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Abstract 

In this work, we report a sensitive aptamer-antibody assay for cytochrome c (Cytc) detection using 

electrochemical impedance technique. The biosensor design involves the use of 4-amino benzoic acid for 

the oriented immobilization of aminated aptamers onto multi-walled carbon nanotube screen-printed 

electrode surfaces through an electrochemical grafting technique; electrochemical impedance 

measurements were performed in a solution containing the redox marker ferrocyanide/ferricyanide. The 

change in interfacial charge transfer resistance (Rct) experimented by the redox marker, was recorded to 

confirm aptamer complex formation with target protein, (Cytc), in a label-free first stage. A biotinylated 

anti-cytochrome c antibody (AbCytc) was then used in a sandwich approach. The addition of strep-

AuNPs and silver enhancement treatment led to a further increment of Rct thus obtaining significant 

signal amplification. Under the optimized working conditions, an extremely low detection limit of less 

than 2pM was obtained. Cross-reactivity was evaluated against other proteins present in serum 

(fibrinogen, BSA, immunoglobulin G) and the obtained results demonstrated an improved selectivity.  In 

order to visualize the presence of gold nanoparticles, gold enhancement treatment was applied to 

electrodes already modified with the nanoparticle-sandwich conjugate, allowing direct observation by 

scanning electron microscopy (SEM).  
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Introduction 

 Cytochrome c (Cytc) is a heme containing metalloprotein located in the 

intermembrane space of mitochondria. It plays a central role in electron transport chain 

and also it is an intermediate in apoptosis. When mitochondria are injured under 

pathological conditions, Cytc is released into the cytosol of the cell. This translocation 

of Cytc from mitochondria to cytosol is a decisive event in the activation of intracellular 

signaling; it results in a cascade of caspase activation and guides to program cell 

apoptosis. For this reason, the quantification of Cytc could be of great importance in 

clinical diagnosis and therapeutic research [1]. 

 Aptamers are oligonucleotides (DNA or RNA) that possess properties 

comparable to those of protein monoclonal antibodies, and thus are clear alternatives to 

long established antibody-based diagnostic or other biotechnological products for 

research [2,3], therapy [4,5] and diagnostics [6,7]. This kind of functional nucleic acids 

can fold into complex three dimensional shapes forming binding pockets and cavities 

able to the specific recognition and high affinity binding of any given molecular target, 

from metal ions and small chemicals structures to large proteins and higher order 

proteins complexes, even whole cells, viruses or parasites [8]. Aptamers are generated 

by an in vitro selection process called SELEX (Systematic Evolution of Ligands by 

Exponential Enrichment), which was first reported in 1990 [9,10]. This method has 

permitted the identification of unique DNA/RNA molecules, from large sets of random 

sequence oligomers (DNA or RNA libraries), which bind to specific target molecule 

with very high specificity and affinity [11]. Due to these interesting characteristics, 

aptamers have been increasingly used in biosensing in the recent years [12-15]. 

Biosensors can be classified depending on the technique employed for 

transduction, into optical [16,17], piezoelectric [18,19] and electrochemical types 

[20,21]. In recent years, among the different electrochemical techniques available, 

electrochemical impedance spectroscopy (EIS) [22] has been used in numerous studies 

[23,24]. This technique is very sensitive to changes in the interfacial properties of the 

modified electrodes caused by biorecognition events at the electrode surface [25,26] . 

For this reason, EIS is becoming an attractive electrochemical technique for numerous 

applications such as immunosensing [27], enzyme activity determination [28], 

genosensing [29,30], studies of corrosion [31] and or other surface phenomena [32]. 
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 Signal amplification based on biofunctional nanomaterials has recently attracted 

considerable attention due to the need for ultrasensitive bioassays. Among 

nanomaterials, gold nanoparticles have been widely used thanks to their excellent 

properties, such as high biocompatibility, distinctive size-related electronic and optical 

behaviour, high electrical conductivity and high catalytic activity [33]. For example, 

Deng et al. [34] used AuNPs stabilized with sodium dodecylsulfate to amplify the 

impedimetric signal for the detection of thrombin, Zheng et al. [35] used network-like 

thiocyanuric acid/gold nanoparticles to amplify the signal for the detection of thrombin, 

etc.  

