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Abstract satellite data and models suggest that oceanic productivity is reduced in response to less nutrient
supply under warming. In contrast, anthropogenic aerosols provide nutrients and exert a fertilizing effect,
but its contribution to evolution of oceanic productivity is unknown. We simulate the response of oceanic
biogeochemistry to anthropogenic aerosols deposition under varying climate from 1850 to 2010. We find a
positive response of observed chlorophyll to deposition of anthropogenic aerosols. Our results suggest that
anthropogenic aerosols reduce the sensitivity of oceanic productivity to warming from —15.2+ 1.8 to —13.3
+1.6Pg Cyr’1 °C™" in global stratified oceans during 1948-2007. The reducing percentage over the North
Atlantic, North Pacific, and Indian Oceans reaches 40, 24, and 25%, respectively. We hypothesize that inevitable
reduction of aerosol emissions in response to higher air quality standards in the future might accelerate the
decline of oceanic productivity per unit warming.

1. Introduction

Marine net primary production (NPP) is a critical component of the Earth’s carbon cycle, transferring some 50 Pg
of carbon to the biosphere each year and important for sustaining the habitability of Earth [Field et al., 1998;
Hoegh-Guldberg and Bruno, 2010; Boyce et al., 2010; McNutt, 2015; Hoegh-Guldberg et al., 2014]. Field studies
and model indicate a decline in oceanic NPP during 1998-2010 [Behrenfeld et al., 2006; Martinez et al., 2009;
Gregg and Rousseaux, 2014], and this trend likely lasts throughout the twentieth century [Boyce et al., 2010].
The decline is attributed mainly to the increasing thermal stratification of ocean water columns, induced by
anthropogenic global warming. This increase in stability reduces the supply of nutrients from subsurface
waters, thereby inhibiting the growth of phytoplankton [Behrenfeld et al., 2006; Martinez et al., 2009; Boyce
et al, 2010; Gregg and Rousseaux, 2014]. The process is simulated by ocean biogeochemical model [Bopp
et al, 2013] and is expected to continue further, reducing oceanic NPP. In contrast, anthropogenic aerosols pro-
vide nutrients to the surface oceans, which fertilize the phytoplankton and promote the oceanic NPP [Jickells
et al.,, 2005]. For example, by assuming complete assimilation of N in carbon fixation, Duce et al. [2008] esti-
mated that contemporary deposition of anthropogenic nitrogen (N) can support a biological mediated carbon
flux of ~0.3 Pg Cyr~" or ~3% relative to all new production in the oceans. A recent modeling study suggests that
adding anthropogenic N and iron (Fe) deposition together can increase oceanic NPP by 1.5PgCyr~' and
reduces atmospheric CO, level by ~2.2 ppm by the year 2100 [Krishnamurthy et al., 2009]. However, the impact
of anthropogenic aerosol deposition (AAD) has not been simulated with the impact of climate change on stra-
tification together in these models. Mahowald et al. [2011] used a coupled carbon climate model to study the
effects of direct aerosol radiative forcing and Fe input from desert dust on the change of oceanic NPP under
climate-induced changes in ocean. One of their main findings is that oceanic NPP increases following the input
of Fe from desert dust and decreases as a consequence of the radiative effect of aerosols. In the present study,
we quantify the fertilizing effect of anthropogenic aerosol deposition (i.e., not only Fe from dust) on the trend of
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oceanic NPP under realistic climate over the last decades. Our purpose is to test the hypothesis that anthropo-
genic aerosol deposition can provide substantial nutrients and partly offset the decline of NPP caused by
warming. To understand the impact of AAD, we simulated the change of N, Fe, and phosphorus (P) deposition
from 1850 to 2010 in a global atmospheric general circulation model and input the results into an ocean
biogeochemical model with the varying climate.

