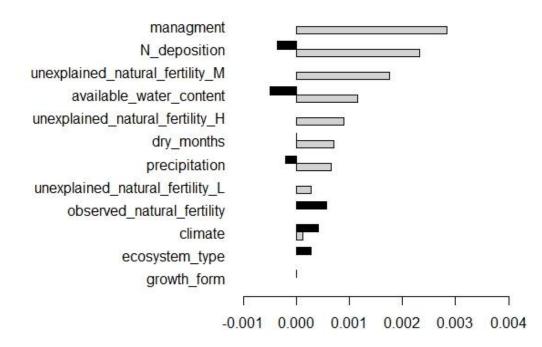
ORCHIDEE modelling exercise

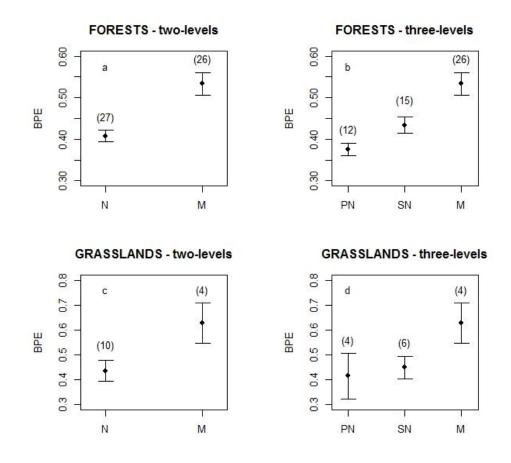
ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) is a global landsurface model that calculates the C and H₂O cycle for major ecosystem types and ecosystem soil pools¹⁷. The current exercise was focused on the autotrophic component of the ecosystem and considered Europe as a case study (defined as the area between 10° W to 30° E and 35° to 75° N). Types and spatial distribution of the European ecosystems were derived from land cover and tree species maps^{40,41}.

The impact of BPE on the estimations of BP was derived by comparing a standard model simulation (assuming Europe covered by natural ecosystems, which is hypothetical but commonly done in land surface modeling) with a simulation with a BPE increase of 8% (representing Europe covered by managed ecosystems, which is realistic but seldom done). The simulations were done for a period of 150 years, driven by reiterated climatic conditions (NCC dataset 1951-2000⁴²). The simulations showed that even a moderate BPE increment (actual BPE increment are expected to be larger; see Supplementary Table 7) resulted in a remarkable increase in BP for Europe (24%, from 2.50 to 3.10 Pg C y⁻¹) which was due not only to the increased BP per unit of photosynthates but also to the positive effect that the increment in leaf BP had on GPP.


2 Supplementary Figures

Supplementary Figure 1


Supplementary Figure 1. Distribution of the study sites.


Supplementary Figure 2. Biomass production efficiency (BPE, mean ± 1 s.e.m.) according to site fertility (L: low, M: medium, H: high) for natural unmanaged ecosystems: (a) forests, (b) grasslands and (c) all ecosystem types lumped together (forests, grasslands, temperate marshes, boreal peatlands, tundras).

Supplementary Figure 3

Supplementary Figure 3. Ranking of vegetation, environmental, climatic and anthropogenic variables as predictors of biomass production efficiency from Random Forest analysis when considering forest sites (natural and managed; light grey bars, n=53) and natural unmanaged sites of all ecosystem types (dark grey bars, n=75). %IncMSE (mean decrease in model prediction accuracy resulting from a change in variable value) indicates the importance of a variable: the larger the %IncMSE, the larger the variable importance. Negative values of %IncMSE indicate that the variable has marginal explanatory power (for more information on Random Forest see Methods). Unexplained natural fertility H, unexplained natural fertility M and unexplained natural fertility L are the residuals of the model relating fertility to management and represent the 'fertility status not explained by management' for each of the three fertility classes: high fertility H, medium fertility M and low fertility L (see Methods). Observed natural fertility is the fertility status for natural, unmanaged sites. Dry months indicate the average number of months per year with potential evapotranspiration larger than precipitation.

Supplementary Figure 4

Supplementary Figure 4. Biomass production efficiency (BPE, mean ± 1 s.e.m.) of (a-c) natural (N) and managed (M) forests and grasslands when considering the two-level management classification and of (b-d) pristine natural (PN), semi-natural (SN) and managed forests and grasslands when considering a three-level management classification (numbers in parenthesis indicate site replicates).

3 Supplementary Tables

Supplementary Table 1. List of the study sites with value of biomass production (BP), gross primary production (GPP), biomass production efficiency (BPE) and information on ecosystem type, climate, management and measurement period.

Site name	Fluxnet ^(a)	climate (b)	BP ^(c)	period BP ^(d)	GPP	period GPP (d)	BPE	manag. ^(e)	management category ^(f) and reference
Croplands			(0)	2007	056	2007	0.62	м	F (1) 143-45
Auradé	FR-Aur	temp.	603	2006	956	2006	0.63	M	Fertilized ⁴³⁻⁴⁵
Avignon	FR-Avi	temp.	932	2006	1549	2006	0.60	М	Fertilized ^{43,44,46}
Beano1	IT-Be1	temp.	1020	2007, 2008	1310	2007, 2008	0.78	М	Fertilized ⁴⁷
Gebesee	DE-Geb	cold	698	2007	992	2007	0.70	М	Fertilized ⁴³⁻⁴⁵
Grignon	FR-Gri	temp.	765	2006	1090	2006	0.70	М	Fertilized ^{44,48}
Kellogg CRP-S	no	cold	308	2009	507	2009	0.61	М	Established same year of measurements on grasslands ⁴⁹
Kellogg CRP-P	no	cold	340	2009	470	2009	0.72	М	Established same year of measurements on grasslands ⁴⁹
Kellogg CRP-C	no	cold	370	2009	599	2009	0.62	М	Established same year of measurements on grasslands ⁴⁹
Kellogg Agr-C	no	cold	304	2009	615	2009	0.49	М	Established same year of measurements on agricultural land ⁴⁹
Kellogg Agr-S	no	cold	193	2009	655	2009	0.29	М	Established same year of measurements on agricultural land ⁴⁹
Kellogg Agr-P	no	cold	295	2009	552	2009	0.53	М	Fertilized ⁴⁹
Klingenberg	DE-Kli	cold	500	2006	1232	2006	0.41	M	Fertilized ⁴³⁻⁴⁵
Lamasquère	FR-Lam	temp.	707	2007	1331	2007	0.53	M	Fertlized ^{43,44,46}
Lonzée winter wheat	BE-Lon	temp.	820	2005, 2007	1630	2005, 2007	0.50	M	Fertilized ⁵⁰⁻⁵²
Lonzée sugar beet	BE-Lon	temp.	1010	2004	1420	2004	0.71	М	Fertilized ^{51,53}
Lonzée potato	BE-Lon	temp.	360	2006	600	2006	0.60	М	Fertilized ^{51,53}
Lutjewad	NL-Lut	temp.	882	2007	1297	2007	0.68	М	Fertilized ^{43,44,46}
Mead 1	US-Ne1	cold	1057	2001-2003	1715	2001-2003	0.62	M	Fertilized ⁵⁴
Mead 2 maize	US-Ne2	cold	1082	2001, 2003	1735	2001, 2003	0.62	M	Fertilized ⁵⁴
Mead 2 soybean	US-Ne2,	cold	526	2002	966	2002	0.54	M	Fertilized ⁵⁴
Mead 3 maize	US-Ne3	cold	728	2001, 2003	1451	2001, 2003	0.50	М	Fertilized ⁵⁴
Mead 3 soybean	US-Ne3	cold	404	2002	841	2002	0.48	М	Fertilized ⁵⁴

Oensingen Risbyholm	CH-Oe2 DK-Ris	temp. cold	504 684	2007 2005, 2006	1598 1003	2007 2005, 2006	0.32 0.68	M M	Fertilized ⁴³⁻⁴⁵ Fertilized ⁴³⁻⁴⁵
Risbynomi	DR-Ris	colu	084	2005, 2000	1005	2005, 2000	0.08	111	rennized
Forests									
Bornhoved Alder	no	cold	878	1992-1993	2420	1992-1993	0.36	Ν	unmanaged or with low human impact in last 50 y ¹
Bornhoved Beech	no	cold	692	1992-1993	1324	1992-1993	0.52	М	thinning/harvest in last 50 y ^{1,55}
Caldaro	no	temp.	959	2010	1263	2010	0.76	М	managed for fruit/rubber production ⁵⁶
Cascade Head 1	no	temp.	702	1990	2043	1990	0.34	Ν	old-growth with minimal disturbance ¹
Cascade Head 1A	no	temp.	844	1990	1828	1990	0.46	Ν	unmanaged or with low human impact in last 50 y^1
Caxiuana	BR-Cax	trop.	1214	2005	3820	1999-2003	0.32	Ν	old-growth with minimal disturbance ^{57,58}
Changbai Mountains	CN-Cha	cold	769	na (<2006)	1388	2003	0.55	Ν	old-growth with minimal disturbance ⁵⁹⁻⁶²
Chibougamau EOBS	CA-Qfo	cold	310.5	2005	680	2005	0.46	Ν	natural successions after fire/windthrow and at least 10 y after disturbance ^{63,64}
Coastal plain North Carolina	US-NC2	temp.	1494	2005-2007	2719	2005-2007	0.55	Μ	fertilized in last 25 y^{65}
Collelongo	IT-Col	cold	674	1996	1154	1996	0.58	Μ	thinning/harvest in last 50 y ^{1,66,67}
Dinghushan MF	CN-Din	temp.	678	2003-2004	1521	2003-2004	0.45	Ν	unmanaged or with low human impact in last 50 y ^{68,69}
Dooary	no	temp.	1634	2003-2009	2251	2003-2009	0.73	Μ	thinning/harvest in last 50 y ⁷⁰
Flakaliden C	SE-Fla	cold	530	2000-2002	1000	1997-1998	0.53	Ν	planted forests without any intervention after planting and at least 10 y old ^{1,71,72}
Frazer old	no	cold	472	na (<1996)	915	na (<1991)	0.52	Ν	old-growth with minimal disturbance ^{1,73}
Frazer young	no	cold	252	na (<1996)	977	na (<1991)	0.26	Ν	planted forests without any intervention after planting and at least 10 y old ^{$1,73$}
Fujiyoshida	JP-Fuj	cold	773.9	1999-2008	1802	2000-2008	0.43	Ν	unmanaged or with low human impact in last 50 y ^{74,75} (Ohtsuka Toshiyuki per. comm.)
Hainich	DE-Hai	cold	655	2000-2002	1651	2000-2002	0.40	Ν	old-growth with minimal disturbance ^{1,76}
Harvard	US-Ha1	cold	543	1999	1315	1999	0.41	Ν	natural successions after fire/windthrow and at least 10 y after disturbance ¹
Hesse	FR-Hes	temp.	757	1997	1267	1997	0.60	М	thinning/harvest in last 50 $v^{77,78}$
Jacaranda K34	no	trop.	1046	2005	3040	1995-1996	0.34	Ν	old-growth with minimal disturbance ^{79 1}
Juniper	no	cold	145	1990	330	1990	0.44	Ν	unmanaged or with low human impact in last 50 y^1
Kannenbruch Alder Ash	DE-Kan	cold	672	2002	1594	2002	0.42	Μ	thinning/harvest in last 50 y ^{1,80}
Kannenbruch Beech	DE-Kan	cold	675	2002	1470	2002	0.46	Μ	thinning/harvest in last 50 y ^{1,80}
Kannenbruch Oak	DE-Kan	cold	1035	2002	1794	2002	0.58	Μ	thinning/harvest in last 50 y ^{1,80}
Lochristi	BE-Lcr	tomn	521	2011	1281	2011	0.41	М	newly (<10 y) established plantation ^{81 82}
Lociiristi	DE-LCI	temp.		2011	1201	2011	0.41	IVI	(Berhongaray Gonzalo per. comm.)
Metolius	US-Me4	cold	449	1999-2001	1113	1996-2000	0.40	Ν	old-growth with minimal disturbance ^{1,83,84}
Metolius-young	US-Me5	cold	389	2000-2002	724	2000-2002	0.54	Μ	thinning/harvest in last 50 y ^{1,85}
Morgan Monroe	US-MMS	cold	1025	1998-1999	1467	1998-1999	0.70	Μ	thinning/harvest in last 50 y ^{1,86}
NAU Centennial Undisturbed	no	cold	387	2006-2007	879	2006-2007	0.44	Ν	unmanaged or with low human impact in last 50 y ⁸⁷
NAU Centennial thinned	no	cold	243	2006-2007	868	2006-2007	0.28	М	thinning/harvest in last 50 y ⁸⁷
Pasoh	no	trop.	1490	1971-2001	3230	2003-2005	0.46	Ν	old-growth with minimal disturbance ^{1,88}
Pierce Creek Forest C	no	temp.	981.4	1992-1993	2950	1992-1993	0.33	М	thinning/harvest in last 50 y ⁸⁹
Pierce Creek Forest IF	no	temp.	1879.	1992-1993	3690	1992-1993	0.51	М	fertilized in last 25 y ⁸⁹

			2						00
Popface alba	no	temp.	1313	2000-2001	2230	2000-2001	0.59	М	newly (<10 y) established plantation ⁹⁰
Popface euamericana	no	temp.	1332	2000-2001	1966	2000-2001	0.68	М	newly (<10 y) established plantation $^{90}_{00}$
Popface nigra	no	temp.	1711	2000-2001	2424	2000-2001	0.71	М	newly (<10 y) established plantation ⁹⁰
Prince Albert SSA SOAS	CA-Oas	cold	459	1994	1172	1994	0.39	Ν	natural successions after fire/windthrow and at lease 10 y after disturbance ¹
Prince Albert SSA SOBS	CA-Obs	cold	311	1994	910	1994	0.34	Ν	natural successions after fire/windthrow and at leas 10 y after disturbance ¹
Prince Albert SSA SOJP	CA-Ojp	cold	252	1994	710	1994	0.35	Ν	natural successions after fire/windthrow and at leas 10 y after disturbance ¹
Puechabon	FR-Pue	temp.	490	2001-2002	1413	2001-2002	0.35	Ν	unmanaged or with low human impact in last 50 y^{1}
Qianyanzhou Ecological Station	CN-Qia	temp.	1044	2003-2005	1798	2003-2005	0.58	Ν	planted forests without any intervention after planti and at least 10 y old ^{94,95}
Santiam Pass	no	cold	387	1990	1077	1990	0.36	Ν	unmanaged or with low human impact in last 50 y ¹
Saskatchewan HJP75	CA-SJ3	cold	277	2004	564	2004	0.49	Ν	planted forests without any intervention after planti and at least 10 y old ^{37,96}
Scio	no	temp.	1173	1990	2901	1990	0.40	М	fertilized in last 25 y ^{1,97}
Soroe	DK-Sor	cold	1134	2000-2002	1692	2000-2002	0.67	М	thinning/harvest in last 50 y ^{1,67,98,99}
Sylvania hardwood	US-Syv	cold	341	2002-2003	1034	2002-2003	0.33	Ν	old-growth with minimal disturbance ^{1,100,101}
Takayama	JP-Tak	cold	626	1999-2006	1120	1999-2006	0.56	Ν	planted forests without any intervention after planti and at least 10 y $old^{1,102,103}$
Tapajos67	no	trop.	1673	1999-2005	3149	2002-2005	0.53	Ν	old-growth with minimal disturbance ⁵⁷
Tapajos83	no	trop.	876	2000	3000	2000	0.29	Ν	old-growth with minimal disturbance ¹
Teshio CCLaG	JP-Tef	cold	850.7 5	1997-2004	1439	2002	0.59	Ν	old-growth with minimal disturbance ^{104,105}
Tharandt	DE-Tha	cold	616	2000-2002	1845	2000-2002	0.33	М	thinning/harvest in last 50 y ^{1,67}
Thompson NSA NOBS	CA-NS1	cold	226	2001-2004	665	2001-2004	0.34	Ν	natural successions after fire/windthrow and at leas 10 y after disturbance ^{106,107}
Thompson d71	CA-NS2	cold	354	2001-2004	574	2003-2004	0.62	Ν	natural successions after fire/windthrow and at leas 10 y after disturbance ¹⁰⁷
Thompson d37	CA-NS3	cold	261	2001-2004	633	2003-2004	0.41	Ν	natural successions after fire/windthrow and at leas 10 y after disturbance ¹⁰⁷
Thompson d20	CA-NS5	cold	347	2001-2004	652	2003-2004	0.53	Ν	natural successions after fire/windthrow and at leas 10 y after disturbance ¹⁰⁷
Thompson d15	CA-NS6	cold	220	na (<2005)	443	2003-2004	0.50	Ν	natural successions after fire/windthrow and at leas 10 y after disturbance ¹⁰⁷
Tumbarumba	AU-Tum	temp.	640	2003	1700	2003	0.38	М	thinning/harvest in last 50 y ¹⁰⁸
Turkey Point TP02	CA-TP1	cold	379	2005-2008	610	2005-2008	0.62	М	newly (<10 y) established plantation ^{109,110}
Turkey Point TP89	CA-TP2	cold	835	2005-2008	2445	2005-2008	0.34	Ν	planted forests without any intervention after plant and at least 10 y old ^{109,110}
Turkey Point TP74	CA-TP3	cold	593	2005-2008	1184	2005-2008	0.50	Ν	planted forests without any intervention after plant and at least 10 y old ^{109,110}

