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A Fully-Embedded Two-Stage Coder for
Hyperspectral Near-lossless Compression
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Abstract—This letter proposes a near-lossless coder for hy-
perspectral images. The coding technique is fully embedded and
minimizes the distortion in the l2 norm initially and in the l∞
norm subsequently. Based on a two-stage near-lossless compres-
sion scheme, it includes a lossy and a near-lossless layer. The
novelties are: the observation of the convergence of the entropy
of the residuals in the original domain and in the spectral-spatial
transformed domain; and an embedded near-lossless layer.
These contributions enable a progressive transmission while
optimising both SNR and PAE performance. The embeddedness
is accomplished by bitplane encoding plus arithmetic encoding.
Experimental results suggest that the proposed method yields a
highly competitive coding performance for hyperspectral images,
outperforming multi-component JPEG2000 for l∞ norm and
pairing its performance for l2 norm, and also outperforming
M-CALIC in the near-lossless case –for PAE ≥ 5–.

I. INTRODUCTION

REMOTE sensing images are becoming more important
in modern society. These images tend to be very large

and there is an increasing need for high performing image
compression techniques. A desired characteristic of such
compression techniques is that the image can be progressively
refined while transmitting the bitstream, which asks for an
embedded coder (i.e., one that by truncating a compressed file
can select a desired compression level). This is an interesting
feature for remote sensing images because transmitting them
completely can consume a considerable amount of time,
and consumers may want to obtain first an image at a
certain quality level and subsequently decide if higher quality
versions are desired.

Typically, image compression techniques are classified into
three modalities: lossless, lossy and near-lossless. Lossless
compression allows to reconstruct the original image per-
fectly. The obtained compression ratio is rather low because
a perfect reconstruction is demanded. Lossy compression
approximates the original image I , while typically minimising
the distortion in the l2 norm. Allowing a certain distortion
in the reconstructed image Î leads to a higher compression
performance. Near-lossless compression was introduced for
applications that require a tight bound in the l∞ norm, like
remote sensing [1] or medical imaging [2], where a large error
in a pixel could potentially induce a wrong classification or
diagnosis. Near-lossless techniques bound the l∞ norm —also
known as peak absolute error (PAE) or Maximum Absolute
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Distortion (MAD)— so that it is limited to a certain tolerance
value. We refer to this tolerance value as δ:

‖I − Î‖∞ = max |Ix,y,z − Îx,y,z | ≤ δ (1)

Our proposed technique is a near-lossless coder. When δ=0,
it becomes a pure lossless compression technique. The tech-
nique produces a fully embedded codestream and minimises
the distortion in the l2 norm initially and in the l∞ norm
subsequently. The proposal belongs to the class of two-stage
coders, i.e., a lossy layer followed by a near-lossless layer.
The lossy layer approximates the original image. Then the
residual is calculated by subtracting the approximated image
from the original image. The near-lossless layer quantizes the
residual so that PAE ≤ δ and encodes the result losslessly.
The problem with such a two-stage coder is that the com-
pression performance is dependent on how much distortion is
introduced in the lossy layer, or equivalently on how much
lossy bit rate is allocated. Our proposal uses the approach
introduced in [3] to determine the amount of lossy bit rate.
JPEG2000 [4], a fully-embedded technique, is used for the
lossy layer, while bitplane encoding (BPE) plus arithmetic en-
coding form an embedded near-lossless layer, yielding the first
fully embedded two-stage coder. Furthermore, our proposal
provides competitive performance for remote sensing images
because it successfully incorporates a spectral transform.

This paper is organised as follows: section II provides a lit-
erature review of near-lossless compression methods. Section
III describes our proposal. Section IV presents experimental
results and Section V concludes.

II. LITERATURE OVERVIEW

Most near-lossless compression techniques can be classified
into, again, three categories, depending on how near-lossless
is provided: based on predictive coding, based on prequan-
tization followed by lossless coding, or based on two-stage
near-lossless coders.

The first near-lossless compression category builds upon
predictive coding [5], [6], [7], [8]. Techniques in this category
scan the image in a certain fixed order and make a prediction
of the current pixel value based on previously encoded pixels
(causal context). The difference between the predicted and
the original pixel is called the prediction error. Only this
prediction error is encoded. A near-lossless compression
scheme is obtained by applying a scalar quantization on these
prediction errors. The two most popular predictive techniques
are CALIC [5] and JPEG-LS [6], [9]. Although CALIC has a
higher computational complexity, since its compression per-
formance is usually superior, it is often used as a benchmark
near-lossless coding technique. The drawback of these two
predictive coding techniques is that they do not offer any
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degree of embedding. Furthermore, predictive techniques are
not able to capture global patterns because they work locally
in the image. Thus, quality of the predictions deteriorates
for larger values of δ and, consequently, their compression
performance diminishes [10]. To increase the compression
performance in the l2 norm sense at the expense of a worse
distortion in the l∞ norm, a technique [11] was introduced,
where the image is first compressed with CALIC and then
soft-decoding is applied on the recovered image. Also, to
exploit the spectral correlation in hyperspectral images, 3D-
CALIC [12] and M-CALIC [13] were proposed. While 3D-
CALIC uses both an intra-band and an inter-band predictor,
M-CALIC uses only an inter-band predictor. Recently, [14]
described a novel rate control algorithm for onboard predictive
coding that allows near-lossless coding and rate control.