2. Data and Methods
2.1. Observational Data Sets

In this study, we compiled 182,552 in situ measurement data for the concentration of chlorophyll ([Chl]);
170,588 for nitrate (NO3); 438,240 for phosphate (PO,); and 214 data for soluble Fe (sFe), in the surface layer
over open oceans (Figure S1 in the supporting information). In addition, the oceanic NPP for a period
1997-2007 from satellite were used to evaluate the spatial pattern of modeled NPP. More details are
presented in Text S1.

2.2, Sources, Transport, and Deposition of N, P, and Fe in the Atmosphere

The global chemistry-aerosol-climate model LMDZ-OR-INCA couples online the LMDz (Laboratoire de
Météorologie Dynamique, version 4) general circulation model [Hourdin et al, 2006] and the INCA
(INteraction with Chemistry and Aerosols, version 4) an aerosol module [Hauglustaine et al., 2014]. This
combination was run to simulate the global atmospheric emissions, transport, and deposition of N, P, and
Fe. The models have been described in our previous papers [Hauglustaine et al., 2014; Wang et al., 2015a,
2015b] and detailed in Text S1.

The emissions of N, P, and Fe were compiled from 1850 to 2010. Global 0.5° x 0.5° gridded monthly emissions
of ammonia (NH3) and nitrogen oxides (NO,) from combustion and agriculture from 1850 to 2010 were taken
from the ACCMIP and MACCity inventory [Lamarque et al., 2010; Granier et al., 2011]; the emissions of nitrogen
oxide (NO) from soil and NH3 from natural soils and oceans were estimated for present day in our model
[Hauglustaine et al., 2014] and assumed to be constant. The emissions of P and Fe from energy-related com-
bustion and wildfires were estimated from 1960 to 2007 [Wang et al., 2015a, 2015b]. These emissions were
extrapolated by country from 1960 to 1850-1959 based on the sulfur emissions (less relying on technology
change) in ACCMIP [Lamarque et al., 2010] and from 2007 to 2008-2010 based on the black carbon emissions
(sharing similar sources as P or Fe) in MACCity [Granier et al., 2011]. The emissions of P and Fe from energy-
related combustion were assumed to be constant throughout each year without seasonal variations. The
monthly emissions from wildfires were calculated for 1960, 1970, 1980, 1990, and 2000 using the seasonal
profile of black carbon emission from wildfires in each year [Lamarque et al., 2010], for 2010 using the seaso-
nal profile of black carbon emission from wildfires averaged over 2001-2008 [Granier et al., 2011] and for 1850
using the seasonal profile of black carbon emission from wildfires averaged for 1960-1969 [Lamarque et al.,
2010]. Then, the monthly emissions of P and Fe in each country were disaggregated to 0.5° x 0.5° grids using
the 0.5° x 0.5° distribution of corresponding black carbon emission [Lamarque et al., 2010; Granier et al., 2011].
The monthly emissions of Fe from dust (averaged over 2000-2011) and of P from dust (averaged over
2000-2011), primary biogenic aerosol particles (2000), and volcanoes (1990) were assumed to be constant
throughout our study period, to isolate the impact of anthropogenic emissions.

We specified that 10% of P from dust, 100% of P from volcanoes, and 50% of P from other sources are
converted to phosphate (PO,), which is bioavailable [Mahowald et al., 2008]. In addition, we applied the
measured Fe solubility of 12+ 9% for coal fly ash [Fu et al., 2012; Chen et al., 2012], 63.0 + 17.0% for vehicle
oil fly ash [Oakes et al., 2012], 79.8 + 8.5% for heavy oil fly ash [Fu et al., 2012; Schroth et al., 2009], 30 + 14%
for biomass ash [Fu et al., 2012; Oakes et al., 2012; Bowie et al., 2009], and 2 +4% for dust [Moore et al.,
2004] to convert Fe to sFe, which is bioavailable. Snapshot simulations were performed to produce the
monthly deposition of NOs and NH,4, PO,4, and sFe in 1850 and for snapshot years every tenth year from
1960 to 2010. All simulations were performed under present-day climate conditions nudging with the
meteorological data for 2005 [European Centre for Medium-Range Weather Forecasts (ECMWEF), 2003]. The
atmospheric deposition rates of NO3 and NH,, total Fe, and total P have been validated by in situ measure-
ments [Hauglustaine et al., 2014; Wang et al., 2015a, 2015b]. The modeled surface-air concentrations of Fe and
sFe have been validated by in situ measurements over the Atlantic and Pacific Oceans [Wang et al., 2015b].
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We performed a linear interpolation to obtain the deposition by month for each year between the two
snapshot years.