Turkey Point TP39	CA-TP4	cold	603	2005-2008	1407	2005-2008	0.43	М	thinning/harvest in last 50 y ^{109,110}
University of Michigan	no	cold	675	2004	1350	1999	0.50	Ν	unmanaged or with low human impact in last 50 y ¹
Walker Branch	US-WBW	temp.	731	1995-1998	1674	1995-1998	0.44	Ν	unmanaged or with low human impact in last 50 y ¹
Warings Woods	no	temp.	800	1990	1893	1990	0.42	Ν	planted forests without any intervention after planting and at least 10 y old ¹
Wind River	US-Wrc	temp.	622	1999	1338	1999	0.47	Ν	old-growth with minimal disturbance ^{111,112}
Wytham Woods	no	temp.	676	2007-2008	2110	2007-2008	0.32	Ν	unmanaged or with low human impact in last 50 y ^{1,113}
Xishuangbanna	CN-Xsh	temp.	994	2003-2006	2595	2003-2006	0.38	Ν	old-growth with minimal disturbance ¹¹⁴
Xishuangbanna plantation	no	temp.	1235	2011	1816	2011	0.68	Μ	managed for fruit/rubber production ¹¹⁵
Yatir	IL-Yat	temp.	351	2001-2006	830	2001-2006	0.42	М	thinning/harvest in last 50 y ¹¹⁶
Grasslands									
Beano2	IT-Be2	temp.	1134	2007, 2008	1568	2007, 2008	0.72	М	established same year of measurements on fertilized agricultural land ⁴⁷
Cheyenne	no	cold	179	na-1991	626	1997, 1998	0.29	Ν	low-moderate grazing and/or annual burning ^{117,118}
Grillenburg	DE-Gri	cold	403	2004	1233	2004	0.33	Ν	mowing (not intensive) ¹¹⁹
Haibei	CN-Hab	cold	493	2008, 2009	634	2002-2004	0.78	Ν	low-moderate grazing and/or annual burning ^{120,121}
Hakasija 1	RU-Ha1	cold	246	2003, 2004	519	2003, 2004	0.47	Ν	low-moderate grazing and/or annual burning ^{43,122,123}
Hakasija 3	RU-Ha3	cold	259	2004	526	2004	0.49	Ν	established/restored grassland (5-20 y before measurements) ¹²³
Inner Mongolia	no	cold	87	2006	182	2006	0.48	Ν	low-moderate grazing and/or annual burning ^{124,125}
Kellogg CRP-Ref	no	cold	612	2010	1015	2010	0.60	Ν	established/restored grassland (5-20 y before measurements) ^{49,126}
Kellogg CRP-S	no	cold	384	2010	512	2010	0.75	М	fertilized ^{126,127}
Kellogg Agr-S	no	cold	239	2010	374	2010	0.64	М	fertilized ^{126,127}
Kellogg Agr-P	no	cold	314	2010	793	2010	0.40	М	established same year of measurements on fertilized agricultural land ^{126,127}
Jasper	US-Jas	temp.	164	1994	516	1994	0.32	Ν	minor human impact in the past and protected since at least 15 $y^{128,129}$
Konza	US-Kon	cold	597	1983-1987	1151	1987	0.52	Ν	low-moderate grazing and/or annual burning ¹³⁰⁻¹³³
Kursk	no	cold	898	1972, 1973, 1981-1983	1611	na-1983	0.56	Ν	pristine ¹³⁴ 135,136
Lethbridge	CA-Let	cold	146	1999, 2000	280	1999, 2000	0.52	Ν	minor human impact in the past and protected since at least 15 $y^{137,138}$
Matador	no	cold	233	1971	786	na-1995	0.30	Ν	minor human impact in the past and protected since at least 15 $y^{135,137,139}$
NAU Coconito Burned	no	cold	237	2006, 2007	387	2006,2007	0.61	Ν	natural successions after fire and at least 10 y after disturbance ⁸⁷
Osage	no	temp.	399	1970-1972	1890	1970-1972	0.21	Ν	minor human impact in the past and protected since at least 15 $y^{140,141}$
Tchizalamou	CG-Tch	trop.	506	2007	1572	2007	0.32	Ν	low-moderate grazing and/or annual burning ^{43,142,143}
Woodward	no	temp.	449	1995-1997	829	1997	0.54	Ν	low-moderate grazing and/or annual burning ^{135,144}

Marshes									
Burcht	no	temp.	708	1996-1998	1453	1996-1998	0.49	Ν	mowing (not intensive) ¹⁴⁵
Flax Pond	no	cold	400	na (<1979)	814	1974	0.49	Ν	no disturbance ¹⁴⁶
Great Sippewissett	no	cold	1000	na (<1985)	1700	na (<1984)	0.59	Ν	no disturbance ^{147,148}
Mase	JP-Mas	temp.	678	2002, 2003	1049	2002, 2003	0.65	Μ	fertilization and irrigation ^{149,150}
Saeftinghe	no	temp.	494	1996-1998	1261	1996-1998	0.39	Ν	mowing (not intensive) ¹⁴⁵
San Joaquin	US-SJ1	temp.	867	1999-2007	1428	1999-2007	0.61	М	irrigation ¹⁵¹
Peatlands									
BOREAS collapse bog	no	cold	150	na (<1996)	296	1996	0.51	Ν	pristine ¹⁵²
BOREAS intermediate fen	no	cold	380	na (<1996)	623	1996	0.61	Ν	pristine ¹⁵²
BOREAS rich fen	no	cold	340	na (<1996)	481	1996	0.71	Ν	pristine ¹⁵²
Bog End, Moor House	no	temp.	223	1970	891	2007	0.25	Ν	minimal disturbance (grazing) ^{153,154 155}
Degerö	SE-Deg	cold	152	2001, 2002, 2004-2006	331	2001, 2002, 2004-2006	0.47	Ν	pristine ^{43,156}
Mer Bleue	CA-Mer	cold	231	1999, 2007	528	1998, 2005	0.44	Ν	pristine ¹⁵⁷⁻¹⁶⁰
Stordalen palsa	no	cold	42	na (<1996)	211	2008, 2009	0.20	N	pristine ^{161,162}
Tundra									
Alexandra Fiord, wet meadow	no	cold	62	1980-1983	264	2000, 2001	0.23	Ν	pristine ^{163,164}
Barrow	US-Brw	cold	105	1970-1974	211	1971	0.50	Ν	pristine ¹⁶⁵⁻¹⁶⁷
Imnavait Creek	no	cold	153	2011, 2012	288	2012	0.53	Ν	pristine (Sullivan PF unpublished)
Paddus	no	cold	103	2005, 2007	209	1999	0.49	Ν	pristine ^{168,169}
Toolik Lake	no	cold	156	1982-2004	311	1993-2000	0.50	Ν	pristine ^{38,170-172}
IUUIIK Läke	110	colu	150	1962-2004	311	1993-2000	0.50	IN	prisuite

Notes: ^(a) indicates if site in Fluxnet (<u>http://www.fluxdata.org/default.aspx</u>) or *European Fluxes Database Cluster* (<u>http://gaia.agraria.unitus.it/home/sites-list</u>) with code; ^(b) climate: from simplified Köppen-Geiger classification: temp.: temperate, and trop.: tropical (see Supplementary Table 2 for more details); ^(c) gap-filled value (see Methods); ^(d) indicate the period with data availability not necessarily coinciding with the number of experimental years; ^(e) manag.: management status: N: natural, M: managed, and ^(f) management classification (see Extended Data Table 1 for more details).

Variable	Sou	Categories/range values	
	description		
Categorical			
Management	Literature, Global Forest Database ¹	this study (Supplementary Table 1) www.lsce.ipsl.fr/Pisp/sebastiaan.luyssa ert/ (Global Forest Database)	2 categories: natural, managed
Observed natural fertility	Literature, ISRIC-WISE global data set ²⁰	http://www.isric.org/ (ISRIC-WISE) this study (Supplementary Table 17)	3 categories: high, medium, low
Unexplained natural fertility	Modelled	this study (Statistical analysis)	3 indexes per site (high, medium, low fertility used as reference)
Ecosystem type	Literature, Global Forest Database ¹	this study (Supplementary Table 1) www.lsce.ipsl.fr/Pisp/sebastiaan.luyssa ert/ (Global Forest Database)	6 categories: forest, grassland, cropland, marsh, peatland and tundra
Climate zone	Simplified Köppen-Geiger classification ^(a) using WorldClim data ²¹	www.worldclim.org/ (WorldClim)	3 categories: cold, temperate, tropical
Growth form	Literature, Global Forest Database ¹	this study (Supplementary Table 1) www.lsce.ipsl.fr/Pisp/sebastiaan.luyssa ert/ (Global Forest Database)	2 categories: herbaceous, woody (dominant species)
Continuous			
Nitrogen deposition	Data and model ^{1,22-25}	webmap.ornl.gov/ogcdown/dataset.jsp ?ds_id=830 webmap.ornl.gov/ogcdown/dataset.jsp ?ds_id=730	values from 1.4 to 27.3 kg N ha ⁻¹ y ⁻¹
Available water content	Calculated with model Rosetta ²⁸ from soil texture and density from literature or ISRIC-WISE global data set ²⁰	http://www.cals.arizona.edu/research/r osetta/index.html (model Rosetta) this study (Supplementary Table 17) http://www.isric.org/ (ISRIC-WISE)	values from 0.05 to 0.5
Precipitation	WorldClim ²¹	www.worldclim.org/ (WorldClim)	values from 115 to 2724 mm y ⁻¹
Dry months	Index of drought calculated using CRU TS3.10 as the number of months per year when potential evapotranspiration is larger than precipitation ^{26,27}	http://catalogue.ceda.ac.uk/uuid/ac3e6 be017970639a9278e64d3fd5508 (CRU TS3.10)	values from 0.9 to 12 month y^{-1}

Supplementary Table 2. Variables tested as predictors of the biomass production efficiency.

Notes: ^(a) Fundamental Köppen-Geiger classification comprises five climatic zones: tropical, arid, temperate, cold and polar¹⁷³; here, we have merged arid and polar to other categories because of the few arid and polar sites.

Supplementary Table 3. Management classification of the sites investigated.

Ecosystem type and management categories	n
Natural forests	
old-growth with minimal disturbance	14
natural succession due to fire/windthrow and at least 10 y after disturbance	10
unmanaged or with low human impact (e.g. understory grazing) in last 50 y	11
planted forests without any intervention after planting and at least 10 y old	8
Managed forests ^(a)	1.6
thinning/harvest in last 50 y	16
newly (<10 y) established plantation	5
fertilization in last 25 y	3
managed for fruit/rubber production	2
Natural grasslands	
pristine	1
natural succession due to fire and at least 10 y after disturbance	1
minor human impact in the past and protected for at least 15 y	4
low-moderate grazing and/or annual burning	7
established/restored grassland (10-20 y before measurements)	2
mowing (not intensive)	1
Managed grasslands ^(a)	•
established same year of measurements on agricultural land	2
fertilization	2
Natural marshes	
no disturbance	2
mowing (not intensive)	2
Managed marshes ^(a)	
Fertilized and/or flooded	2
Peatlands (only natural)	
pristine	6
minimal disturbance (grazing)	1
Tundra (only natural)	
Pristine	5
1 Houne	5
Croplands (only managed) ^(a)	
Fertilization	19
Established same year of measurements on agricultural land	2
Established same year of measurements on grasslands	3

Notes. ^(a) the main management operations / regimes were used for the classification; however, other operations (e.g. irrigation, soil preparation, pest-control) might also have been performed concurrently. n: site replicates.

Supplementary Table 4. Values (mean±s.e.m; replicates in parenthesis) of biomass production efficiency (BPE) for natural unmanaged sites of key terrestrial ecosystem types.

Ecosystem type	BPE
forest	0.43±0.01 (43)
grassland	0.46±0.04 (16)
marsh	0.49±0.04 (4)
peatland	0.45±0.07 (7)
tundra	0.45 ± 0.05 (5)
difference among ecosystem types	p=0.826
mean across ecosystem types	0.46±0.01

Notes: Significance value p tested with ANOVA analysis.

Supplementary Table 5. Results of univariate analysis and multiple linear regressions (backward stepwise regressions) to detect the effect of climatic and environmental conditions (climate zone, fertility, available water content, precipitation, drought index) and human impact (management status, N deposition) on biomass production efficiency (BPE) when considering 53 globally distributed forest sites.

BPE predictors	Univariate	Stepwise regression	
Categorical variables	p ANOVA	post-hoc ^(h)	included
Management (M, N) ^(a)	0.000702 ***	n.a.	yes
Climate (C, Te, Tr) ^(b)	0.152	n.s.	yes
Continuous variables	p regression	$Adj R^2$	included
Unexplained natural fertility (reference L) ^(c)	0.25	0.0068	yes
Unexplained natural fertility (reference M) ^(d)	0.815	-0.018	yes
Unexplained natural fertility (reference H) ^(e)	0.229	0.0091	yes
Nitrogen deposition	0.00478 **	0.13	yes
Available water content	0.542	-0.012	yes
Precipitation	0.579	-0.013	yes
Dry months ^(f)	0.245	0.007373	yes
Age ^(g)	0.0313 *	0.0772	no
Variables final model stepwise regression			
Management	n.a.	n.a.	0.00145 **
Nitrogen deposition	n.a.	n.a.	0.02942 *
$\operatorname{Adj} \operatorname{R}^2$ initial model	n.a.	n.a.	0.25
$\operatorname{Adj} \operatorname{R}^2$ final model	n.a.	n.a.	0.28

Notes: For categorical variables, we report p value of one-way ANOVA (post-hoc information (Tukey's HSD test) not applicable (n.a.) or non-significant with p>0.05 (n.s)). For continuous variables, the p value of the linear regression and adjusted R² are reported. ^(a) M: managed, N: natural; ^(b) C: cold, Te: temperate, Tr: tropical; ^(c) ^(d) and ^(e) fertility status not explained by management for low (L), medium (M) and high (H) fertility class (see Methods for more information); ^(f) average number of months per year with potential evapotranspiration larger than precipitation; ^(g) not available for all sites; significant differences are indicated with '*' when 0.01<p<0.05, with '**' when 0.001<p<0.01 or with '***' when p < 0.001

Supplementary Table 6. Univariate analysis and multiple linear regressions (backward stepwise regressions) to investigate the importance of management, nitrogen deposition and stand age on biomass production efficiency (BPE) when considering 48 forest sites globally distributed (i.e. all forests with BPE derived from biomass production and gross primary production measured during the same period and with concurrent information on management, nitrogen deposition and age).