 In this work, we report a sensitive impedimetric aptamer-antibody sandwich 

assay for Cytc detection using a highly specific amplification strategy with the use of 

streptavidin gold nanoparticles and silver enhancement treatment. The employed 

transducer consisted of a multi-walled carbon nanotube (MWCNT) screen-printed 

electrode, its surface allowing the immobilization of cytochrome c aptamer (AptCytc) 

by covalent bond via prior electrochemical grafting. As a transducer material, 

MWCNTs are used for promoting electron-transfer between the electroactive species 

and electrode and provide a novel method for fabricating biosensors. The change of 

interfacial charge transfer resistance (Rct) experimented by the redox marker, was 

recorded to confirm the aptamer complex formation with target protein, cytochrome c 

(Cytc). After that, a biotinylated anti-cytochrome c antibody (AbCytc) is used to form 

the sandwich. The addition of strep-AuNPs and silver enhancement treatment led to a 

further increment of Rct and the subsequent achievement of significant signal 

amplification, high sensitivity and improvement of selectivity. 

 

Experimental 

Reagents and solutions 

 Potassium dihydrogen phosphate, potassium ferricyanide K3[Fe(CN)6], 

potassium ferrocyanide K4[Fe(CN)6], sodium monophosphate, 4-aminobenzoic acid 

(ABA), sodium nitrite, N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 

(EDC), gold (III) chloride solution (HAuCl4), N-hydroxysuccinimide (NHS), 

streptavidin gold nanoparticles, fibrinogen, immunoglobulin G and the target protein 
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cytochrome c (Cytc), were purchased from Sigma (St. Louis, MO, USA). Poly(ethylene 

glycol) 1000 (PEG), sodium chloride, hydroxylamine hydrochloride (NH2OH∙HCl) and 

potassium chloride were purchased from Fluka (Buchs, Switzerland). Polyclonal 

biotinylated anti-cytochrome c antibody (AbCytc) was purchased from BioLegend (San 

Diego, California). LI silver enhancement kit was obtained from Nanoprobes (Yaphank, 

New York). All reagents were analytical reagent grade. The aptamer used in this study 

was synthetized by TIB-MOLBIOL (Berlin, Germany). Stock solutions of aptamers 

were diluted with sterilized and deionised water, separated into fractions and stored at 

−20 °C until required. Aptamer solutions were prepared in PBS buffer pH 7 from stock 

solutions. A well-known aptamer for thrombin (AptThr) was used for negative control 

purposes. Their base sequences were:  

 AptCytc: 

 5'-NH2-AGTGTGAAATATCTAAACTAAATGTGGAGGGTGGG 

 ACGGGAAGAAGTTTATTTTCACACT-3’ 

 AptThr: 

 5'-AGTCCGTGGTAGGGCAGGTTGGGGTGACT-Biotin-3' 

 

All solutions were made up using MilliQ water from MilliQ System (Millipore, 

Billerica, MA, USA). The buffers employed were: PBS (187 mM NaCl, 2.7 mM KCl, 

8.1 mM Na2HPO4·2H2O, 1.76 mM KH2PO4, pH 7.0) and triethylammonium 

bicarbonate 0.6 M.  

 

Biosensing Protocol 

The steps of the experimental protocol for Cytc analysis, described in detail 

below, are represented in Figure 1. 

 

<FIGURE 1> 

  

Aptamer immobilization 

 MWCNT screen-printed electrodes were modified with aminobenzoic acid by 

means of a one step procedure. Firstly, 30 mg of ABA were dissolved in 3 mL of 1 M 

HCl and cooled with ice. Then, the diazonium salt was prepared by adding 570 µL of 2 

mM NaNO2 aqueous solution dropwise to the 4-aminobenzoic acid solution, with 
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constant stirring. The electrode was immersed in this solution, and 10 successive 

voltammetric cycles ranging between 0.0 and -1.0V (v=200 mV∙s
-1

) were performed 

[27], generating a carbon-carbon bond and eliminating the azonium group. The 

modified electrodes (benzoic acid modified) were washed thoroughly with water and 

methanol and dried at room temperature. Finally, 60 µL of aptamer solution with 1 mg 

of EDC and 0.5 mg of NHS was placed on the modified electrode and left to react for 

12 h, with the goal of covalent immobilization of the aptamer through the amide 

formation. This step was followed by two 10 min washing steps with PBS buffer 

solution. 