2.3. A Global Ocean Biogeochemical Model

The monthly deposition of NO3 and NH,4, PO,4, and sFe was prescribed in a state-of-the-art oceanic biogeochem-
ical model NEMO-PISCES (version 2) [Aumont et al., 2015], used to simulate the fate of nutrients (N, P, Fe, and
silicon) and the carbon cycle in global oceans. The model can well capture the observed response of oceanic
NPP to both dust [Guieu et al., 2014] and climatic variability [Schneider et al., 2008]. The model version and external
sources of nutrients are detailed in Text S1. Major sources of DIN, PO, and sFe in the ocean are shown in Table S1.

2.4. Simulation Setup

In our study, the NEMO-PISCES model was run from 1768 to 2007, with the first 180years as a spin-up.
Simulations were forced by prescribed atmospheric levels of CO, from 1768 to 2007 [Bopp et al., 2013].
Following Coordinated Ocean-ice Reference Experiments Phase Il protocol [Griffies et al., 2012], the recorded
ocean forcing data from 1948 to 2007 [Large and Yeager, 2009] were used as input for the oceanic physical
model, and the data were repeated in each 60year period (Supporting Text). The monthly atmospheric
deposition of NO3 and NH,, PO,4, and sFe was prescribed to the model. The simulation results were analyzed
for the last 60 years from 1948 to 2007 with recorded forcing data.

We ran two simulations to study the impact of AAD: a control simulation (CTL) with the deposition fixed at the
1850 levels and an experimental simulation (DEP) with the deposition varying from 1850 to 2007. The differ-
ence was considered as the response to AAD.

3. Results

3.1. Sources and Oceanic Deposition of N, P, and Fe in Aerosols

Global emissions of reactive N (N,, including NHs and NO,), PO,4, and sFe for 1850-2010 are shown in
Figures1a-1c. Total emissions of N,, PO,4, and sFe have increased since 1850 by 181, 85, and 41%, respectively.
Emissions of N,, mainly from fossil fuels and agriculture, increased until 1990 and then leveled off due to the
use of emission control devices for vehicles and industry. The energy-related emissions of PO, increased due
to increasing contribution of biofuels to energy supply in developing countries and to deforestation in South
America and Southeast Asia. Emissions of sFe from combustion rose before 1990 due to increased coal use
and declined thereafter due to the implementation of industrial dust abatement facilities and the burning
of cleaner fuels in the 1990s.

Emissions of N,, PO,4, and sFe were prescribed in LMDZ-OR-INCA to obtain the oceanic deposition of dissolved
inorganic N (DIN, including NO3 and NH,), POy, and sFe in 1850 and for annual snapshots every 10years from
1960 to 2010 (Figures 1d-1f). Oceanic deposition of DIN, PO,, and sFe has increased since 1850 by 137, 40, and
46%, respectively, mostly in the Northern Hemisphere. Deposition of DIN, PO,, and sFe has increased by 310
(260%), 0.52 (110%), and 0.28 (200%) pmolm™2s~", respectively, over the North Pacific and by 300 (230%),
0.11 (18%), and 0.030 (6%) pmol m~2s~", respectively, over the North Atlantic (Figure S2). Our calculated DIN
and sFe deposition is comparable to previous studies [Duce et al., 2008; Krishnamurthy et al., 2010], but our
PO, deposition is higher due to larger P emissions for combustion sources [Wang et al., 2015al.