BPE predictors	Univariate anal	ysis	Stepwise regression	
Management Nitrogen deposition Age	p value 0.00204 ** ^(a) 0.00696 ** ^(b) 0.0313 * ^(b)	$adj R^2$ n.a. 0.1293 ^(b) 0.0772 ^(b)	<i>included</i> yes yes yes	
Variables final model stepwise regression				
Management	n.a.	n.a.	0.00403 **	
Nitrogen deposition	n.a.	n.a.	0.03393 *	
Adj \mathbf{R}^2 initial model	n.a.	n.a.	0.27	
$\operatorname{Adj} \operatorname{R}^2$ final model	n.a.	n.a.	0.27	

Notes: ^(a) one-way ANOVA, ^(b) linear regression

Supplementary Table 7. Values (mean±s.e.m; replicates in parenthesis) of biomass production efficiency (BPE) for key terrestrial ecosystem types according to their management status.

Ecosystem type		BPE	
	natural	managed	p difference
forest	0.41±0.01 (27)	0.53±0.03 (26)	0.000702 ***
grassland	0.44±0.04 (10)	0.63±0.08 (4)	0.0413 *
cropland	n.a.	0.58±0.03 (24)	n.a.

Notes: Acronym 'n.a.' indicates no data available / not applicable; significance value p tested with ANOVA analysis.

Supplementary Table 8. Results of univariate analysis and multiple linear regressions (backward stepwise regressions) to detect the most important environmental, climatic and vegetation variables in predicting biomass production efficiency (BPE), when considering 75 globally distributed natural unmanaged sites.

BPE predictors	Univariate and	alysis	Stepwise regression	
Categorical variables	p ANOVA	post-hoc (f)	included	
Biome (F, G, M, P, T) (a)	0.826	n.s.	yes	
Climate (C, Te, Tr) ^(b)	0.052	n.s.	yes	
Growth form (H, W) ^(c)	0.447	n.s.	yes	
Fertility (L, M, H) ^(d)	0.234	n.s.	yes	
Continuous variables	p regression	$Adj R^2$	included	
Nitrogen deposition	0.729	-0.012	yes	
Available water content	0.555	-0.0088	yes	
Precipitation	0.338	-0.00093	yes	
Dry months ^(e)	0.339	-0.00098	yes	
Variables final model stepwise regression				
Climate	n.a.	n.a.	$p=0.051^{(g)} p=0.079^{(h)}$	
$Adj R^2$ initial model	n.a.	n.a.	-0.0053	
$Adj R^2$ final model	n.a.	n.a.	0.053	

Notes: ^(a) F: forests, G: grasslands, M: marshes, P: peatlands, T: tundra; ^(b) C: cold, Te: temperate, Tr: tropical; ^(c) H: herbaceous, W: woody; ^(d) H: high, M: medium, L: low; ^(e) average number of months per year with potential evapotranspiration larger than precipitation; ^(f) post-hoc information (Tukey's HSD test) non-significant with p>0.05 (n.s); ^(g) factor: temperate, reference: cold; ^(h) factor: tropical, reference: cold; n.a. 'not applicable'; significant differences are indicated with '*' when 0.01 , '**' when <math>0.001 and '***' when <math>p < 0.001.

Supplementary Table 9. Methodologies used to assess biomass production (BP) and gross primary production (GPP) with their uncertainty reduction factor (RF¹; the lower RF, the lower the methodology uncertainty).

method	RF
BP	
Isotope turnover	0.3
Series aboveground biomass and belowground growth	0.3
Series aboveground and belowground biomass	0.6
Site-specific model or estimates partially derived from literature	0.6
Flux component based	1.0
GPP	
Eddy covariance and data assimilation	0.2
Eddy covariance	0.3
Chamber-based	0.6
Site-specific model	0.6
Flux component based	1.0

Supplementary Table 10. Impact of different methodologies to estimate gross primary production (GPP; i.e. eddy covariance or process-based models) and biomass production (BP; i.e. methods with 'low uncertainty', LU, or 'medium uncertainty', MU; see footnotes) on the difference in biomass production efficiency (BPE) between natural (N) and managed (M) forests.

	GPP method	BP method	site		BPE	
				Ν	М	p difference
Impact GPP n	nethodology on BPE					
case 1	eddy	all	38	0.41	0.55	0.0010
case 2	model	all	15	0.40	0.50	0.096
Impact BP me	thodology on BPE					
case 3	eddy	LU ^(a)	19	0.40	0.56	0.024
case 4	eddy	MU ^{(b) (c)}	19	0.42	0.54	0.025

Notes: ^(a) temporal series of aboveground biomass (e.g. from sequential harvests or inventories of standing biomass) and belowground growth (e.g. ingrowth-cores or minirhizotrons), ^(b) temporal series of aboveground biomass (see in (a)) and belowground biomass (e.g. sequential root coring), and ^(c) site-specific models (e.g. empirical models relating soil conditions to root growth, process-based models with site calibration against growth and biomass data) or with BP estimates partially derived from the literature from similar sites (see also Supplementary Table 9).

Supplementary Table 11. Significance level 'p' of the difference in biomass production efficiency between natural (N) and managed (M) forest and grassland ecosystems (twolevel management classification) or between pristine natural (PN), semi-natural (SN) and managed forest and grassland ecosystems (three-level management classification); see Supplementary Figure 4.

	Forests manag	ement classification	Grasslands mana	Grasslands management classification				
	Two-level	Three-level	Two-level	Three-level				
1 way ANOVA	0.00070***	0.00083***	0.041*	0.13				
Tukey's HSD test	N-M	PN-M 0.00072***	N-M 0.041*	PN-M 0.15				
-	0.00070***	SN-M 0.079+		SN-M 0.19				
		SN-PN 0.21		SN-PN 0.93				

Notes: +: 0.05 <p<0.10, *: p<0.05, ***: p<0.001

Supplementary Table 12. The ratio of annual biomass production (BP) to standing biomass (B) for the nonvascular component of various high latitude plant communities (BP-to-B ratio or the portion of biomass renewed every year; year⁻¹) for gap-filling of biomass production efficiency of tundra ecosystems (see Methods for details).

Location and reference	Community type	BP-to-B ratio
wet systems		
Central Norway ¹⁷⁴	wet meadow	0.99
Northern Alaska ¹⁷⁵	wet tundra	0.78
Northern Canada ^{176,177}	hummocky sedge-moss meadow	0.19
Northern Canada ^{176,177}	wet sedge-moss meadow	0.20
Northern Sweden ¹⁷⁸	subarctic mire	0.23
Western Siberia ¹⁷⁹	eutrophic swamp (sedge-Sphagnum)	0.64
dry systems		
Central Alaska ¹⁸⁰	moist acidic tussock	0.27
Central Alaska ¹⁸¹	tussock tundra	0.41
Central Norway ¹⁸²	dry meadow	0.95
Northern Alaska ^{170,171}	moist acidic tussock tundra	0.20
Northern Sweden ¹⁶⁹	moderately exposed heath	0.41
Northern Sweden ¹⁶⁹	tree-line heath	0.25
Mean wet systems	-	0.50
Mean dry systems	-	0.42

Supplementary Table 13. Comparison of the statistical analyses using gap-filled and original (not gap-filled) values of biomass production efficiency (BPE), considering all forest sites (natural and managed, For.) and natural unmanaged sites of all ecosystem types investigated (Nat.).

BPE predictors		Ga	p-fill	led B	PE	Original BPE							
		For.			Nat.			For.		Nat.			
	U	Μ	Р	U	Μ	Р	U	Μ	Р	U	Μ	Р	
Management			1						1				
Nitrogen deposition			2			7			2			7	
Natural fertility			3			1			3			2	
Available water content			4			8			4			8	
Dry months			5			5			5			5	
Precipitation			6			6			6			6	
Climate			7			2			7			1	
Age													
Ecosystem type						3						3	
Growth form						4						4	

Notes: U: univariate analysis, M: multiple linear regressions and P: partitioning with Random Forest. Colors: (i) orange filling indicates a significant relationship (p<0.05); (ii) yellow filling indicates a trend (0.05 < p<0.10), and (iii) grey filling indicates that the predictor variable was not used in the analysis. Numbers indicate the ranking of the variables from the most (1) to the least (7 or 8) influential. Natural fertility was observed for natural sites. For managed sites, the modeled unexplained natural fertility (see Statistical analysis) was used as a proxy of natural fertility.

Supplementary Table 14. Univariate analysis and multiple linear regressions (backward stepwise regressions) to evaluate the impact of different datasets of biomass production efficiency (BPE, which is the ratio between annual biomass production (BP) and gross primary production (GPP)) on the relationship between BPE and its potential environmental, climatic and vegetation drivers for natural unmanaged sites: Dataset 1, comprising sites (n=75) with BP and GPP not necessarily measured during the same period, and Dataset 2, comprising only sites (n=40) with BP and GPP measured during the same period.

BPE predictors		Datas	et 1		Data	set 2
-	Univariate and	alysis	Stepwise regression	Univariate and	alysis	Stepwise regression
Categorical variables	p ANOVA	post-hoc (f)	included	p ANOVA	post-hoc	included
Biome $(F, G, M, P, T)^{(a)}$	0.826	n.s.	yes	0.800	n.s.	yes
Climate (C, Te, Tr) ^(b)	0.052	n.s.	yes	0.096	n.s.	yes
Growth form (H, W) ^(c)	0.447	n.s.	yes	0.324	n.s.	yes
Fertility (L, M, H) ^(d)	0.234	n.s.	yes	0.269	n.s.	yes
Continuous variables	p regression	$Adj R^2$	included	p regression	$Adj R^2$	included
Nitrogen deposition	0.729	-0.012	yes	0.485	-0.013	yes
available water content	0.555	-0.0088	yes	0.479	-0.013	yes
Precipitation	0.338	-0.00093	yes	0.899	-0.026	yes
Dry months ^(e)	0.339	-0.00098	yes	0.889	-0.026	yes
Variables final model stepwi	se regression					
climate	n.a.	n.a.	$p=0.051^{(g)} p=0.079^{(h)}$	n.a.	n.a.	$p=0.22^{(g)}p=0.048^{*(h)}$
Adj R^2 initial model	n.a.	n.a.	-0.0053	n.a.	n.a.	0.0098
$Adj R^2$ final model	n.a.	n.a.	0.053	n.a.	n.a.	0.071

Notes: ^(a) F: forests, G: grasslands, M: marshes, P: peatlands, T: tundra; ^(b) C: cold, Te: temperate, Tr: tropical; ^(c) H: herbaceous, W: woody; ^(d) H: high, M: medium, L: low; ^(e) average number of months per year with potential evapotranspiration larger than precipitation; ^(f) post-hoc information (Tukey's HSD test) non-significant with p>0.05 (n.s); ^(g) factor: temperate, reference: cold; ^(h) factor: tropical, reference: cold; n.a. 'not applicable'; significant differences are indicated with '*' when 0.01 .

Supplementary Table 15. Univariate analysis (linear regression) for forest sites (natural and managed) and natural unmanaged sites of all ecosystem types (forests, grasslands, marshes, peatlands, tundra) to evaluate the importance of (i) fertilization on the relationship between biomass production efficiency (BPE) and nitrogen deposition and of (ii) irrigation, flooding, minerotrophic and permafrost conditions on the relationship between BPE and variables related to the water status (available water content, precipitation, dry months per year).

BPE predictors		natural and	managed forests		all natura	l ecosystems	3		
	all s	ites	sites w	vithout	al	l sites	sites without		
		confounding effects ^(a)							
	p value	adj R ²	p value	adj R ²	p value	adj R ²	p value	adj R ²	
nitrogen deposition	0.00478 **	0.13	0.00653 **	0.15	n.a.	n.a.	n.a.	n.a.	
available water content	0.542	-0.012	0.351	-0.0024	0.555	-0.0088	0.873	-0.016	
precipitation	0.579	-0.013	0.985	-0.022	0.338	-0.00093	0.325	-0.00025	
dry months	0.245	0.0074	0.0765	0.046	0.339	-0.00098	0.688	-0.011	

Notes: ^(a) without considering fertilized sites for analysis on nitrogen deposition and without considering irrigated sites for analysis on soil water content, precipitation and dry months (i.e. average number of months per year when potential evapotranspiration is larger than precipitation); ^(b) without considering sites with occasional flooding (e.g. marshes), minerotrophic conditions (e.g. some peatlands) and sites with permafrost (tundra).

Supplementary Table 16. Values of standard uncertainty (p) for non-forest ecosystem types for the uncertainty assessment of biomass production (BP) and gross primary production (GPP) of each site i (see Methods for more details).

Ecosystem type	$p_{BPi} (gC m^{-2} y^{-1})$	$p_{GPPi} (gC m^{-2} y^{-1})$
grassland	371	818
cropland	375	597
marsh	687	793
peatland	232	344
tundra	88	93

Supplementary Table	17.	Classification of soil nutrient availability.