 

Blocking step  

 To minimize any possible nonspecific adsorption of secondary species, 60 µl of 

PEG were dropped onto the electrodes and left to incubate during 15 min. This was 

followed by two washing steps using PBS buffer solution for 10 min. 

 

Cytochrome c detection  

 60 µl of a solution with the desired concentration of Cytc were dropped onto the 

electrodes. The incubation took place for 15 min. Then, the biosensors were washed 

twice with PBS buffer solution for 10 min. 

 

Sandwich formation 

In order to achieve the aptamer sandwich formation, the electrodes were dropped 

with 60 µl of AbCytc, from a 1/500 dilution of the stock solution in PBS buffer. The 

incubation took place for 15 min. This was followed by two washing steps using PBS 

buffer solution for 10 min. 

 

Addition of strep-AuNPs 

60 μL of strep-AuNPs, from a 1/100 dilution of the stock solution in PBS buffer 

were dropped onto the electrodes [36]. This step was followed by two gentle washing 

steps in PBS buffer for 10 min at 25ºC. Negative controls were performed for the strep-

AuNPs addition step using AptThr as an aptamer without affinity. 

 

Silver enhancement of strep-AuNPs 
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20 µl of a solution obtained by the combination of 10 µl of enhancer and 10 µl 

of initiator (commercial solutions) were deposited onto the electrode surface and left for 

7 minutes to facilitate the reaction [36]. After the catalytic silver reduction, the 

electrodes were thoroughly washed with deionized water to stop the reaction. The silver 

enhancing solution was prepared immediately before each use. For silver enhancement 

treatment, the negative control used was a biotinylated AptThr as aptamer without 

affinity. 

 

Gold enhancement of strep-AuNPs 

The MWCNT screen-printed electrodes modified with sandwich and strep-

AuNPs were immersed in a solution containing a mixture of 0.01% HAuCl4 and 0.4 

mM NH2OH∙HCl (pH 6.0) for 2 min at 25ºC, rinsed, and then treated for 2 additional 

min. In order to prevent the non-specific background of fine gold particles, the 

electrodes were rinsed with a solution of 0.6M triethylammonium bicarbonate buffer 

after each amplification. Solutions were freshly prepared in a lightproof container 

before each use. 

 

Different selectivity experiments were carried out to verify selectivity 

characteristics of the assay with potentially interfering proteins instead of Cytc. 

Equipment 

  AC impedance measurements were performed with the aid of an Autolab 

PGStat 20 (Metrohm Autolab B.V, Utrecht, The Netherlands). FRA (Metrohm Autolab) 

software was used for data acquisition and control of the experiments. A three electrode 

configuration was used to perform the impedance measurements: a platinum-ring 

auxiliary electrode (Crison 52–67 1, Barcelona, Spain), a Ag/AgCl reference electrode 

and the MWCNT-screen printed electrode as the working electrode (Dropsens, Oviedo, 

Spain). A scanning electron microscope (SEM) (Merlin, Zeiss, Germany) was used to 

visualize gold enhanced strep-AuNPs on the electrode surface. 

EIS detection 

 Impedance experiments were performed at an applied potential of 0.17 V (vs. 