The second near-lossless compression category builds upon
first prequantizing the pixels with a scalar quantizer, and then
employing a lossless compression technique. This approach
is known to yield poor performance for large values of δ [10].
In [15], [16] such a near-lossless compression scheme is
implemented based on an extension of CCSDS-IDC [17] for
satellite images; instead of a scalar quantization, a quantiza-
tion table is used to increase the PSNR performance.

The third near-lossless compression category builds upon
pairing a lossy and a lossless compression technique. A
lossy approximation is first produced by a lossy coding
technique, and then the residual (i.e., the difference between
the original image and the approximated image), is quantized
and losslessly encoded. Different two-stage proposals have
appeared in the literature. The first proposal [18] employed
a wavelet based approach (SPIHT [19]) as the lossy layer
and encoded the residual through CALIC. A similar proposal
was presented in [10], with a modified version of CALIC.
These two proposals have a certain degree of embedding
thanks to the lossy layer. However, one drawback is that
their performance also depends on the bit rate of the lossy
layer; in these two proposals, the optimal lossy bit rate has
to be determined by iteration. Next, [20] proposed to use a
lossy layer with a fixed lossy bit rate plus an embedded near-
lossless quantization layer. The near-lossless layer consists
of entropy encoding and context modelling. This proposal is
limited in that only a selective number of values of δ are
possible. Finally, a solution for determining the optimal lossy
bit rate was proposed in [3]. The optimal lossy bit rate is
determined by estimating the entropy of the wavelet residual,
as it converges to the quantized pixel-domain residual when
the lossy bit rate increases. This approach avoids the need
for a computationally demanding iteration to determine the
optimal bit rate or the use of complex context modeling. Later,
l∞-error scalability was introduced to this method [21]. More
recently, [22] presented a two-stage coder with JPEG2000 as
the lossy layer and 2D-CALIC as the lossless layer; here,
the optimal lossy bit rate is not optimized and the lossless
layer is not embedded. Lastly, [23] proposed a near-lossless
compression scheme for satellite images, where the lossy
layer consists of CCSDS-IDC [24] and the residual is encoded
with BPE; however, this technique does not determine an
optimal lossy bit rate either.

There are three other techniques worth mentioning that

do not fall into the above near-lossless categories. In [25]
and [26], a near-lossless compression proposal is introduced
by refining pixel intervals, yielding a progressive –but not
embedded– codestream. In [27], deadzone quantization was
incorporated.

III. PROPOSAL

The proposed technique belongs to the class of two-stage
coders. The lossy layer can consist of any lossy embedded
compression method such as SPIHT, JPEG2000, CCSDS-
IDC or TCE [28]. In our compression proposal we have
incorporated JPEG2000 as the lossy layer. The near-lossless
layer consists of bitplane encoding and arithmetic encoding.
We employ [3] to estimate the optimal lossy bit rate and then
arithmetically encode the pixel-domain residual in a bitplane-
by-bitplane fashion, yielding a fully embedded codestream.

A. Convergence of the entropy of the residuals

In [3] a method was introduced to find the optimal lossy
bit rate. It was shown that the entropy of the residual in the
wavelet domain H(Y ) and in the original (pixel) domain
H(X) starts to coincide after the critical lossy bit rate Rc
(assuming an order-zero source for the purposes of entropy
calculations). Above this critical bit rate, the residual lacks the
good structure that a good lossy encoder can take advantage
of. In addition, the coding performance is as good and usually
worse than employing an arithmetic encoder. Because of this
property the optimal lossy bit rate can be found when the
sum of the lossy bit rate and the entropy of the residual in
the wavelet domain attain a minimum. This approach avoids
the need to iteratively apply the inverse wavelet transform to
find the optimal lossy bit rate.

However, when coding hyperspectral images, a spectral
transform is needed to account for the spectral correlation
of hyperspectral images, usually larger than the spatial corre-
lation. It has been reported that the KLT provides one of the
highest coding performances [28], [29], [30]. In our proposal,
we thus include a KLT prior to the lossy layer and show that
the optimal lossy bit rate can still be found (at the receiver, the
KLT is inverted right after the lossy layer decoding). Fig. 1
presents our proposed two-stage encoder: the original image
I goes first through a spectral transform and then through
a wavelet-based coder, yielding an embedded codestream
I ′′. Still at the encoder, the decoding of this codestream is
also carried out, so as to obtain a recovered image I ′ that
is then subtracted from the original image I to generate a
residual or error image e. This residual image is then fed
into a quantization step and later into an entropy coding
step, producing a second codestream e′′. At the decoder side,
codestreams I ′′ and e′′ have to be decoded, and the produced
signals are combined to produce a single recovered image.
In our proposal, we have incorporated the KLT as a spectral
transform step and codestream e′′ is also embedded. We note
that the KLT is likely to be the most expensive operation
of the whole encoding process, regardless of the particular
lossy method, and not having to iteratively invert it to find
the optimal lossy bit rate is a quasi-mandatory requirement.