Site name	Fluxnet	Status	soil type	structure	Ν	С	C:N	pН	CEC	Fert.	Extra info	Rep.	summary remarks and reference
Croplands													
Auradé	FR-Aur	Н	Luvisol	clay loam; sand 21%, clay 32%	0.094	0.87	9.3	6.9	14	yes	Al, Ca, Mg, Mn, P ₂ O ₅ , K, Na	X	Fertile soil type, suitability for agriculture, fertilization ¹⁸³⁻¹⁸⁵ (Ceschia Eric, per. com.)
Avignon	FR-Avi	Н	Calcaric Fluvisol	endy 0270	0.14	1.33	9.6			yes			Fertile soil type, suitability for agriculture, fertilization ¹⁸⁶
Beano1	IT-Be1	Н	Chromi- Endoskeletic Cambisol	sand 27%, clay 15%	0.19	1.85	9.8	7.1		yes		Х	Fertile soil type, suitability for agriculture, fertilization ⁴⁷ (Alberti Giorgio, Delle Vedove Gemini per. com.)
Gebesee	DE-Geb	Н	Chernozerm	silty clay loam; sand 4%, clay 36%	0.14	1.2	9	6.7		yes			Fertile soil type, suitability for agriculture, fertilization ^{187,188}
Grignon	FR-Gri	Н	Luvisol	silt loam; sand 10%, clay 19%	0.14	1.6	11.2	7.2	16	yes		Х	Fertile soil type, suitability for agriculture, fertilization ^{185,187} (Loubet Benjamin per. com) Marginal land with low soil quality;
Kellogg CRP-S	no	М	Typic Hapludalfs	sand 70%, clay 27%	0.20	2.4	11.7	5.9	6.0	yes	K, P, Ca, Mg	Х	history of agriculture (with fertilization) but nutrient leaching; however, 20 y grassland land use improved soil status ^{49,127,189}
Kellogg CRP-P	no	М	Typic Hapludalfs	sand 68%, clay 27%	0.23	2.6	11.6	6.2	5.5	yes	K, P, Ca, Mg	Х	Marginal land with low soil quality; history of agriculture (with fertilization) but nutrient leaching; however, 20 y grassland land use improved soil status ^{49,127,189}
Kellogg CRP-C	no	М	Typic Hapludalfs	sand 67%, clay 27%	0.28	3.1	11.1	6.1	6.0	yes	K, P, Ca, Mg	Х	Marginal land with low soil quality; history of agriculture (with fertilization) but nutrient leaching; however, 20 y grassland land use improved soil status ^{49,127,189}
Kellogg Agr-C	no	М	Typic Hapludalfs	sand 64%, clay 30%	0.13	1.4	10.8	6.4	8.1	yes	K, P, Ca, Mg	Х	Marginal land with low soil quality; history of agriculture (with fertilization) but nutrient leaching ^{49,127,189}

Kellogg Agr-S	no	М	Typic Hapludalfs	sand 62%, clay 33%	0.13	1.4	10.2	6.4	7.1	yes	K, P, Ca, Mg	X	Marginal land with low soil quality; history of agriculture (with fertilization) but nutrient leaching ^{49,127,189}
Kellogg Agr-P	no	М	Typic Hapludalfs	sand 54%, clay 36%	0.16	1.6	10.1	5.8	8.6	yes	K, P, Ca, Mg	X	Marginal land with low soil quality; history of agriculture (with fertilization) but nutrient leaching ^{49,127,189}
Klingenberg	DE-Kli	Н	Gleysoil (drained)	clay loam; sand 21%, clay 56%	0.33	4.3	13	6.2		yes		X	Fertile soil type, suitability for agriculture, fertilization ¹⁸⁶ (Grünwald Thomas per. com.)
Lamasquère	FR-Lam	Н	Brunisol	clay; sand 12%, clay	0.18	1.6	8.9	7.0	19	yes	Al, Ca, Mg, Mn, P ₂ O ₅ , K, Na	Х	Fertile soil type, suitability for agriculture, fertilization ^{184,185}
Lonzée winter wheat	BE-Lon	Н	Luvisol	54% Sand 8%, clay 20%						yes	2 3, 7		(Česchia Eric, per. com.) Fertile soil type, suitability for agriculture, fertilization ⁵⁰
Lonzée sugar beet	BE-Lon	Н	Luvisol	Sand 8%, clay 20%						yes			Fertile soil type, suitability for agriculture, fertilization ⁵⁰
Lonzée potato	BE-Lon	Н	Luvisol	Sand 8%, clay 20%						yes			Fertile soil type, suitability for agriculture, fertilization ⁵⁰
Lutjewad	NL-Lut	Н	Calcaric Epigleyic Fluvisol	·						yes		Х	Fertile soil type, suitability for agriculture, fertilization ¹⁸⁵
Mead 1	US-Ne1	Н	Mollic Hapludalfs, Pachic Argialbolls, Vertic Argialbolls	sand 11%, clay 37%			11.0	6.3		yes	P, K, Na, Ca, Mg	Х	Fertile soil type, suitability for agriculture, fertilization ⁵⁴ (Andy Suyker per. com.)
Mead 2 maize	US-Ne2	Н	Mollic Hapludalfs, Pachic Argialbolls, Vertic Argialbolls	sand 12%, clay 33%			10.8	5.7		yes	P, K, Na, Ca, Mg	X	Fertile soil type, suitability for agriculture, fertilization ^{54,190} (Andy Suyker per. com.)
Mead 2 soybean	US-Ne2	Н	Mollic Hapludalfs, Pachic Argialbolls, Vertic	sand 12%, clay 33%			10.8	5.7		yes	P, K, Na, Ca, Mg	Х	Fertile soil type, suitability for agriculture, fertilization ^{54,190} (Andy Suyker per. com.)
Mead 3 maize	US-Ne3	Н	Argialbolls Mollic Hapludalfs,	sand 8%, clay 35%			11.0	5.8		yes	P, K, Na, Ca, Mg	Х	Fertile soil type, suitability for agriculture, fertilization ^{54,190} (Andy

			Pachic Argialbolls, Vertic Argialbolls										Suyker per. com.)
Mead 3 soybean	US-Ne3	Н	Mollic Hapludalfs, Pachic Argialbolls, Vertic Argialbolls	sand 8%, clay 35%			11.0	5.8		yes	P, K, Na, Ca, Mg	X	Fertile soil type, suitability for agriculture, fertilization ^{54,190} (Andy Suyker per. com.)
Oensingen	CH-Oe2	Н	Eutri-Stagnic Cambisol	sandy clay; sand 30%, clay 42%	0.39	3.1	8	6.7		yes		Х	Fertile soil type, suitability for agriculture, fertilization ¹⁹¹
Risbyholm	DK-Ris	Н	Histosol, (drained)			3.5				yes			Soil improvement (drainage), suitability for agriculture, fertilization ¹⁸⁶
forest													
Bornhoved Alder	no	L	Fibric Histosol	organic	1.5	26	17	5.8		no	N ₂ fixation	Х	Wet and nutrient-poor soil; substantial C allocated belowground to N ₂ -fixing bacteria to increase N availability ^{192,193}
Bornhoved Beech	no	L	dystri-cambic Arenosol	sandy texture	0.19	2.9	15	3.3		no			Poor soil type ^{192,193}
Caldaro	no	Н	Calcaric cambisol	Sand 45%, clay 11%	0.20	1.74	8.7	7.4		yes			Fertile soil type, fertilization, area with intense agriculture ⁵⁶ (Zanotelli Damiano per. comm.)
Cascade Head 1	no	Н								no		Х	nitrogen-rich ¹⁹⁴
Cascade Head 1A	no	Н								no	N ₂ fixation	Х	nitrogen-rich and N_2 fixation by vegetation ¹⁹⁴
Caxiuana	BR-Cax	L	oxisol	sand 33%, clay 54% upper	0.13	1.68	12.3	3.8	2.3	no	P, micronutrients	Х	Forest soil extremely nutrient limited, with low P and CEC ^{57,195} Soil type and organic layer indicate
Changbai Mountains	CN-Cha	Н	Mollisols	organic-rich horizon, clay-loam Organic	0.89	7.5	8.5	5.8		no	Р		good fertility status ^{60,61} (Wu Jianbing per. comm.)
Chibougamau EOBS	CA-Qfo	L	ferro-humic podzol	layer 15-40 cm, deeper silty-sand texture; mostly well- drained	0.66	46.5				no			Poor soil type ^{64,196,197}

Coastal plain North Carolina	US-NC2	М	histosol	peat soil	1	26	26			yes			Fertilized poor soil ⁶⁵
Collelongo	IT-Col	Н	Humic alfisol	Silty loam	0.4- 1.8	5-15	13	5.9- 5.9	15-41	no	Micronutrients, base saturation		Fertile soil type and good soil chemical properties ¹⁹⁸
Dinghushan MF	CN-Din	L	lateritic red soil / yellow soil	18% sand, 19% clay		2.2		3.8		no			Poor soil type, with increase fertility with forest age ^{68,69}
Dooary	no	Н	Gleysols	sand 9%, clay 53%	0.42	4.7	11	4.8		no	Р,К		planted on former fertilized grasslands and relative high yield class ¹⁹⁹⁻²⁰¹
Flakaliden C	SE-Fla	L	iron podzol	sand 56%, clay 6%						no		Х	Nutrient limited ^{202,203}
Frazer old	no	L	typic cryochrepts (Inceptisols)	sandy loams				4.5- 6.1	20	no		Х	Soil with low fertility and particularly low N ^{73,204}
Frazer young	no	L	typic cryochrepts (Inceptisols)	sandy loams				4.5- 6.1	20	no		Х	Soil with low fertility and particularly low N ^{73,204}
Fujiyoshida	JP-Fuj	L	Lava flow	no mineral soil			35-53 humus			no			Lava flow (1000 y old), no mineral soil, deep layer litter (Ohtsuka Toshiyuki per. comm.)
Hainich	DE-Hai	Н	Cambisol	sand 4%, clay 40%			11.8	5.7	10-12	no	Base saturation, micronutrients	Х	Fertile soil ^{76,205}
Harvard	US-Ha1	L	inceptisols	sandy loam, well drained				<7		no	N mineralization	Х	Nutrient-poor with low N mineralization ²⁰⁶
Hesse	FR-Hes	Н	luvisol / stagnic luvisol	sand 6%, clay 26%				3.9- 4.1	5-7	no	Base saturation	Х	Soil type typically nutrient-rich; stand among the best fertility site classes ^{77,207,208}
JacarandaK34	no	L	oxisols	sand 63%, clay 3%	0.08- 0.15	1.3- 2.6	17	3.9- 4.7	1.3	no	P, micronutrients		Soil heavily leached and nutrient- poor ^{57,195,209}
Juniper	no	L								no	Foliar N		Typical N limitation in region ⁹⁷ ; dry site: availability of nutrients inherently low in such ecosystem type ^{97,210-212}
Kannenbruch AlderAsh	DE-Kan	Н								no		Х	Soil very fertile ⁸⁰
Kannenbruch Beech	DE-Kan	Н								no		Х	Soil very fertile ⁸⁰
Kannenbruch Oak	DE-Kan	Н								no		Х	Soil very fertile ⁸⁰
Lochristi	BE-Lcr	Н		sand with a clay- enriched deep soil layer; sand	0.14	1.6	11.7	5.6		yes	K, P, Mg, Na, Ca	X	Suitability for agriculture, former intensive fertilization ⁸¹

				86%, clay									
				80%, ciay 11%									
Metolius	US-Me4	М	Inceptisol	65% sand, 10% clay	0.04- 0.09	0.6- 2.3	18-26	6.8- 7.1		no	Presence N ₂ fixers, details N cyle	Х	Poor soil type but N ₂ fixing shrubs in understory improve nutrient status ²¹³⁻²¹⁵
Metolius-young	US-Me5	М	Inceptisol	65% sand, 10% clay	0.04- 0.09	0.8- 2.3	19-26	6.5- 6.9		no	Presence N ₂ fixers, details N cyle	Х	Poor soil type but N_2 fixing shrubs in understory improve nutrient status ²¹³⁻²¹⁵
Morgan Monroe	US- MMS	М	typic Dystrochrept (Inceptisols)	34% sand, 40% clay				5.2		no			Poor soil type but relative high N mineralization ²⁰⁶
NAU Centennial Undisturbed	no	М	Typic Eutroboralf Mollic	sand 19%, clay 29%	0.12	2.6	21.7	5.5		no		Х	Medium nutrient status ^{87,216} (Dore Sabina per. comm.)
NAU Centennial thinned	no	М	Eutroboralf/ Typic Argiboroll	sand 33%, clay 31%	0.17	3.4	19.7	5.5		no		Х	Medium nutrient status ^{87,216} (Dore Sabina per. comm.)
Pasoh	no	L	laterite					3.5– 4.8		no	P, exchangeable cataions and bases	Х	Poor soil ^{217,218}
Pierce Creek Forest C	no	М	Podzol	A horizon: sand (40 cm); B horizon: clay and gravel (60 cm)						no		X	Low N but P not limiting ⁸⁹
Pierce Creek Forest IF	no	Н	Podzol	A horizon: sand (40 cm); B horizon: clay and gravel (60 cm)						yes		X	Fertilization (and irrigation) till N appeared in excess ⁸⁹
Popface alba	no	Н	Alfisol	sand 38%, clay 18%	0.13	1.1	9.3	5	26.4	yes		Х	Plantation on former agricultural land with high nutrient availability ²¹⁹⁻²²¹
Popface euamericana	no	Н	Alfisol	sand 38%, clay 18%	0.13	1.1	9.3	5	26.4	yes		Х	Plantation on former agricultural land with high nutrient availability ²¹⁹⁻²²¹
Popface nigra	no	Н	Alfisol	sand 38%, clay 18%	0.13	1.1	9.3	5	26.4	yes		Х	Plantation on former agricultural land with high nutrient availability 219-221
Prince AlbertSSA SOAS	CA-Oas	М	Orthic Gray Luvisol	Loam-clay loam,	0.021					no	Mg, Ca, dominant species		N ₂ fixation moderate the nutrient limitation typical of cold biomes

				moderately drained							N2 fixer, vegetation		with slow decomposition rates ²²²⁻
Prince Albert SSA SOBS	CA-Obs	L	20-30 cm peat over sand	poorly drained	0.007					no	nutrient analysis Mg, Ca, vegetation nutrient analysis		Nutrient limitation because of slow decomposition rates ^{222,223}
Prince Albert SSA SOJP	CA-Ojp	L	Eutric Brunisol/Orthi c Eutric Brunisol	Well drained	0.005					no	Mg, Ca, vegetation nutrient analysis		Nutrient limitation because of slow decomposition rates ^{222,223}
Puechabon	FR-Pue	М	Rendzina	14% sand, 40% clay	0.25	3.8	14.8	7.6	26.9	no	Leaf nutrients	Х	Sufficient N, low P ^{92,93}
Qianyanzhou Ecological Station	CN-Qia	L	red earth	17% sand, 15% clay						no			Poor soil type ^{225,226}
Santiam Pass	no	L		1570 clay						no	Foliar N		Typical N limitation in region ⁹⁷ ; vegetation properties indicate relatively nutrient-poor status ²²⁷
Saskatchewan HJP75	CA-SJ3	L		Organic layer and mineral (sand 86%, clay 4%); well drained			44 (organ ic)			no		X	Nutrient-poor ²²⁸
Scio	no	Н								no	Foliar N	Х	Relative high nutritional status and biomass production not limited by nutrient availability ²²⁷
Soroe	DK-Sor	Н	Luvisol	sand 74%, clay 12%	high				14	no		Х	Nutrient rich soil ^{198,229}
Sylvania hardwood	US-Syv	L	spodosols	57% sand, 6% clay	0.18	3.4	19	4.5		no	N mineralization, details N cycle	Х	Infertile soil type ^{100,230}
Takayama	JP-Tak	Н	brown forest soil	sand 41%, clay 38% Sand 3%,						no			Soil type very fertile ²³¹⁻²³³
Tapajos67	no	L	Oxisols	clay 89% (with sandier	0.17	2.54	15.2	3.84	3.0	no	P, micronutrients		Nutrient-poor soil type ^{57,195}
Tapajos83	no	L	Ferralsol	patches)						no			Nutrient-poor soil type 57,195
Teshio CCLaG	JP-Tef	Н	Gleyic Cambisol							no			Fertile soil type ¹⁰⁵
Tharandt	DE-Tha	М	Dystric Cambisol	Sand 12%, clay 15%				3.9	5.6	no	Base saturation		Fertile soil type but low pH and ion exchange capacity ^{208,234}
Thompson NSA	CA-NS1	L	30-50 cm Peat	poorly	0.006					no	Mg, Ca,		Nutrient limitation because of slow