Ag/AgCl reference electrode), with a range of frequency of 50KHz-0.05Hz, an AC 

amplitude of 10 mV and a sampling rate of 10 points per decade above 66 Hz and 5 
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points per decade at the lower range. All measurements were performed in PBS buffer 

containing 0.01M K3[Fe(CN)6]/K4[Fe(CN)6] (1:1) mixture, used as a redox marker. The 

impedance spectra were plotted in the form of complex plane diagrams (Nyquist plots, 

−Zim vs. Zre) and fitted to a theoretical curve corresponding to the equivalent circuit with 

Zview software (Scribner Associates Inc., USA). The equivalent circuit was formed by 

one resistor/ capacitor element in series with a resistance; the warburg term was 

circumvented as the diffusion processes were not relevant in this study. For all 

performed fittings, the chi-square goodness-of-fit test was thoroughly checked to verify 

the calculations. In all cases, calculated values for each circuit remained in the range of 

0.0003-0.15 much lower than the tabulated value for 50 degrees of freedom (67.505 at 

95% confidence level). The most important parameter in this work is the electron 

transfer resistance (Rct), which reflects the resistance to charge transfer between the 

redox probe and the electrode surface. In order to compare the results obtained from the 

different electrodes used, and to obtain independent and reproducible results, a relative 

transformation of signals was needed [37]. Thus, the Δratio value was defined according 

to the following equations: 

 

Δratio = Δs /Δp                 (1) 

Δs=Rct(AptCytc/Cytc/AbCytc/strep-AuNPs/silverenhancement)−Rct(electrode-buffer)  (2) 

Δp = Rct (AptCytc) − Rct (electrode-buffer)                   (3) 

 

Where Rct(AptCytc/Cytc/AbCytc/strep-AuNPs/silver enhancement) was the electron transfer resistance 

value measured after sandwich formation and silver enhancement treatment; Rct(AptCytc) 

was the electron transfer resistance value measured after aptamer immobilization on the 

electrode, and Rct(electrode-buffer) was the electron transfer resistance of the blank electrode 

and buffer. 

 

Results and Discussion 

 The fundamentals of the developed assay are illustrated in Figure 1. Firstly, 

MWCNT screen-printed electrodes were modified with amino benzoic acid. Briefly, 

diazotation of ABA was performed with sodium nitrite in hydrochloride acid, the 

resulting 4-carboxybenzenediazonium ion solution was dropped onto the MWCNT 
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electrode surface and the potential was cycled as described in Experimental Section. 

Figure 2a) shows the Nyquist plots obtained by electrochemical impedance 

spectroscopy. As can be seen, modification of the MWCNT electrode with ABA gave 

rise to a large increase in the electron transfer resistance as a consequence of the 

electrostatic repulsion between the redox maker and the negatively charged carboxylate 

groups. Thereafter, surface-confined carboxyl groups were activated with EDC/NHS to 

form amide bonds with amino terminated aptamer. Moreover, as it can be observed in 

Figure 2b), the Rct value diameter of the semicircle increased after each performed step. 

This can be attributed to the augmented difficulty of the redox reaction of [Fe(CN)6]
3–/4–

 

to take place at the MWCNT surface, due to the sensor surface alteration by interaction 

with AptCytc. Two different factors may be taken into account to properly explain this: 

electrostatic repulsion and sterical hindrance. The former is more significant in the first 

and second step: when AptCytc is immobilized onto the electrode surface, a second 

layer is formed, where negatively charged phosphate groups of the DNA skeleton are 

responsible of the electrical repulsion towards the negatively charged redox marker, 

thus inhibiting the interfacial electron transfer process and increasing the Rct value. The 

addition of a target protein, Cytc, and AbCytc to form a complex AptCytc-Cytc and a 

sandwich respectively, resulted in a decreased increment of the resistance value due to 

the augmented quantity of negative charges and to the hindrance caused by the 

formation of a double layer. After the addition of strept-AuNPs we can observe a further 

increment of charge transfer resistance because of the increased hidrance due to the 

formed conjugates. In the second amplification step, the silver enhancement treatment 

[38,39], a significant increment of Rct value was also observed and attributable to the 

silver deposition on gold. 