3.2. Impact of AAD on Nutrients, Chlorophyll, and Productivity

NEMO-PISCES includes two types of phytoplankton, namely, nanophytoplankton and diatoms. The model simu-
lates [ChI] and the growth of phytoplankton based on the availability of nutrients: POy, DIN, and sFe for nano-
phytoplankton and PO,, DIN, sFe, and silicate for diatoms [Aumont et al, 2015]. Hereafter, all results were
derived by considering nanophytoplankton and diatoms together unless specified. Generally, the model accu-
rately reproduces the spatial pattern of nutrient limitation of oceanic NPP for nanophytoplankton (Figures 2a
and 2b). Over 1948-2007, the primary limiting nutrient for nanophytoplankton changes with an expansion of
ocean areas limited by N, which took up 54% of total oceans in 1948-1977 and 57% in 1978-2007. In NEMO-
PISCES, N is consumed by denitrification under suboxic conditions. It is likely that the projected declining oxygen
content under warming [Bopp et al., 2013] enhanced denitrification and caused a more stringent N limitation in
the oceans (Figure S3). The model, however, does not properly resolve the observed colimitation by N and P
over the North Atlantic and the Mediterranean Sea [Moore et al., 2013]. Globally, 42% of the ocean is N limited,
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Figure 1. Atmospheric emissions and oceanic deposition of N, P, and Fe from 1850 to 2010. Emissions of (a) N,, (b) PO4, and
(c) sFe from different sources (“PBAPs” stands for primary biogenic aerosol particles). Oceanic deposition of (d) DIN, (e) POy,
and (f) sFe, for snapshot years (dots). Previous estimates of deposition are shown as purple [Duce et al., 2008] or yellow
[Krishnamurthy et al., 2010] triangles.

similar to the 40% area found previously [Krishnamurthy et al., 2007]; most of the remaining ocean is Fe limited.
The pattern of nutrient limitation changes slightly from CTL to DEP corresponding to an alteration from N to P
limitation in coastal oceans with high N depositions. In addition, we find an expansion of high-limitation region
from DEP to CTL (contour lines in Figures 2a and 2b).

In the model, AAD increases the concentrations of DIN and sFe in the surface water (Figures 2c and 2d), alle-
viates nutrient limitation (contour lines in Figures 2a and 2b), increases [Chl] (Figure 2f), and enhances NPP
(Figure 2g). The enhancement of phytoplankton growth in response to AAD corresponds to a supplementary
PO, demand of 226 Gmol yr~' averaged over 1948-2007. Since AAD provides only 9.3 Gmolyr~' PO,, meet-
ing this demand yields an overall depletion of surface PO, as observed in Figure 2e. The largest relative
impact of AAD on [Chl] and NPP is observed over the low-latitude Pacific. The absolute impact, however, dif-
fers from the relative impact, due to different background concentrations in different oceans (Figure S4). The
frequency distribution of the relative difference between CTL and DEP simulations is computed for the sur-
face concentrations of DIN, POy, sFe, [Chl], and NPP (Figure 2h). For example, the ocean area with a relative
difference larger than 10% (a threshold selected for this analysis) takes up 65%, 50%, 50%, 34%, and 34%
of all oceans for DIN, POy, sFe, [Chl], and NPP, respectively. Globally, as a fertilizing effect of anthropogenic
N, P, and Fe deposition, the oceanic NPP was increased by 2.5% from 51.4 PgCyr ' in CTL to
52.7PgCyr~" in DEP in 2007. Both estimates are within the uncertainty of the ocean color-based estimate
of 40-60 Pg Cyr™ ' [Carr et al., 2006]. If we consider solely nanophytoplankton, the NPP from nanophytoplank-
ton was increased by 2.6%, respectively, for diatoms only, their NPP is increased by 2.0%, likely because dia-
toms require silicate for their growth.