NOBS			over clay	drained							vegetation		decomposition rates 222,224
											nutrient analysis		
											Full physical		Decomposition limited by cold
Thompson d71	CA-NS2	М	Gray Luvisols							no	and chemical		climate but likely benefited from a
											analysis		'fire fertilization' effect ²³⁵⁻²³⁷
											Full physical		Decomposition limited by cold
Thompson d37	CA-NS3	Μ	Gray Luvisols							no	and chemical		climate but likely benefited from a
											analysis		'fire fertilization' effect ²³⁵⁻²³⁷
											Full physical		Decomposition limited by cold
Thompson d20	CA-NS5	М	Gray Luvisols							no	and chemical		climate but likely benefited from a
											analysis		'fire fertilization' effect ²³⁵⁻²³⁷
											Full physical		Decomposition limited by cold
Thompson d15	CA-NS6	М	Gray Luvisols							no	and chemical		climate but likely benefited from a $(5.237)^{-235-237}$
								-			analysis		'fire fertilization' effect ²³⁵⁻²³⁷
Tumbarumba	AU-Tum	М	Red dermosol	00.000/				<7		no		Х	Moderate nutrient status ¹⁰⁸
			Brunisolic	80-90%	0.06	0.00	11.4	6.0			macronutrients(P,		Relatively fertile soil with likely
Turkey Point TP02	CA-TP1	Н	Gray Brown	sand, $<5\%$	0.06	0.68	11.4	6.3		yes	K, Ca, Mg)		improved nutrient status from
			Luvisol	clay									previous farming activities ^{109,110}
			Gleyed	80-90%							magnanutrianta/D		Relatively fertile soil with likely
Turkey Point TP89	CA-TP2	Н	Brunisolic	sand, <5%	0.07	0.99	14.2	4.3		no	macronutrients(P, $K_{\rm r}$ C $_{\rm r}$ M $_{\rm r}$)		improved nutrient status from
			Gray Brown Luvisol	clay							K, Ca, Mg)		previous farming activities ^{109,110}
			Brunisolic	80-90%									
Turkey Point TP74	CA-TP3	М	Gray Brown	sand, <5%	0.05	0.97	19.4	3.7		no	macronutrients(P,		Relatively fertile soil with moderate
Turkey Foline 11 /4	CA-II 5	IVI	Luvisol	clay	0.05	0.97	19.4	5.7		110	K, Ca, Mg)		nutrient availability ^{109,110}
			Luvisoi	ciay									
			Brunisolic	80-90%							magnanutrianta/D		Delatively fartile soil with medanate
Turkey Point TP39	CA-TP4	Μ	Gray Brown	sand, <5%	0.05	0.77	15.4	4.1		no	macronutrients(P, K, Ca, Mg)		Relatively fertile soil with moderate nutrient availability ^{109,110}
			Luvisol	clay							K, Ca, Mg)		nutrent availability
				337.11									
TT ' ' C				Well				25					
University of	no	L	Podzols (Entic	drained, 92% sand.				3.5- 4.5		no	N mineralization		Poor soil type with N limitation
Michigan			Haplothods)					4.5					
	US-			1% clay sand 34%,							exchangeable		Soil low in exchangeable bases, N,
Walker Branch	WBW	L	typic Paleudult	clay 63%				<7	2.9	no	bases, N and P		and $P^{206,240,241}$
Warings Woods	no	Н		well-drained						n 0	bases, in and i	Х	High fertility ²⁴²
manings moous	110	11		Well						no		Δ	ingii tertiitty
			Andisols	drained,	1.4-	3.4-		4.9-					Fertile soil type but with moderate
Wind River	US-Wrc	Μ	(Entic	loam, 5-8%	1.9	5.3	25-28	, <i>)</i> = 5.7		no		Х	nutrient limitation ^{243,244}
			Vitrands)	clay	1.7	5.5		5.7					nutrent minution
				clay (60%							Vegetation		Fertile soil type and vegetation
Wytham Woods	no	Н	Cambisols	land	0.40	5.3	13.5			no	survey, P, Ca, K,		typical for relatively nutrient-rich
,				surface),							Mg		soils ^{113,245,246}

				silty clay									
				(22%), clay loam (15%)									
Xishuangbanna	CN-Xsh	L	laterite/latosol	sandy loam	0.21	1.9	9	4.5- 5.5		no	Р, К		Classification based on poor soil type but nutrient concentrations upper range reported for tropical forests ^{114,247}
Xishuangbanna plantation	no	М								yes			Area of poor soil type (see Xishuangbanna) but fertility amended by fertilization ¹¹⁵
Yatir	IL-Yat	L	Rendzina (above chalk and limestone)	Sand 30%, Clay 44%	0.10	1.14	11.4	8.4		no		Х	N limitation in arid environment ^{248,249}
Grasslands													
Beano2	IT-Be2	Н	Chromi- Endoskeletic Cambisol	sand 27%, clay 15%	0.19	1.92	10.1	7.1		yes		Х	Fertile soil type, suitability for agriculture, fertilization ⁴⁷ (Alberti Giorgio, Delle Vedove Gemini per. com.)
Cheyenne	no	М	Aridic Argiustolls	sandy loam; sand 63%, clay 19%		1.2- 2.3		6	28	no			Soil type of moderate fertility ^{117,250,251}
Grillenburg	DE-Gri	М	pseudogley	sand 10%, clay 9%			11.3	6.4		no		Х	N limitation possible but plant composition and historical use (agriculture >50 y before measurements) point to a medium status ¹¹⁹ (Bernhofer Christian, Grünwald Thomas per. com.)
Haibei	CN-Hab	L	Mat Cry-gelic Cambisol	clay loam	0.42	4.3	10.2	7.3	30	no	P, K; foliar nutrients	Х	Nutrient-poor soil, typical of cold biomes ²⁵²
Hakasija 1	RU-Ha1	М	calcic chernozem	silty clay	0.24	2.2	9			no		Х	Fertile soil but mineralization limited by cold climate ^{122,123} Fertile soil and agriculture 10 y
Hakasija 3	RU-Ha3	М	calcic chernozem	silty clay			9			no		Х	before measurements (with limited fertilization) but mineralization limited by cold climate ¹²³
Inner Mongolia	no	L	Calcic Chernozems	sand 49%, clay 18%	0.24	2.3	9.6	6.6	15.7	no		Х	Nutrients limiting in wet conditions (in dry conditions water is limiting) ^{124,253}
Kellogg CRP-Ref	no	М	Typic Hapludalfs	sand 60%, clay 35%	0.27	3.1	11.4	6.2	6.5	no	K, P, Ca, Mg	Х	Marginal land with low soil quality; history of agriculture (with fertilization) but nutrient leaching; however, 20 y grassland land use

Kellogg CRP-S	no	М	Typic Hapludalfs	sand 70%, clay 27%	0.20	2.4	11.7	5.9	6.0	yes	K, P, Ca, Mg	Х	improved soil status ^{49,126,127,189} Marginal land with low soil quality; history of agriculture (with fertilization) but nutrient leaching; however, 20 y grassland land use improved soil status ^{49,126,127,189}
Kellogg Agr-S	no	М	Typic Hapludalfs	sand 62%, clay 33%	0.13	1.4	10.2	6.4	7.1	yes	K, P, Ca, Mg	Х	Marginal land with low soil quality; history of agriculture (with fertilization) but nutrient leaching ^{49,126,127,189}
Kellogg Agr-P	no	М	Typic Hapludalfs	sand 54%, clay 36%	0.16	1.6	10.1	5.8	8.6	yes	K, P, Ca, Mg	Х	Marginal land with low soil quality; history of agriculture (with fertilization) but nutrient leaching ^{49,126,127,189}
lasper	US-Jas	М	sandstone- derived soil (Dibble Series, Millsholm variant)	Silty clay loam; sand 10%, clay 40%	0.10	3.0	30	5.5	3.8	no	Р, К	Х	Soil moderately fertile likely limited in N and P ^{129,254}
Konza	US-Kon	Н	Typic Natrustolls	silty clay loam						no			Fertile soil type ¹³⁰
Kursk	no	Н	chernozem	sand 32%, clay 37%			11.9	6.3	53	no		Х	Rich soil and productive site ¹³⁴
Lethbridge	CA-Let	Н	orthic dark- brown chernozems	clay-loam; sand 29%, clay 31%	0.48	6.1	12.7	7.1		no		Х	Soil type is very fertile ^{137,255}
Matador	no	М	Rego Brown Chernozemic	clay						no		Х	Study site similar to Lethbridge but colder climate likely limiting decomposition ^{137,139}
NAU Coconito Burned	no	М	Mollic Eutroboralf	24% sand, 20% clay						no			Fertile soil type but great loss of organic matter in fire 10 y before measurements ⁸⁷
Dsage	no	Н	mollisols	loam / silty clay loam	0.17	0.90	5.3	5.9		no	P, K, Ca, Mg; base saturation available	Х	Nutrient-rich ¹⁴¹
Tchizalamou	CG-Tch	L	Ferralic Arenosols	sand					0.5	no		Х	Low ionic content, unsuitable for agriculture ^{256,257}
Woodward	no	М	Psammentic Haplustalfs , Typic	sandy						no			Soil type of moderate fertility ¹⁴⁴

Burcht	no	Н								no		Х	Nutrient-rich conditions ¹⁴⁵
Flax Pond	no	М								no			General N limitation within this type of ecosystem; P is not limiting ^{258,259}
Great Sippewissett	no	Н								no		Х	No nutrient limitation at the site ²⁶⁰
Mase	JP-Mas	Н	Typic Endoaquepts	clay loam	0.20	2.30	11.5			yes			Fertile soil and fertilizer application ¹⁴⁹
Saeftinghe	no	Н								no		Х	Nutrient-rich conditions ¹⁴⁵
San Joaquin	US-SJ1	Н								no		Х	Nutrient-rich site ¹⁵¹
Peatlands				•									
BOREAS collapse bog	no	L	peat	organic + clays			97.6	3.9		no		Х	Poor nutrient status ¹⁵²
BOREAS intermediate fen	no	М	peat	organic + clays			43.2	5.8		no		Х	Intermediate nutrient status ¹⁵²
BOREAS rich fen	no	Н	peat	organic + clays			26.5	7.2		no		Х	Rich nutrient status ¹⁵²
Bog End, Moor House	no	L	peat							no			Lack of site specific info; global map of soil fertility indicates low fertility ²⁰
Degerö	SE-Deg	L	peat					acid		no		Х	Low nutrients ¹⁵⁶
Mer Bleue	CA-Mer	L	peat		0.48-	46-		acid 4.2-		no		Х	Nutrient poor ¹⁵⁷
Stordalen palsa	no	L	histel	peat + silt	0.48-	40- 47	8-10	4.2-		no	N mineralization	Х	Nutrient poor ^{162,261,262}
<i>Tundra</i> Alexandra Fiord, wet meadow	no	L		organic + silty loam	1.7	15	8.8	6.3		no	K, P, Ca, Mg	X	Low nutrient status ¹⁶⁴
Barrow	US-Brw	L		organic horizon + silty clay/silty loam			20	4- 5.5	95	no	C:P; foliar nutrients analysis	Х	Very nutrient poor: N and P most deficient (with N more deficient than P), then, order deficiency K> Ca>Mg ¹⁶⁵
				+buried peat							Co Ma Al Ma		
Imnavait Creek	no	L			0.12	4.2	35	4.5	18	no	Ca, Mg, Al, Mn, Fe; N mineralization	Х	Nutrient limitation ²⁶³
Paddus	no	L			1.85	43	23.2	7.1		no		Х	Nutrient-poor ^{264,265}
Toolik Lake	no	L	histic pergelic cryaquept	Organic + silt	0.14	4.4	31	5	29	no	Ca, Mg, Al, Mn, Fe; N mineralization	Х	Productivity is limited by N and secondary by P 170,263,266

Notes: Information about the column heads: Fluxnet: indicates if site is in Fluxnet (http://www.fluxdata.org/default.aspx) or *European Fluxes Database Cluster* (http://gaia.agraria.unitus.it/home/sites-list) with code; status: soil nutrient availability or site fertility (H: high, M: medium, L: low); soil type: nomenclature follows the site literature and not a single system; structure: proportion of sand and clay, texture class and other soil physical characteristics; N: nitrogen content (%); C: carbon content (%); C:N: C:N ratio; pH: when available pH in CaCl₂ was reported, otherwise from water solution; CEC: cation exchange capacity (in cmol kg⁻¹); Fert.: fertilized site (yes or no); Extra info: supplementary information on the nutrient status available in the literature (e.g. phosphorous, micronutrients, foliar nutrient analysis, nitrogen mineralization, base saturation); rep. (report): the 'X' indicates whether the fertility category (high, medium, or low) was specifically confirmed in the literature or by the site PI.

4 References

- 35 Lasslop, G. *et al.* Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. *Global Change Biology* **16**, 187-208 (2010).
- 36 Reichstein, M. *et al.* On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. *Global Change Biology* **11**, 1424-1439 (2005).
- 37 Grant, R. F. *et al.* Net ecosystem productivity of boreal jack pine stands regenerating from clearcutting under current and future climates. *Global Change Biology* **13**, 1423-1440 (2007).
- 38 Van Wijk, M. T., Williams, M., Laundre, J. A. & Shaver, G. R. Interannual variability of plant phenology in tussock tundra: modelling interactions of plant productivity, plant phenology, snowmelt and soil thaw. *Global Change Biology* **9**, 743-758 (2003).
- 39 Fernández-Martínez, M. *et al.* Nutrient availability as the key regulator of global forest carbon balance. *Nature Climate Change* **4**, 471-476 (2014).
- 40 Brus, D. J. *et al.* Statistical mapping of tree species over Europe. *European Journal of Forest Research* **131**, 145-157 (2012).
- 41 Poulter, B. *et al.* Plant functional type mapping for earth system models. *Geoscientific Model Development* **4**, 993-1010 (2011).
- 42 Ngo-Duc, T., Polcher, J. & Laval, K. A 53-year forcing data set for land surface models. *Journal of Geophysical Research-Atmospheres* **110** (2005).
- 43 *European Fluxes Database Cluster*, <http://www.europe-fluxdata.eu/> (2013).
- 44 Ceschia, E. *et al.* Management effects on net ecosystem carbon and GHG budgets at European crop sites. *Agriculture Ecosystems & Environment* **139**, 363-383 (2010).
- 45 Ma, S., Churkina, G. & Trusilova, K. Investigating the impact of climate change on crop phenological events in Europe with a phenology model. *International Journal of Biometeorology* **56**, 749-763 (2012).
- 46 Moors, E. J. *et al.* Variability in carbon exchange of European croplands. *Agriculture Ecosystems & Environment* **139**, 325-335 (2010).
- 47 Alberti, G. *et al.* Changes in CO₂ emissions after crop conversion from continuous maize to alfalfa. *Agriculture Ecosystems & Environment* **136**, 139-147 (2010).
- 48 Loubet, B. *et al.* Carbon, nitrogen and Greenhouse gases budgets over a four years crop rotation in northern France. *Plant and Soil* **343**, 109-137 (2011).
- 49 Zenone, T. *et al.* CO₂ fluxes of transitional bioenergy crops: effect of land conversion during the first year of cultivation. *Global Change Biology Bioenergy* **3**, 401-412 (2011).
- 50 Dufranne, D., Moureaux, C., Vancutsem, F., Bodson, B. & Aubinet, M. Comparison of carbon fluxes, growth and productivity of a winter wheat crop in three contrasting growing seasons. *Agriculture Ecosystems & Environment* **141**, 133-142 (2011).
- 51 Aubinet, M. *et al.* Carbon sequestration by a crop over a 4-year sugar beet/winter wheat/seed potato/winter wheat rotation cycle. *Agricultural and Forest Meteorology* **149**, 407-418 (2009).
- 52 Moureaux, C. *et al.* Carbon balance assessment of a Belgian winter wheat crop (Triticum aestivum L.). *Global Change Biology* **14**, 1353-1366 (2008).
- 53 Moureaux, C., Debacq, A., Bodson, B., Heinesch, B. & Aubinet, M. Annual net ecosystem carbon exchange by a sugar beet crop. *Agricultural and Forest Meteorology* **139**, 25-39 (2006).
- 54 Verma, S. B. *et al.* Annual carbon dioxide exchange in irrigated and rainfed maizebased agroecosystems. *Agricultural and Forest Meteorology* **131**, 77-96 (2005).