 

<FIGURE 2> 

 

Optimization of the experimental concentrations involved in the aptamer-

antibody sandwich assay response to Cytc  

 

All concentrations involved in the analytical performance of the aptansensor for 

detection of Cytc were optimized by constructing its relative response curve. For this, 

increasing concentrations of AptCytc and PEG were used to determine the 

immobilization and surface blocking, respectively, evaluating the changes in the Δp. 
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Figure 3a) shows the curve of AptCytc immobilization onto the electrode surface. It can 

be observed that the difference in resistance (Δp) increased up to a value. This is due to 

the physical adsorption of the aptamer onto the electrode surface, which followed a 

Langmuir isotherm. Embodied by the variation of Rct which increases to reach a 

saturation value, the optimal concentration was chosen as initial value to reach it. This 

value corresponded to a concentration of aptamer of 1.5μM. Concerning blocking agent, 

and as shown in Figure 3b), a different behaviour was obtained. The optimal 

concentration of blocking agent was chosen as 30mM because it was the concentration 

point where a small plateau was observed.  

 

<FIGURE 3> 

 

In addition, in order to obtain the optimal concentration of AbCytc to be used in 

the biosensing protocol, response was evaluated with increasing concentration of 

antibody. The optimal concentration was evaluated by the changes in the ∆ratio, 1/500 

stock dilution, Figure S1. 

Scanning electron microscope examination 

 

Screen-printed MWCNT electrode surfaces were investigated by SEM after the 

Gold Enhancement treatment. HAuCl4 was employed in order to achieve an adequate 

amplification of strept-AuNPs present on sensor surface to allow their direct 

observation by SEM. SEM images taken at an acceleration voltage of 3kV are shown in 

Figure 4, illustrating a positive experiment with sandwich protocol and strep-AuNPs 

conjugation. As can be observed in Figure 4a), the distribution of gold enhanced-gold 

nanoparticles is quite homogeneous. This also implies a regular distribution of 

MWCNT and well-organized formation of sandwich complex onto the electrode 

surface. This high density distribution also demonstrates the proper functionality of the 

MWCNT platform and the immobilization of the biomolecule. Comparing this 

experiment with the negative control that did not use the biotinylated AbCytc, Figure 

4b), a surface with almost absent nanoparticles can be observed. 

 

<FIGURE 4> 

 



 10 

Analytical performance of the aptamer-antibody sandwich assay for 

detection of Cytc 

 

<TABLE 1> 

After experimental concentration optimization, the proposed aptasensor was then 

used following the sandwich protocol, plus amplification employing the strep-AuNPs 

and silver enhancement treatment. Figure 5 shows calibration curves with increasing 

concentrations of Cytc and their respective regression lines in the logaritmic scale, at the 

different steps of the protocol: (1) AptCytc-Cytc, (2) Sandwich formation between 

AptCytc, Cytc and AbCytc, (3) aptamer sandwich modified with strep-AuNPs, and (4) 

aptamer sandwich modified with strep-AuNPs and silver enhancement treatment. 

Although the reproducibilities were not ideal in all cases, the calibration curves obtained 

showed a good RSD. As can be seen in Figure 5, all calibration curves increased until 

the value of 100pM of Cytc, this could be due to the fact that concentrations larger than 

100pM cause a saturation on the sensor surface. As can be observed in Table 1, the use 

of silver enhancement treatment led to the highest sensitivity and signal amplification, 

117%, compared to the simple biosensing scheme. This demostrates that the silver 

deposition on gold nanoparticles, basically increases the sterical hindrance, producing 

an increment of observed impedance, given this conductive silver is not wired to the 

electrode surface. Despite a higher sensitivity, the detection limit obtained in this case, 

1.9pM, is slightly worse than the one obtained with only strep-AuNPs. This fact could 

be due to the increased number of process steps and associated increased potential 

errors. The best detection limit, approximately 1.5pM, corresponded to the sandwich 

and strep-AuNPS calibration curve. This confirmed that the proposed methods show a 

low detection limit and an ultrahigh sensitivity for the detection of Cytc. 

 

<FIGURE 5> 

Selectivity of the aptamer-antibody sandwich assay 

 

Control experiments were conducted to investigate the specificity of aptamer-

antibody assay. In this work, majority serum proteins, such as human IgG, fibrinogen 

and albumin at serum physiological levels were tested to operate the proposed 

aptasensor instead of Cytc under the same experimental conditions. As can be seen in 

Figure 6, the presence of interfering proteins such as albumin, fibrinogen and 
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immunoglobulin G, at serum concentration level exhibits negligible response compared 

with 100pM Cytc in the amplified sandwich protocol, even at concentrations four or 

five orders of magnitude higher than typical Cytc concentrations. Figure 6 also 

demonstrates that the sandwich protocol displays as clear advantage, more than the 

signal amplification, the marked decrease of interfering effects that are still remarkable 

in the simple biosensing protocol. This is specially remarkable for IgG protein (human), 

which shows appreciable interference in the assay without amplification, although it 

becomes practically negligible with the sandwich variant. 