Krishnamurthy et al. [2009] estimated that anthropogenic N and Fe deposition can increase oceanic NPP by
1.5Pg Cyr~". In comparison, by performing a sensitivity simulation with anthropogenic P only, we found that
the oceanic NPP in 2007 decreased by 1.3Pg Cyr~' relative to the DEP simulation, close to the estimate by
Krishnamurthy et al. [2009]. However, some differences between our study and previously published results
should be noted. For instance, our model predicts a different nutrient limitation spatial pattern over the sub-
tropical North Atlantic in comparison with the one from Krishnamurthy et al. [2010] which suggests a large
area limited by P under modern conditions. Moore et al. [2013] noticed that P can be seriously depleted over
oligotrophic oceans in this region, but they noticed that adding P alone does not enhance NPP in deck incu-
bations. Okin et al. [2011] assumed that P and Fe limitations can limit carbon fixation indirectly by limiting N
fixation, but this effect is very sensitive to the N:Fe ratio in diazotrophic organisms. Therefore, the nutrient
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Figure 2. Impact of AAD on nutrients, [Chl], and NPP. Primary limiting nutrient for nanophytoplankton. In-fill color shows the element most frequently limiting nanophy-
toplanktonic growth by month during 1948-2007 (a) with or (b) without AAD. The contour line is for the modeled nutrient limitation factor (LIM) of 0.05. The shaded area
indicates LIM < 0.05 with a stringent nutrient limitation. Observed limiting nutrients (circles) are from nutrient addition experiments [Moore et al., 2013]. Influence of AAD on
the modeled (c) DIN, (d) sFe, (e) POg4, and (f) [ChI] and (g) NPP as DEP-CTL differences (RDs) relative to CTL for 1948-2007. RD is computed for the 0-30 m layer for nutrients
and [Chl] and the 0-100 m layer for NPP. Contour lines are shown for RDs of £10% (solid) and £30% (dashed). (H) Frequency distribution of RD (negative for PO,) in
Figures 2c-2g. Comparison of modeled and observed [Chl] (i) with or (j) without (w/o) AAD. Plots are made in a log scale, with colors indicating the density of data in the
panel. Number of sites (n), normalized mean bias (NMB), and root-mean-square deviation (RMSD) are shown. All measurement sites are divided into four quartiles of modeled
[Chl] without AAD. [Chl] in the (k-m) first and (n—p) second quartiles are plotted against anthropogenic deposition (Dep.) of sFe (Figures 2k and 2n) or DIN (Figures 2l and 20)
and compared with the observations. [Chl] are averaged at an interval of 0.5 of (log ) deposition. The shaded areas show the difference modeled with or without AAD. The
modeled [ChlI] with anthropogenic deposition of only N (DEP-N), Fe (DEP-Fe), or P (DEP-P) are shown. Error bars show standard deviations of observed [Chl].
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colimitation should be better examined and studied in the future ocean models, and the effect of Fe could be
underestimated if a high N:Fe ratio assumed by Okin et al. [2011] is confirmed.

3.3. Model-Data Comparison

The spatial pattern of modeled NPP is comparable to satellite-based estimates for 1997-2007 (Figure S5). The
period covered by satellite observations is relatively short and corresponds to an era of intense anthropo-
genic aerosol emissions, making it difficult to detect the effect of AAD. In addition, the NPP difference mod-
eled with or without AAD (Figure S5d) is very small relative to the total, making it difficult to identify a better
or worse agreement between model and remote sensing data. Instead, we evaluated our model using in situ
[ChI] measurements from 1948 to 2007. [Chl] does not have a simple relationship with NPP, but [Chl] and the
rate of carbon fixation by phytoplankton both covary in response to environmental drivers. [Chl] is a valid
indicator of oceanic NPP. We assembled a total of 182,552 measurements of [Chl] over the global oceans.
Modeled [Chl] match the majority of observations, being around the 1:1 line (Figures 2i and 2j). However,
adding AAD marginally improves the model-data comparison, with the normalized mean bias (NMB) and
root-mean-square deviation (RMSD) changed from —39% and 0.18 to —38% and 0.17. In addition, by looking
at sites where the relative difference of [Chl] between DEP and CTL is >10%, the NMB and RMSD were
reduced from —42% and 0.24 to —32% and 0.17 (n=19 0111), respectively, possibly indicating an improve-
ment at these sites (Figure S6). [Chl] in the oceans are evidently influenced by factors other than AAD, includ-
ing ocean physics and other external factors such as interaction with sediments, river inputs,
hydrothermalism, and deposition of natural dust [Guieu et al., 2014; Aumont et al., 2015]. The spatiotemporal
distribution of [Chl] responds to changes in all these factors.