- 55 Kutsch, W. L. *et al.* Environmental indication: A field test of an ecosystem approach to quantify biological self-organization. *Ecosystems* **4**, 49-66 (2001).
- 56 Zanotelli, D., Montagnani, L., Manca, G. & Tagliavini, M. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements. *Biogeosciences* **10**, 3089-3108 (2013).
- 57 Malhi, Y. *et al.* Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. *Global Change Biology* **15**, 1255-1274 (2009).
- 58 Aragao, L. E. O. C. *et al.* Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. *Biogeosciences* **6**, 2759-2778 (2009).
- 59 Wang, M., Guan, D., Wang, Y., Hao, Z. & Liu, Y. Estimate of productivity in ecosystem of the broad-leaved Korean pine mixed forest in Changbai Mountain. *Science in China Series D-Earth Sciences* **49**, 74-88 (2006).
- 60 Wang, M., Guan, D.-X., Han, S.-J. & Wu, J.-L. Comparison of eddy covariance and chamber-based methods for measuring CO2 flux in a temperate mixed forest. *Tree Physiology* **30**, 149-163 (2010).
- 61 Wu, J. B. *et al.* Year-round soil and ecosystem respiration in a temperate broad-leaved Korean Pine forest. *Forest Ecology and Management* **223**, 35-44 (2006).
- 62 Zhang, J.-H., Han, S.-J. & Yu, G.-R. Seasonal variation in carbon dioxide exchange over a 200-year-old Chinese broad-leaved Korean pine mixed forest. *Agricultural and Forest Meteorology* **137**, 150-165 (2006).
- 63 Bergeron, O., Margolis, H. A., Coursolle, C. & Giasson, M.-A. How does forest harvest influence carbon dioxide fluxes of black spruce ecosystems in eastern North America? *Agricultural and Forest Meteorology* **148**, 537-548 (2008).
- 64 Hermle, S., Lavigne, M. B., Bernier, P. Y., Bergeron, O. & Pare, D. Component respiration, ecosystem respiration and net primary production of a mature black spruce forest in northern Quebec. *Tree Physiology* **30**, 527-540 (2010).
- 65 Noormets, A. *et al.* Response of carbon fluxes to drought in a coastal plain loblolly pine forest. *Global Change Biology* **16**, 272-287 (2010).
- 66 Chiti, T. *et al.* Predicting changes in soil organic carbon in mediterranean and alpine forests during the Kyoto Protocol commitment periods using the CENTURY model. *Soil Use and Management* **26**, 475-484 (2010).
- 67 Valentini, R. *et al.* Respiration as the main determinant of carbon balance in European forests. *Nature* **404**, 861-865 (2000).
- 68 Yan, J. H., Wang, Y. P., Zhou, G. Y. & Zhang, D. Q. Estimates of soil respiration and net primary production of three forests at different succession stages in South China. *Global Change Biology* **12**, 810-821 (2006).
- 69 Yu, G.-R. *et al.* Environmental controls over carbon exchange of three forest ecosystems in eastern China. *Global Change Biology* **14**, 2555-2571 (2008).
- 70 Saunders, M. *et al.* Thinning effects on the net ecosystem carbon exchange of a Sitka spruce forest are temperature-dependent. *Agricultural and Forest Meteorology* **157**, 1-10 (2012).
- 71 Bergh, J., Linder, S. & Bergstrom, J. Potential production of Norway spruce in Sweden. *Forest Ecology and Management* **204**, 1-10 (2005).
- 72 Hedwall, P. O., Strengbom, J. & Nordin, A. Can thinning alleviate negative effects of fertilization on boreal forest floor vegetation? *Forest Ecology and Management* **310**, 382-392 (2013).
- 73 Ryan, M. G. & Waring, R. H. Maintenance respiration and stand development in a sub-alpine lodgepole pine forest *Ecology* **73**, 2100-2108 (1992).

- 74 Mizoguchi, Y. *et al.* Seasonal and interannual variation in net ecosystem production of an evergreen needleleaf forest in Japan. *Journal of Forest Research* **17**, 283-295 (2012).
- 75 Ohtsuka, T., Negishi, M., Sugita, K., Iimura, Y. & Hirota, M. Carbon cycling and sequestration in a Japanese red pine (Pinus densiflora) forest on lava flow of Mt. Fuji. *Ecological Research* **28**, 855-867 (2013).
- 76 Knohl, A., Schulze, E. D., Kolle, O. & Buchmann, N. Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany. *Agricultural and Forest Meteorology* **118**, 151-167 (2003).
- 77 Granier, A., Breda, N., Longdoz, B., Gross, P. & Ngao, J. Ten years of fluxes and stand growth in a young beech forest at Hesse, North-eastern France. *Annals of Forest Science* **65** (2008).
- 78 Davi, H. *et al.* Modelling carbon and water cycles in a beech forest Part II: Validation of the main processes from organ to stand scale. *Ecological Modelling* **185**, 387-405 (2005).
- 79 Chambers, J. Q. *et al.* Respiration from a tropical forest ecosystem: Partitioning of sources and low carbon use efficiency. *Ecological Applications* **14**, S72-S88 (2004).
- 80 Kutsch, W. L., Liu, C. J., Hormann, G. & Herbst, M. Spatial heterogeneity of ecosystem carbon fluxes in a broadleaved forest in Northern Germany. *Global Change Biology* **11**, 70-88 (2005).
- 81 Broeckx, L. S., Verlinden, M. S. & Ceulemans, R. Establishment and two-year growth of a bio-energy plantation with fast-growing *Populus* trees in Flanders (Belgium): Effects of genotype and former land use. *Biomass & Bioenergy* **42**, 151-163 (2012).
- 82 Verlinden, M. S. *et al.* Net ecosystem production and carbon balance of an SRC poplar plantation during its first rotation. *Biomass & Bioenergy* **56**, 412-422 (2013).
- 83 Law, B. E., Sun, O. J., Campbell, J., Van Tuyl, S. & Thornton, P. E. Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. *Global Change Biology* 9, 510-524 (2003).
- 84 Law, B. E., Van Tuyl, S., Cescatti, A. & Baldocchi, D. D. Estimation of leaf area index in open-canopy ponderosa pine forests at different successional stages and management regimes in Oregon. *Agricultural and Forest Meteorology* **108**, 1-14 (2001).
- 85 Williams, M., Schwarz, P. A., Law, B. E., Irvine, J. & Kurpius, M. R. An improved analysis of forest carbon dynamics using data assimilation. *Global Change Biology* **11**, 89-105 (2005).
- 86 Ehman, J. L. *et al.* An initial intercomparison of micrometeorological and ecological inventory estimates of carbon exchange in a mid-latitude deciduous forest. *Global Change Biology* **8**, 575-589 (2002).
- 87 Dore, S. *et al.* Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning. *Ecological Applications* **20**, 663-683 (2010).
- 88 Ito, A. & Oikawa, T. A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. *Ecological Modelling* **151**, 143-176 (2002).
- 89 Ryan, M. G., Hubbard, R. M., Pongracic, S., Raison, R. J. & McMurtrie, R. E. Foliage, fine-root, woody-tissue and stand respiration in *Pinus radiata* in relation to nitrogen status. *Tree Physiology* **16**, 333-343 (1996).
- 90 Gielen, B. *et al.* Net carbon storage in a poplar plantation (POPFACE) after three years of free-air CO₂ enrichment. *Tree Physiology* **25**, 1399-1408 (2005).
- 91 Lopez, B., Sabate, S. & Gracia, C. A. Annual and seasonal changes in fine root biomass of a Quercus ilex L. forest. *Plant and Soil* **230**, 125-134 (2001).

- 92 Rambal, S., Joffre, R., Ourcival, J. M., Cavender-Bares, J. & Rocheteau, A. The growth respiration component in eddy CO2 flux from a Quercus ilex mediterranean forest. *Global Change Biology* **10**, 1460-1469 (2004).
- 93 Rapp, M., Santa-Regina, I., Rico, M. & Gallego, H. A. Biomass, nutrient content, litterfall and nutrient return to the soil in Mediterranean oak forests. *Forest Ecology and Management* **119**, 39-49 (1999).
- 94 Huang, M. *et al.* The ecosystem carbon accumulation after conversion of grasslands to pine plantations in subtropical red soil of south China. *Tellus Series B-Chemical and Physical Meteorology* **59**, 439-448 (2007).
- 95 Ma, Z. *et al.* Observation and modeling of NPP for Pinus elliottii plantation in subtropical China. *Science in China Series D-Earth Sciences* **51**, 955-965 (2008).
- 96 Mkhabela, M. S. *et al.* Comparison of carbon dynamics and water use efficiency following fire and harvesting in Canadian boreal forests. *Agricultural and Forest Meteorology* **149**, 783-794 (2009).
- 97 Runyon, J., Waring, R. H., Goward, S. N. & Welles, J. M. Environmental limits on net primary production and light-use efficiency across the Oregon transect *Ecological Applications* **4**, 226-237 (1994).
- 98 Wu, J. *et al.* Synthesis on the carbon budget and cycling in a Danish, temperate deciduous forest. *Agricultural and Forest Meteorology* **181**, 94-107 (2013).
- 99 Pilegaard, K., Ibrom, A., Courtney, M. S., Hummelshoj, P. & Jensen, N. O. Increasing net CO2 uptake by a Danish beech forest during the period from 1996 to 2009. *Agricultural and Forest Meteorology* **151**, 934-946 (2011).
- 100 Desai, A. R., Bolstad, P. V., Cook, B. D., Davis, K. J. & Carey, E. V. Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper Midwest, USA. *Agricultural and Forest Meteorology* **128**, 33-55 (2005).
- 101 Tang, J. & Bolstad, P. V. Carbon allocation in an old-growth forest in the Great Lakes region of the United States *Proceeding* 7th *International Carbon Dioxide Conference* (2005).
- 102 Ohtsuka, T., Mo, W., Satomura, T., Inatomi, M. & Koizumi, H. Biometric based carbon flux measurements and net ecosystem production (NEP) in a temperate deciduous broad-leaved forest beneath a flux tower. *Ecosystems* **10**, 324-334 (2007).
- 103 Yamamoto, S., Murayama, S., Saigusa, N. & Kondo, H. Seasonal and inter-annual variation of CO₂ flux between a temperate forest and the atmosphere in Japan. *Tellus Series B-Chemical and Physical Meteorology* **51**, 402-413 (1999).
- 104 Fukuzawa, K. *et al.* Temporal variation in fine-root biomass, production and mortality in a cool temperate forest covered with dense understory vegetation in northern Japan. *Forest Ecology and Management* **310**, 700-710 (2013).
- 105 Takagi, K. *et al.* Change in CO2 balance under a series of forestry activities in a cooltemperate mixed forest with dense undergrowth. *Global Change Biology* **15**, 1275-1288 (2009).
- 106 Dunn, A. L., Barford, C. C., Wofsy, S. C., Goulden, M. L. & Daube, B. C. A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. *Global Change Biology* **13**, 577-590 (2007).
- 107 Goulden, M. L. *et al.* Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. *Global Change Biology* **17**, 855-871 (2011).
- 108 Keith, H. *et al.* Multiple measurements constrain estimates of net carbon exchange by a Eucalyptus forest. *Agricultural and Forest Meteorology* **149**, 535-558 (2009).

- 109 Peichl, M., Arain, M. A., Ullah, S. & Moore, T. R. Carbon dioxide, methane, and nitrous oxide exchanges in an age-sequence of temperate pine forests. *Global Change Biology* **16**, 2198-2212 (2010).
- 110 Peichl, M., Brodeur, J. J., Khomik, M. & Arain, M. A. Biometric and eddy-covariance based estimates of carbon fluxes in an age-sequence of temperate pine forests. *Agricultural and Forest Meteorology* **150**, 952-965 (2010).
- 111 Falk, M., Wharton, S., Schroeder, M., Ustin, S. & U, K. T. P. Flux partitioning in an old-growth forest: seasonal and interannual dynamics. *Tree Physiology* **28**, 509-520 (2008).
- 112 Harmon, M. E. *et al.* Production, respiration, and overall carbon balance in an oldgrowth Pseudotsuga-tsuga forest ecosystem. *Ecosystems* **7**, 498-512 (2004).
- 113 Thomas, M. V. *et al.* Carbon dioxide fluxes over an ancient broadleaved deciduous woodland in southern England. *Biogeosciences* **8**, 1595-1613 (2011).
- 114 Tan, Z. *et al.* Carbon balance of a primary tropical seasonal rain forest. *Journal of Geophysical Research-Atmospheres* **115** (2010).
- 115 Song, Q.-H. *et al.* Do the rubber plantations in tropical China act as large carbon sinks? *IForest-Biogeosciences and Forestry* **7**, 42-47 (2013).
- 116 Maseyk, K., Grunzweig, J. M., Rotenberg, E. & Yakir, D. Respiration acclimation contributes to high carbon-use efficiency in a seasonally dry pine forest. *Global Change Biology* **14**, 1553-1567 (2008).
- 117 Hunt, H. W. *et al.* Simulation-model for the effects of climate change on temperate grassland ecosystems *Ecological Modelling* **53**, 205-246 (1991).
- 118 Gilmanov, T. G. *et al.* Integration of CO₂ flux and remotely-sensed data for primary production and ecosystem respiration analyses in the Northern Great Plains: potential for quantitative spatial extrapolation. *Global Ecology and Biogeography* **14**, 271-292 (2005).
- 119 Hussain, M. Z. *et al.* Summer drought influence on CO₂ and water fluxes of extensively managed grassland in Germany. *Agriculture Ecosystems & Environment* **141**, 67-76 (2011).
- 120 Wu, Y. *et al.* Comprehensive assessments of root biomass and production in a *Kobresia humilis* meadow on the Qinghai-Tibetan Plateau. *Plant and Soil* **338**, 497-510 (2011).
- 121 Kato, T. *et al.* Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. *Global Change Biology* **12**, 1285-1298 (2006).
- 122 Belelli Marchesini, L. *et al.* Carbon balance assessment of a natural steppe of southern Siberia by multiple constraint approach. *Biogeosciences* **4**, 581-595 (2007).
- 123 Belelli Marchesini, L. *Analysis of the carbon cycle of steppe and old field ecosystems of central Asia* 213 (PhD thesis, Tuscia University, 2008).
- 124 Gao, Y. Z., Chen, Q., Lin, S., Giese, M. & Brueck, H. Resource manipulation effects on net primary production, biomass allocation and rain-use efficiency of two semiarid grassland sites in Inner Mongolia, China. *Oecologia* **165**, 855-864 (2011).
- 125 Wang, Y. F. *et al.* The fluxes of CO2 from grazed and fenced temperate steppe during two drought years on the Inner Mongolia Plateau, China. *Science of the Total Environment* **410**, 182-190 (2011).
- 126 Zenone, T., Gelfand, I., Chen, J., Hamilton, S. K. & Robertson, G. P. From set-aside grassland to annual and perennial cellulosic biofuel crops: Effects of land use change on carbon balance. *Agricultural and Forest Meteorology* **182**, 1-12 (2013).
- 127 Deal, M. W. *et al.* Net primary production in three bioenergy crop systems following land conversion. *Journal of Plant Ecology* (2013).