 

<FIGURE 6> 

 

Conclusions 

 An ultrasensitive aptamer-antibody sandwich assay for cytochrome c detection 

using electrochemical impedance technique was reported. Due to the signal 

amplification with strep-AuNPs and silver deposition, it was possible to increase the 

sensitivity of the assay. Additionally, for a comparable amount of AptCytc-Cytc, the 

signal resulted in a 117 % amplification, compared to results recorded with simple 

biosensing AptCytc-Cytc. Furthermore, the limit of detection obtained was 1.9pM. A 

good linear range, 25-100pM, and high selectivity with respect to different serum 

proteins at serum concentration level were also achieved with this protocol thanks to the 

double recognition scheme utilized. Finally, the gold enhancement treatment permitted 

the visualization of the gold nanoparticles on the electrode surface with SEM. 
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FIGURE CAPTIONS 

 

 

Fig.1 Scheme of the experimental protocol. 

Fig.2 a) Nyquist diagrams of: (●) Bare electrode, (○) Electrochemical grafting treatment and (▼) 

Aptamer immobilization. b) Nyquist diagrams of: (●) Bare electrode, (○) aptamer immobilization, (▼) 

Aptamer with Cytc, (∆) sandwich complex with antibody, (■) sandwich complex modified with gold-

nanoparticles and (□) sandwich complex modified with gold-nanoparticles and silver enhancement 

treatment. All experiments were performed in PBS solution and all EIS measurements were performed in 

PBS solution containing 0.01 M K3[Fe(CN)6]/ K4[Fe(CN)6]. 

Fig. 3 a) Optimization of the amount of cytochrome c aptamer AptCytc immobilized on each electrode. b) 

Optimization of the concentration of the blocking agent, PEG. Uncertainty values corresponding to 

replicated experiments (n=5). 

Fig.4 SEM images of (a) experiment using sanwich complex + strep-AuNPS+ gold enhancement 

treatment (b) negative control using Aptcytc+ cytochrome c + non complementary aptamer + strep-

AuNPs + gold enhancement treatment. All images were taken at an acceleration voltage of 3kV and a 

resolution of 2 µm. 

Fig.5 Calibration and regression curves of: (1) (black circle) AptCytc and Cytc, (2) (white circle) 

sandwich complex, (3) (black triangle) sandwich complex modified with strep-AuNPs, (4) (white 

triangle) sandwich complex modified with strep-AuNPs and silver enhancement treatment. All 

experiments were performed in PBS solution and all EIS measurements were performed in PBS 

solution containing 0.01M K3[Fe(CN)6]/K4[Fe(CN)6]. Uncertainty values corresponding to 

replicated experiments (n = 5). 

Fig.6 3D bar chart of responses towards different proteins present in serum, with simple biosensing 

scheme and with the sandwich/amplification protocol. Uncertainty values corresponding to replicated 

experiments (n =5). 
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Table 1. Summary of the different calibration curves considering different stages of the assay. 

 

 

Calibration curve Regression curve Detection limit (pM) Net Amplification %       RSD*% 

(1) AptCytc/ Cytc  ∆ratio = 0.852 + 0.058· log [Cytc] 25 - 2.3 

(2 )Sandwich complex ∆ratio = 0.882 + 0.673· log [Cytc] 13 8 3.2 

(3) Sandwich/ strep-AuNPs ∆ratio = 0.226 + 0.286·log [Cytc] 1.5 40 5.9 

(4) Sandwich/ strep-AuNPs/ 

      Silver enhanc. 

∆ratio = -1.00 + 0.739·log [Cytc] 1.9 117 6.8 

 

*Corresponding to five replicated experiments at 0.75 pM 
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