To isolate the response of [Chl] to AAD, we grouped all measurement sites into four quartiles based on the
[ChI] modeled without AAD. In the first and second quartiles, the sites are more oligotrophic and sensitive
to nutrient addition by AAD than those in the third and fourth quartiles. We plotted the [Chl] in the first
and second quartiles against anthropogenic deposition of DIN or sFe (Figures 2k-2I), where the impact of
AAD is shown as a shaded area. The modeled [Chl] at high N or Fe deposition sites are relatively high and
agree better with the observations, consistent with a positive effect of AAD on [Chl] levels. Furthermore, sen-
sitivity simulations with anthropogenic deposition of only N or P or Fe (diamonds in Figures 2n-2p) show that
the effect of N is dominant, followed by Fe, and very weak for P on the [Chl] at high N or Fe deposition sites.
This is reasonable as N is mostly the primary limiting nutrient at the sites close to continents where N or Fe
deposition are elevated (Figures 2a and 2b). The effect of Fe deposition over the Fe-limited oceans far away
from continents is less pronounced in our model. Lastly, a plot of [Chl] against AAD in the third and fourth
quartiles of sites is shown in Figure S7. The impact of AAD is weak in these groups, suggesting that factors
other than AAD are dominating the levels of [Chl].

Modeled NOs, POy, and sFe concentrations were also compared against in situ measurements. Measurements of
NO5 and PO, below the detection limits (0.1 mmol m™> for NO5 and 0.03 mmol m 2 for PO,) were not kept [Patey
et al., 2008], and we compared the modeled and observed NOs and PO, concentrations above a threshold. The
RMSD and NMB for (log;o) NO3 concentrations decreased from 0.61 and —56% without AAD to 0.56 and —46%
with AAD, respectively (Figure S8). The RMSD for (log;0) PO, concentrations increased slightly from 0.45 to 0.46
with AAD. Detecting the impact of AAD on PO, requires further discrimination of reactive and nonreactive P in
the model and data [Karl et al., 1997]. In addition to the measurement bias, the underestimation of NOs and PO,
in our standard simulation might be resulting from the Monod assumption for N and P, which deserves further
studies by using the cell quota-based model [Droop, 1983]. The RMSD and NMB for (log,) sFe concentrations
decreased from 0.63 and —68% to 0.57 and —63%, respectively (Figure S9). A more detailed discussion on the
comparison of the nutrient distributions is presented in Text S1.

3.4. Long-Term Impact of AAD on Oceanic Productivity

Behrenfeld et al. [2006] found an inverse relationship of increasing sea surface temperature (SST) with
decreasing NPP in the permanently stratified oceans from 1999 to 2004. We observed a similar relationship
when comparing the period from 1948-1977 to 1978-2007(Figure S10). Furthermore, the correlations are
equally as high with or without AAD (Figure 3), but including AAD decreases the sensitivity of NPP changes
to SST changes. The slope of modeled NPP to observed SST decreased from —15.2 + 1.8 (without AAD) to
—13.3% 1.6 (with AAD)PgCyr—'°C™", a reduction by 12.5% relative to that without AAD. The North Pacific
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Figure 3. Relationship between annual NPP and SST for 1948-2007. NPP is computed in the model and SST is from the
observations. (a) The permanently stratified oceans defined by Behrenfeld et al. [2006] are divided into (b) North Pacific,
(c) North Atlantic, and (d) Indian Oceans. The circles show the relationship between NPP and SST under warming alone (red)
or warming and AAD together (blue). The slope of NPP to SST (Pg C yr71 °C71) and coefficient of determination (r2) are
estimated from least squares regression analysis.