- 128 Higgins, P. A. T., Jackson, R. B., Des Rosiers, J. M. & Field, C. B. Root production and demography in a california annual grassland under elevated atmospheric carbon dioxide. *Global Change Biology* **8**, 841-850 (2002).
- 129 Luo, Y. Q., Jackson, R. B., Field, C. B. & Mooney, H. A. Elevated CO₂ increases belowground respiration in California grasslands. *Oecologia* **108**, 130-137 (1996).
- 130 Kim, J. & Verma, S. B. Carbon-dioxide exchange in a temperate grassland ecosystem. *Boundary-Layer Meteorology* **52**, 135-149 (1990).
- 131 Colello, G. D., Grivet, C., Sellers, P. J. & Berry, J. A. Modeling of energy, water, and CO2 flux in a temperate grassland ecosystem with SiB2: May-October 1987. *Journal of the Atmospheric Sciences* **55**, 1141-1169 (1998).
- 132 Hayes, D. C. & Seastedt, T. R. Root dynamics of tallgrass prairie in wet and dry years *Canadian Journal of Botany-Revue Canadienne De Botanique* **65**, 787-791 (1987).
- 133 Kim, J., Verma, S. B. & Clement, R. J. Carbon-dioxide budget in a temperate grassland ecosystem *Journal of Geophysical Research-Atmospheres* **97**, 6057-6063 (1992).
- 134 Gilmanov, T. G., Parton, W. J. & Ojima, D. S. Testing the 'CENTURY' ecosystem level model on data sets from eight grassland sites in the former USSR representing a wide climatic/soil gradient. *Ecological Modelling* **96**, 191-210 (1997).
- 135 Gilmanov, T. G. *et al.* Gross primary production and light response parameters of four Southern Plains ecosystems estimated using long-term CO2-flux tower measurements. *Global Biogeochemical Cycles* **17** (2003).
- 136 Scurlock, J. M. O., Johnson, K. & Olson, R. J. Estimating net primary productivity from grassland biomass dynamics measurements. *Global Change Biology* **8**, 736-753 (2002).
- 137 Flanagan, L. B., Wever, L. A. & Carlson, P. J. Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. *Global Change Biology* **8**, 599-615 (2002).
- 138 Li, T., Grant, R. F. & Flanagan, L. B. Climate impact on net ecosystem productivity of a semi-arid natural grassland: modeling and measurement. *Agricultural and Forest Meteorology* **126**, 99-116 (2004).
- 139 Warembourg, F. R. & Paul, E. A. Seasonal transfers of assimilated C-14 in grassland plant production and turnover, soil and plant respiration *Soil Biology & Biochemistry* 9, 295-301 (1977).
- 140 Sims, P. L., Singh, J. S. & Lauenroth, W. K. Structure and function of 10 western North-American grasslands. 1. Abiotic and vegetational characteristics *Journal of Ecology* **66**, 251-& (1978).
- 141 Risser, P. G. et al. The true prairie ecosystem. (Hutchinson Ross Inc, 1982).
- 142 Caquet, B. *et al.* Soil carbon balance in a tropical grassland: Estimation of soil respiration and its partitioning using a semi-empirical model. *Agricultural and Forest Meteorology* **158**, 71-79 (2012).
- 143 de Grandcourt, A. *et al.* in *Africa and the Carbon Cycle* Vol. Proceedings of the Open Science Conference on "Africa and Carbon Cycle: the CarboAfrica project" (eds A. Bombelli & R. Valentini) (FAO, 2010).
- 144 Sims, P. L. & Bradford, J. A. Carbon dioxide fluxes in a southern plains prairie. *Agricultural and Forest Meteorology* **109**, 117-134 (2001).
- 145 Soetaert, K. *et al.* Modeling growth and carbon allocation in two reed beds (*Phragmites australis*) in the Scheldt estuary. *Aquatic Botany* **79**, 211-234 (2004).
- 146 Houghton, R. A. & Woodwell, G. M. The Flax-Pond ecosystem study Exchanges of CO₂ between a salt-marsh and the atmosphere *Ecology* **61**, 1434-1445 (1980).

- 147 Howes, B. L., Dacey, J. W. H. & Teal, J. M. Annual carbon mineralization and belowground production of *Spartina alterniflora* in a New England salt-marsh *Ecology* **66**, 595-605 (1985).
- 148 Morris, J. T., Houghton, R. A. & Botkin, D. B. Theoretical limits of belowground productivity by *Spartina alterniflora* An analysis through modeling *Ecological Modelling* **26**, 155-175 (1984).
- 149 Saito, M., Miyata, A., Nagai, H. & Yamada, T. Seasonal variation of carbon dioxide exchange in rice paddy field in Japan. *Agricultural and Forest Meteorology* **135**, 93-109 (2005).
- 150 Han, G. H. *et al.* Isotopic disequilibrium between carbon assimilated and respired in a rice paddy as influenced by methanogenesis from CO₂. *Journal of Geophysical Research-Biogeosciences* **112** (2007).
- 151 Rocha, A. V. & Goulden, M. L. Large interannual CO₂ and energy exchange variability in a freshwater marsh under consistent environmental conditions. *Journal of Geophysical Research-Biogeosciences* **113** (2008).
- 152 Trumbore, S. E., Bubier, J. L., Harden, J. W. & Crill, P. M. Carbon cycling in boreal wetlands: A comparison of three approaches. *Journal of Geophysical Research-Atmospheres* **104**, 27673-27682 (1999).
- 153 Lloyd, A. R. *Carbon fluxes at an upland blanket bog in the north Pennines*. (Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/192/, 2010).
- 154 Garnett, M. H., Ineson, P. & Stevenson, A. C. Effects of burning and grazing on carbon sequestration in a Pennine blanket bog, UK. *Holocene* **10**, 729-736 (2000).
- 155 Forrest, G. I. & Smith, R. A. H. Productivity of a range of blanket bog vegetation types in Northern Pennines *Journal of Ecology* **63**, 173-202 (1975).
- 156 Wu, J., Roulet, N. T., Sagerfors, J. & Nilsson, M. B. Simulation of six years of carbon fluxes for a sedge-dominated oligotrophic minerogenic peatland in Northern Sweden using the McGill Wetland Model (MWM). *Journal of Geophysical Research-Biogeosciences* **118**, 795-807 (2013).
- 157 Moore, T. R., Bubier, J. L., Frolking, S. E., Lafleur, P. M. & Roulet, N. T. Plant biomass and production and CO₂ exchange in an ombrotrophic bog. *Journal of Ecology* **90**, 25-36 (2002).
- 158 *FLUXNET Dataset*, <www.fluxdata.org> (2013).
- 159 Lafleur, P. M., Roulet, N. T. & Admiral, S. W. Annual cycle of CO₂ exchange at a bog peatland. *Journal of Geophysical Research-Atmospheres* **106**, 3071-3081 (2001).
- 160 Murphy, M. T. & Moore, T. R. Linking root production to aboveground plant characteristics and water table in a temperate bog. *Plant and Soil* **336**, 219-231 (2010).
- 161 Malmer, N., Johansson, T., Olsrud, M. & Christensen, T. R. Vegetation, climatic changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30 years. *Global Change Biology* **11**, 1895-1909 (2005).
- 162 Olefeldt, D. *et al.* Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands. *Geophysical Research Letters* **39** (2012).
- 163 Welker, J. M., Fahnestock, J. T., Henry, G. H. R., O'Dea, K. W. & Chimner, R. A. CO₂ exchange in three Canadian High Arctic ecosystems: response to long-term experimental warming. *Global Change Biology* **10**, 1981-1995 (2004).
- 164 Henry, G. H. R., Svoboda, J. & Freedman, B. Standing crop and net production of sedge meadows of an ungrazed polar desert oasis *Canadian Journal of Botany-Revue Canadienne De Botanique* **68**, 2660-2667 (1990).
- 165 Tieszen, L. L. Vegetation and Production Ecology of an Alaskan Arctic Tundra. Vol. 29 (Springer-Verlag, 1978).

- 166 Shaver, G. R. & Billings, W. D. Root production and root turnover in a wet tundra ecosystem, Barrow, Alaska. *Ecology* **56**, 401-409 (1975).
- 167 Tieszen, L. L. The seasonal course of aboveground production and chlorophyll distribution in a wet arctic tundra at Barrow, Alaska. *Arctic and Alpine Research* **4** (1972).
- 168 Illeris, L. *et al.* Growing-season carbon dioxide flux in a dry subarctic heath: Responses to long-term manipulations. *Arctic Antarctic and Alpine Research* **36**, 456-463 (2004).
- 169 Campioli, M. *et al.* Net primary production and carbon stocks for subarctic mesic-dry tundras with contrasting microtopography, altitude, and dominant species. *Ecosystems* **12**, 760-776 (2009).
- 170 Shaver, G. R. *et al.* Species composition interacts with fertilizer to control long-term change in tundra productivity. *Ecology* **82**, 3163-3181 (2001).
- 171 Chapin, F. S., Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J. & Laundre, J. A. Responses of Arctic tundra to experimental and observed changes in climate *Ecology* **76**, 694-711 (1995).
- 172 Sullivan, P. F. *et al.* Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska. *Oecologia* **153**, 643-652 (2007).
- 173 Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. *Hydrology and Earth System Sciences* **11**, 1633-1644 (2007).
- 174 Kjelvik, S. & Kärenlampi, L. in *Fennoscandian Tundra Ecosystems. Part 1: Plants and Microorganisms* Vol. 16 (eds F. E. Wielgolaski, P. Kallio, & T. Rosswall) 366 (Springer-Verlag, 1975).
- 175 Oechel, W. C. & Sveinbjörnsson, B. in *Vegetation and production ecology of an Alaskan arctic tundra* Vol. 29 *Ecological Studies* (ed L. L. Tieszen) (Springer-Verlag, 1978).
- 176 Muc, M. in *Truelove Lowland, Devon Island, Canada: A High Arctic ecosystem* (ed L. C. Bliss) (University of Alberta Press, 1987).
- 177 Vitt, D. H. & Pakarinen, P. in *Truelove Lowland, Devon Island, Canada: A High Arctic ecosystem* (ed L. C. Bliss) (University of Alberta Press, 1987).
- 178 Rosswall, T. *et al.* in *Structure and function of tundra ecosystems* Vol. 20 *Ecological Bulletins* (eds T. Rosswall & O. W. Heal) (Stockholm: Swedish Natural Science Research Council 1975).
- 179 Peregon, A., Maksyutov, S., Kosykh, N. P. & Mironycheva-Tokareva, N. P. Map-based inventory of wetland biomass and net primary production in western Siberia. *Journal* of Geophysical Research-Biogeosciences **113** (2008).
- 180 Natali, S. M., Schuur, E. A. G. & Rubin, R. L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. *Journal of Ecology* 100, 488-498 (2012).
- 181 Schuur, E. A. G., Crummer, K. G., Vogel, J. G. & Mack, M. C. Plant species composition and productivity following permafrost thaw and thermokarst in alaskan tundra. *Ecosystems* **10**, 280-292 (2007).
- 182 Wielgolaski, F. E. in *Fennoscandian Tundra Ecosystems. Part 1: Plants and Microorganisms* Vol. 16 (eds F. E. Wielgolaski, P. Kallio, & T. Rosswall) 366 (Springer-Verlag, 1975).
- 183 Lehuger, S. *et al. Predicting the net carbon exchanges of crop rotations in Europe with an agro-ecosystem model.* Vol. hal-00414342, version 1 (http://hal.archivesouvertes.fr/hal-00414342, 2009).

- 184 Béziat, P., Ceschia, E. & Dedieu, G. Carbon balance of a three crop succession over two cropland sites in South West France. *Agricultural and Forest Meteorology* 149, 1628-1645 (2009).
- 185 Osborne, B., Saunders, M., Walmsley, D., Jones, M. & Smith, P. Key questions and uncertainties associated with the assessment of the cropland greenhouse gas balance. *Agriculture Ecosystems & Environment* **139**, 293-301 (2010).
- 186 Kutsch, W. L. *et al.* The net biome production of full crop rotations in Europe. *Agriculture Ecosystems & Environment* **139**, 336-345 (2010).
- 187 Lehuger, S. *et al. Predicting and mitigating the global warming potential of agroecosystems.* Vol. hal-00414286, version 1 (http://hal.archives-ouvertes.fr/hal-00414286, 2009).
- 188 Anthoni, P. M., Freibauer, A., Kolle, O. & Schulze, E. D. Winter wheat carbon exchange in Thuringia, Germany. *Agricultural and Forest Meteorology* **121**, 55-67 (2004).
- 189 Bhardwaj, A. K. *et al.* Water and energy footprints of bioenergy crop production on marginal lands. *Global Change Biology Bioenergy* **3**, 208-222 (2011).
- 190 Suyker, A. E. & Verma, S. B. Gross primary production and ecosystem respiration of irrigated and rainfed maize-soybean cropping systems over 8 years. *Agricultural and Forest Meteorology* **165**, 12-24 (2012).
- 191 Hastings, A. F. *et al.* Uncertainty propagation in soil greenhouse gas emission models: An experiment using the DNDC model and at the Oensingen cropland site. *Agriculture Ecosystems & Environment* **136**, 97-110 (2010).
- 192 Dilly, O. *et al.* Characteristics and energetic strategies of the rhizosphere in ecosystems of the Bornhoved Lake district. *Applied Soil Ecology* **15**, 201-210 (2000).
- 193 Kutsch, W. et al. in Ecosystem Approaches to Landscape Management in Central Europe Ecological Studies (eds J. D. Tenhunen, R. Lenz, & R. E. Hantschel) (Springer-Verlag, 2001).
- 194 Sun, O. J., Campbell, J., Law, B. E. & Wolf, V. Dynamics of carbon stocks in soils and detritus across chronosequences of different forest types in the Pacific Northwest, USA. *Global Change Biology* 10, 1470-1481 (2004).
- 195 Quesada, C. A. *et al.* Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. *Biogeosciences* **7**, 1515-1541 (2010).
- 196 Bergeron, O. *et al.* Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada. *Global Change Biology* **13**, 89-107 (2007).
- 197 Payeur-Poirier, J.-L., Coursolle, C., Margolis, H. A. & Giasson, M.-A. CO2 fluxes of a boreal black spruce chronosequence in eastern North America. *Agricultural and Forest Meteorology* **153**, 94-105 (2012).
- 198 Schulze, E. D. Carbon and Nitrogen Cycling in European Forest Ecosystems. (Springer, 2000).
- 199 Black, K. G. & Farrell, E. P. Carbon sequestration and Irish forest ecosystems. (COFORD, 2006).
- 200 Saiz, G. *et al.* Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland. *Global Change Biology* **12**, 1007-1020 (2006).
- 201 Saiz, G. *et al.* Seasonal and spatial variability of soil respiration in four Sitka spruce stands. *Plant and Soil* **287**, 161-176 (2006).
- 202 Jarvis, P. & Linder, S. Botany Constraints to growth of boreal forests. *Nature* **405**, 904-905 (2000).