has the largest change from —2.56 £ 0.46 to —1.96 + 0.40 Pg Cyr_1 °C~". The sensitivity of NPP to SST in the
North Atlantic was reduced by 40% (—0.35+0.10 to —0.21+0.10PgCyr~'°C™") by including AAD; this
reduction was the largest, followed by the Indian Ocean (25%) and the North Pacific Ocean (24%). This per-
centage quantifies the offset of NPP sensitivity to SST by AAD. It depends on the response of NPP to AAD, as
well as the sensitivity of NPP to SST. The largest percentage of change over North Atlantic is mainly due to the
lowest NPP sensitivity to SST in the region.

Our finding has two major implications for future studies. First, any observation-based techniques to detect
the influence of global warming on oceanic NPP have to take into account the role of AAD, as human-emitted
aerosols can partly offset the effect of anthropogenic warming. Second, the evolution of aerosols deposition
has to be considered when using the model to predict oceanic NPP. Guieu et al. [2014] found that the
response of marine biota to a pulse change of atmospheric dust or N deposition occurs rapidly, while the
duration of the perturbation is short (from a few days to two weeks) in the low nutrient low-chlorophyll
(LNLC) oceans. We infer that marine biota in the LNLC oceans adjust rapidly to the AAD variation, in particular
for deposition of N with a short turnover time (<1 month).

3.5. Limitations

In order to obtain a long-term effect of aerosols on ocean biogeochemistry, our estimate is subject to several
sources of uncertainty, which should be addressed in the future study. First, we prescribed constant Fe
solubility for each source from measurements without accounting for variability of Fe solubility under diverse
atmospheric and ocean conditions [Meskhidze et al., 2003; Baker and Croot, 2010]. Second, we did not include
the emission of dust from land cover change, and the impact should be considered when this global source
is better understood [Neff et al., 2008; Ginoux et al., 2012]. Third, we did not derive the daily atmospheric
input from 1850 to 2010 due to heavy computational load. As a result, the monthly resolution of nutrient
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deposition cannot capture episodic transport [Guieu et al., 2014]. Fourth, our model did not include the toxic
effect of anthropogenic heavy metals. For example, Paytan et al. [2009] predicted a remarkable toxic effect of
anthropogenic copper over the Bay of Bengal and downwind of South and East Asia close to the land with a
limited impact over the remote oceans.

4. Conclusion and Implications

Marine ecosystems are sensitive to environmental changes [Hoegh-Guldberg et al., 2014; McNutt, 2015]. Global
warming induced by greenhouse gases emissions has increased ocean stratification and reduced nutrient
supply for phytoplankton in the surface ocean [Behrenfeld et al., 2006; Boyce et al., 2010]. The most important
findings of our study are that (1) the fertilizing effects of aerosols should be considered along with the effects
of climate change and variability in driving NPP variations and (2) anthropogenic N deposition dominates the
fertilizing effect of aerosols. Nonetheless, the effects of Fe and P deserve more studies, in particular they can
alter the N cycle in the oceans and impact on NPP. Our study identifies anthropogenic aerosols deposition as
an overlooked factor that can compensate partly the decline of nutrients induced by warming. A recent study
reported that ambient aerosol pollution led to ~3 million premature deaths in 2010 [Lim et al., 2013], so these
emissions will inevitably be controlled [Shindell et al., 2012], likely before 2030 in the major emitting countries in
Asia [S. X. Wang et al,, 2014, R. Wang et al., 2014]. According to the Representative Concentration Pathways
scenarios [Lamarque et al., 2011], the emissions of NO, and sulfur (sharing similar sources as P and Fe) will
decrease by 34-59% and 75-88% from 2010 to 2100, although ammonia will increase by 3-55%. If our analysis
proves robust, higher air quality standards, while improving air quality, will reduce atmospheric deposition of
nutrients and accelerate decline in oceanic NPP due to warming. Such changes will have impacts on marine
food webs and the global carbon and nitrogen cycles and climate.
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