- 203 Majdi, H. Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce stand in northern Sweden. *Tree Physiology* **21**, 1057-1061 (2001).
- 204 Stottlemyer, R., Troendle, C. A. & Markowitz, D. Change in snowpack, soil water, and streamwater chemistry with elevation during 1990, Fraser Experimental Forest, Colorado. *Journal of Hydrology* **195**, 114-136 (1997).
- 205 Guckland, A., Jacob, M., Flessa, H., Thomas, F. M. & Leuschner, C. Acidity, nutrient stocks, and organic-matter content in soils of a temperate deciduous forest with different abundance of European beech (*Fagus sylvatica* L.). Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde **172**, 500-511 (2009).
- 206 Curtis, P. S. *et al.* Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. *Agricultural and Forest Meteorology* **113**, 3-19 (2002).
- 207 Dufrene, E. *et al.* Modelling carbon and water cycles in a beech forest Part I: Model description and uncertainty analysis on modelled NEE. *Ecological Modelling* **185**, 407-436 (2005).
- 208 Schoening, I. & Koegel-Knabner, I. Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests. *Soil Biology & Biochemistry* **38**, 2411-2424 (2006).
- 209 Sanchez, P. A. in *Tropical Rain Forest Ecosystems: Biogeographical and Ecological Studies* (eds H. Lieth & M.K.A. Werger) 132-161 (Elsevier 1989).
- 210 Hibbard, K. A., Law, B. E., Reichstein, M. & Sulzman, J. An analysis of soil respiration across northern hemisphere temperate ecosystems. *Biogeochemistry* **73**, 29-70 (2005).
- 211 Tiedemann, A. R. & Klemmedson, J. O. The influence of western juniper development on soil nutrient availability. *Northwest Science* **69**, 1-8 (1995).
- 212 Tiedemann, A. R. & Klemmedson, J. O. Biomass and nutrient distribution and system nutrient budget for western juniper in central Oregon. *Northwest Science* **74**, 12-24 (2000).
- 213 Kelliher, F. M., Ross, D. J., Law, B. E., Baldocchi, D. D. & Rodda, N. J. Limitations to carbon mineralization in litter and mineral soil of young and old ponderosa pine forests. *Forest Ecology and Management* **191**, 201-213 (2004).
- 214 Law, B. E., Ryan, M. G. & Anthoni, P. M. Seasonal and annual respiration of a ponderosa pine ecosystem. *Global Change Biology* **5**, 169-182 (1999).
- 215 Vogel, C. S., Curtis, P. S. & Thomas, R. B. Growth and nitrogen accretion of dinitrogen-fixing *Alnus glutinosa* (L) Gaertn under elevated carbon dioxide. *Plant Ecology* **130**, 63-70 (1997).
- 216 Grady, K. C. & Hart, S. C. Influences of thinning, prescribed burning, and wildfire on soil processes and properties in southwestern ponderosa pine forests: A retrospective study. *Forest Ecology and Management* **234**, 123-135 (2006).
- 217 Adzmi, Y. *et al.* Heterogeneity of soil morphology and hydrology on the 50 ha longterm ecological research plot at Pasoh, Peninsular Malaysia. *Journal of Tropical Forest Science* **22**, 21-35 (2010).
- 218 Yasuda, Y. *et al.* Measurement of CO₂ flux above a tropical rain forest at Pasoh in Peninsular Malaysia. *Agricultural and Forest Meteorology* **114**, 235-244 (2003).
- 219 Hoosbeek, M. R. *et al.* More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE): Cause of increased priming effect? *Global Biogeochemical Cycles* **18** (2004).

- 220 Liberloo, M. *et al.* Coppicing shifts CO2 stimulation of poplar productivity to aboveground pools: a synthesis of leaf to stand level results from the POP/EUROFACE experiment. *New Phytologist* **182**, 331-346 (2009).
- 221 Moscatelli, M. C., Lagornarsino, A., De Angelis, P. & Grego, S. Short- and mediumterm contrasting effects of nitrogen fertilization on C and N cycling in a poplar plantation soil. *Forest Ecology and Management* **255**, 447-454 (2008).
- 222 Gower, S. T. *et al.* Nutrient dynamics of the southern and northern BOREAS boreal forests. *Ecoscience* **7**, 481-490 (2000).
- 223 Kimball, J. S., Thornton, P. E., White, M. A. & Running, S. W. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region. *Tree Physiology* **17**, 589-599 (1997).
- 224 Sellers, P. J. *et al.* BOREAS in 1997: Experiment overview, scientific results, and future directions. *Journal of Geophysical Research-Atmospheres* **102**, 28731-28769 (1997).
- 225 Wang, X. J. & Gong, Z. T. Assessment and analysis of soil quality changes after eleven years of reclamation in subtropical China. *Geoderma* **81**, 339-355 (1998).
- 226 Wen, X. F., Wang, H. M., Wang, J. L., Yu, G. R. & Sun, X. M. Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003-2007. *Biogeosciences* **7**, 357-369 (2010).
- 227 Matson, P., Johnson, L., Billow, C., Miller, J. & Pu, R. L. Seasonal patterns and remote spectral estimation of canopy chemistry across the Oregon Transect *Ecological Applications* **4**, 280-298 (1994).
- 228 Zha, T. *et al.* Carbon sequestration in boreal jack pine stands following harvesting. *Global Change Biology* **15**, 1475-1487 (2009).
- 229 Boegh, E. *et al.* Remote sensing based evapotranspiration and runoff modeling of agricultural, forest and urban flux sites in Denmark: From field to macro-scale. *Journal of Hydrology* **377**, 300-316 (2009).
- 230 Fisk, M. C., Zak, D. R. & Crow, T. R. Nitrogen storage and cycling in old- and second-growth northern hardwood forests. *Ecology* **83**, 73-87 (2002).
- 231 Inatomi, M., Ito, A., Ishijima, K. & Murayama, S. Greenhouse gas budget of a cooltemperate deciduous broad-leaved forest in Japan estimated using a process-based model. *Ecosystems* **13**, 472-483 (2010).
- 232 Jia, S. & Akiyama, T. A precise, unified method for estimating carbon storage in cooltemperate deciduous forest ecosystems. *Agricultural and Forest Meteorology* 134, 70-80 (2005).
- 233 Satomura, T., Hashimoto, Y., Koizumi, H., Nakane, K. & Horikoshi, T. Seasonal patterns of fine root demography in a cool-temperate deciduous forest in central Japan. *Ecological Research* **21**, 741-753 (2006).
- 234 Schwaerzel, K. *et al.* Soil water content measurements deliver reliable estimates of water fluxes: A comparative study in a beech and a spruce stand in the Tharandt forest (Saxony, Germany). *Agricultural and Forest Meteorology* **149**, 1994-2006 (2009).
- 235 Harden, J. W., Mack, M., Veldhuis, H. & Gower, S. T. Fire dynamics and implications for nitrogen cycling in boreal forests. *Journal of Geophysical Research-Atmospheres* 108 (2002).
- 236 Bond-Lamberty, B., Wang, C., Gower, S. T. & Norman, J. Leaf area dynamics of a boreal black spruce fire chronosequence. *Tree Physiology* **22**, 993-1001 (2002).
- 237 Manies, K. L., Harden, J. W., Veldhuis, H. & Trumbore, S. Soil data from a moderately well and somewhat poorly drained fire chronosequence near Thompson, Manitoba, Canada: U.S. Geological Survey Open-File Report 2006–1291, v. 1.1, 8 p. and data tables, available at http://pubs.usgs.gov/of/2006/1291/. (2006 (revised 2012)).

- 238 Gough, C. M., Vogel, C. S., Harrold, K. H., George, K. & Curtis, P. S. The legacy of harvest and fire on ecosystem carbon storage in a north temperate forest. *Global Change Biology* **13**, 1935-1949 (2007).
- 239 Nave, L. E., Vogel, C. S., Gough, C. M. & Curtis, P. S. Contribution of atmospheric nitrogen deposition to net primary productivity in a northern hardwood forest. *Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere* **39**, 1108-1118 (2009).
- 240 Johnson, D. W. in *Analysis of biogeochemical cycling processes in Walker Branch watershed* (eds D.W. Johnson & R.I. Van Hook) 6-20 (Springer-Verlag, 1985).
- 241 Johnson, D. W., Cole, D. W., Horng, F. W., Van Miegroet, H. & Todd, D. E. Chemical characteristics of two forested ultisols and two forested inceptisols relevant to anion production and mobility. (Oak Ridge National Laboratory, Environmental Sciences Division, Publication n. 1670, 1981).
- 242 Waring, R. *et al.* Why is the productivity of Douglas-fir higher in New Zealand than in its native range in the Pacific Northwest, USA? *Forest Ecology and Management* **255**, 4040-4046 (2008).
- 243 Shaw, D. C. *et al.* Ecological setting of the wind river old-growth forest. *Ecosystems* **7**, 427-439 (2004).
- 244 Paw U, T. P. *et al.* Carbon dioxide exchange between an old-growth forest and the atmosphere. *Ecosystems* **7**, 513-524 (2004).
- 245 Beard, G. R. The soils of Oxford University Field Station, Wytham, Soil Survey and Land Research Centre Silsoe. (National Soil Resources Institute, Cranfield University, 1993).
- 246 Corney, P. M. *et al.* Changes in the field-layer of Wytham Woods assessment of the impacts of a range of environmental factors controlling change. *Journal of Vegetation Science* **19**, 287-U215 (2008).
- 247 Tang, J.-W., Cao, M., Zhang, J.-H. & Li, M.-H. Litterfall production, decomposition and nutrient use efficiency varies with tropical forest types in Xishuangbanna, SW China: a 10-year study. *Plant and Soil* **335**, 271-288 (2010).
- 248 Gruenzweig, J. M., Gelfand, I., Fried, Y. & Yakir, D. Biogeochemical factors contributing to enhanced carbon storage following afforestation of a semi-arid shrubland. *Biogeosciences* **4**, 891-904 (2007).
- 249 Klein, T. *et al.* Quantifying transpirable soil water and its relations to tree water use dynamics in a water- limited pine forest. *Ecohydrology* **7**, 409-419 (2014).
- 250 Fairbourn, M. L. & Batchelder, A. R. Factors influencing magnesium in high-plains forage *Journal of Range Management* **33**, 435-438 (1980).
- 251 Rose, K. K., Hild, A. L., Whitson, T. D., Koch, D. W. & Van Tassell, L. Competitive effects of cool-season grasses on re-establishment of three weed species. *Weed Technology* **15**, 885-891 (2001).
- 252 Jiang, C. *et al.* Nutrient resorption of coexistence species in alpine meadow of the Qinghai-Tibetan Plateau explains plant adaptation to nutrient-poor environment. *Ecological Engineering* **44**, 1-9 (2012).
- 253 Steffens, M., Koelbl, A., Totsche, K. U. & Koegel-Knabner, I. Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China). *Geoderma* **143**, 63-72 (2008).
- 254 Kerr, A. C. Soil nitrogen dynamics under simulated global changes in a California annual grassland. (MS thesis, Stanford University, 2002).
- 255 Grant, R. F. & Flanagan, L. B. Modeling stomatal and nonstomatal effects of water deficits on CO₂ fixation in a semiarid grassland. *Journal of Geophysical Research-Biogeosciences* **112** (2007).

- 256 Laclau, J. P., Sama-Poumba, W., Nzila, J. D., Bouillet, J. P. & Ranger, J. Biomass and nutrient dynamics in a littoral savanna subjected to annual fires in Congo. *Acta Oecologica-International Journal of Ecology* **23**, 41-50 (2002).
- 257 Mareschal, L. *et al.* Mineralogical and physico-chemical properties of Ferralic Arenosols derived from unconsolidated Plio-Pleistocenic deposits in the coastal plains of Congo. *Geoderma* **162**, 159-170 (2011).
- 258 Woodwell, G. M., Hall, C. A. S., Whitney, D. E. & Houghton, R. A. Flax Pond ecosystem study – Exchanges of inorganic nitrogen between an estuarine marsh and Long-Island Sound *Ecology* **60**, 695-702 (1979).
- 259 Woodwell, G. M. & Whitney, D. E. Flax Pond ecosystem study Exchanges of phosphorus between a salt-marsh and coastal waters of Long Island Sound. *Marine Biology* **41**, 1-6 (1977).
- 260 Valiela, I., Teal, J. M., Volkmann, S., Shafer, D. & Carpenter, E. J. Nutrient and particulate fluxes in a salt-marsh ecosystem Tidal exchanges and inputs by precipitation and groundwater *Limnology and Oceanography* **23**, 798-812 (1978).
- 261 Keuper, F. *et al.* A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. *Global Change Biology* **18**, 1998-2007 (2012).
- 262 Malmer, N. & Wallén, B. Peat formation and mass balance in subarctic ombrotrophic peatlands around Abisko, northern Scandinavia. *Ecological Bulletin* **45**, 14 (1996).
- 263 Whittinghill, K. A. & Hobbie, S. E. Effects of landscape age on soil organic matter processing in Northern Alaska. *Soil Science Society of America Journal* **75**, 907-917 (2011).
- 264 Michelsen, A., Schmidt, I. K., Jonasson, S., Quarmby, C. & Sleep, D. Leaf N-15 abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. *Oecologia* **105**, 53-63 (1996).
- 265 Schmidt, I. K., Jonasson, S., Shaver, G. R., Michelsen, A. & Nordin, A. Mineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warming. *Plant and Soil* **242**, 93-106 (2002).
- 266 Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. *Nature* **431**, 440-443 (2004).

5 Column heads of data file

site: site name

ecosystem_type: C: cropland, F: forest, G: grassland, M: marsh, P: boreal peatland, T: tundra

latitude: positive: northern hemisphere, negative: southern hemisphere

longitude: positive: East, negative: West

BPo: original biomass production, $gC m^{-2} y^{-1}$

BPo_u: uncertainty original biomass production, gC $m^{-2} y^{-1}$

BPgf: gap-filled biomass production, gC m⁻² y⁻¹

BPgf_u: uncertainty gap-filled biomass production, gC $m^{-2} y^{-1}$

GPP: gross primary production, gC m⁻² y⁻¹

GPP_u: uncertainty gross primary production, gC m⁻² y⁻¹

BPEo: biomass production efficiency derived from BPo, dimensionless

BPEgf: biomass production efficiency derived from BPgf, dimensionless

time_code: A: BP and GPP measured during the same period, B: BP and GPP measured during different periods

growth_form: dominant functional type: W: woody, H: herbaceous

age_forest: only for forests with BP and GPP measured during the same period (NA: not available), y

climate: cold, temperate, tropical

precipitation: annual precipitation, mm y⁻¹

dry_month: number of months per year with potential evapotranspiration larger than precipitation, month y^{-1}

available_water_content: soil available water

fertility: I: infertile, M: medium fertility status, F: fertile

56

nitrogen_deposition: atmospheric nitrogen deposition, kg N ha⁻¹ y⁻¹ management: N: natural sites, M: managed sites

For details and data sources see Methods and Supplementary Table 2.

6 R code of multinomial ordered logistic regressions

matteodata\$fertility=='I',1,ifelse(matteodata\$fertility=='I',1,ifelse(matteodata\$fertility=='M',2,3)))matteodata\\$managementf=as.factor(ifelse(matteodata\\$management=='N',0,1))

fertmodordfitI=fertmodord\$fitted.values[,1] fertmodordfitM=fertmodord\$fitted.values[,2] fertmodordfitF=fertmodord\$fitted.values[,3] #residuals – to be used in further analysis as 'unexplained natural fertility' – see main text fertilityordIres=ifelse(matteodata\$fertility=='I',1-fertmodordfitI,0-fertmodordfitI) fertilityordMres=ifelse(matteodata\$fertility=='M',1-fertmodordfitM,0-fertmodordfitM) fertilityordFres=ifelse(matteodata\$fertility=='F',1-fertmodordfitF,0-fertmodordfitF)

cor(as.matrix(cbind(fertilityordFres,fertilityordIres,fertilityordMres))) #correlated!

#tests to check if residuals depend on management (they should not!)
cor(cbind(fertilityordFres,fertilityordIres,matteodata\$managementf)) #correlation between
management and residuals should be low

t.test(fertilityordIres~ matteodata\$management) #not significant t.test(fertilityordMres~ matteodata\$management) #not significant t.test(fertilityordFres~ matteodata\$management) #not significant