We now report the convergence of the entropy of the
residual also in the spectrally-transformed domain H(Z).
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Fig. 1: Diagram of a two-stage encoder. Our proposal incorporates a spectral transform to account for the spectral correlation.
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Fig. 2: Convergence of the residual entropies for Yellowstone Radiance image in three different domains (original ,
spectral , and spectral-spatial ) and total rate corresponding to the residual entropy plus the bit rate needed for the
lossy layer (original , spectral , and spectral-spatial ).

Namely, we consider the original domain H(X), the spectral
domain H(Z) and the spectral-spatial domain H(Y ) (2D
wavelet transform is applied after 1D spectral transform). A
static binary arithmetic encoder is employed in our proposal,
meaning that the exact frequencies are fed to the encoder.
There are scenarios where implementation issues may hinder
the performance of arithmetic encoders, such as when large
frequency tables need be transmitted, or when the precision
of frequencies is not high enough; nonetheless, in this case,
the cost of transmitting these frequencies is negligible with
respect to the large size of hyperspectral images and their
precision can be as high as needed. This implies that the
entropy of the residual in the original domain can be consid-
ered equal to the real bit rate. Fig. 2 shows the entropy of the
residuals (residual rate) and the total bit rate, for each domain,
for AVIRIS Yellowstone Radiance image for δ = 0, δ = 3
and δ = 5. Although there is a certain offset between the
entropies in the different domains, our proposal is able to find
the optimal lossy bit rate accurately also after incorporating
the spectral transform. For a given image, the residual entropy
is in coarse terms a decreasing monotonic function the lossy
rate, as is the optimum lossy bitrate, in coarse terms, a
decreasing monotonic function of delta. Nonetheless, it is also
possible to use a larger, and perhaps more advantageous, lossy
layer at the expense of a slight increase in the total bit rate
for δ = 0 and δ = 3, as can be seen in Fig. 2.

B. Near-lossless embedded stage

The residual signal is encoded through a custom context-
less BPE because it enables an embedded codestream, and
also because PAE decreases substantially after each trans-
mitted bitplane. Within the BPE, each bitplane is encoded
with a binary arithmetic encoder. More specifically, each bit
plane of each component is encoded separately to ensure
that the encoding can be stopped at any arbitrary bit rate.
The pixel-domain residual has a symmetric probability mass
function (pmf) with zero as the expected value. This means
that bitplane encoding can be achieved by mapping the integer
values to natural values. This mapping was also used in [31]
to entropy encode symmetrically distributed image values.
The mapping consists of reordering an ordered sequence

of values to 0, 1, -1, 2, -2, . . . . This will then lead to a
decaying single-sided pmf. In the end we thus have a one-
to-one mapping of integer to natural values. The described
mapping is shown in Equation 2. Note that the reordering is
done after the quantization of the pixel-domain residual with
the appropriate δ. After the mapping the natural values are
transformed to their binary representation. The last bit in the
binary representation corresponds to a sign bit. This sign bit
is sent immediately after the first significant bit of a residual
coefficient is sent (i.e., when a magnitude bitplane contains
a one). A significance matrix keeps track of all the sign bits
that have been sent.

f(x) =

{
2|x| − 1, if x > 0
2|x|, if x ≤ 0

. (2)

IV. EXPERIMENTAL RESULTS

This section investigates the coding performance of the
proposed fully embedded near-lossless coder. First, perfor-
mance in terms of bit rate is assessed through comparison
to other near-lossless/lossless coders. Second, SNR and PAE
performance are analyzed. Performance is evaluated over a
set of AVIRIS [32] and Hyperion [33] hyperspectral images,
publicly available for download. Technical names and sizes
are provided in Table I, along with the entropy of the images
and that of the quantized versions of the images. All images
are 16 bits per pixel per band (bpppb), except for Hawaii
and Maine that are 12 bpppb. Uncalibrated images are stored
as unsigned integers, whereas calibrated images are stored
as signed integers. Hyperion calibrated images are radiance
images.

A. Lossless and Near-lossless compression performance

The proposed method is compared against three state-
of-the-art coding techniques: M-CALIC [13], [35] and
CCSDS-123.0-B-1 with a quantizer [14], examples of
near-lossless techniques based on predictive coding; and
against "Prequantization+MC-JPEG2000", which simulates
proposal [10], an example of near-lossless technique based
on prequantization.

M-CALIC performs an inter-band prediction in BSQ mode
(with negative values on the first row of Hyperion images set
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TABLE I: AVIRIS and Hyperion images used in the experiments.Technical names, size and entropy of original and
prequantized versions for different δ values are provided.

Sensor Name Acronym Technical Name Size (x× y × z) Entropy
δ=0 δ=1 δ=5 δ=32 δ=128

AVIRIS

Hawaii Uncalibrated H f011020t01p03r05_sc01 614 × 512 × 224 8.55 6.99 5.14 2.79 1.16
Maine Uncalibrated M f030828t01p00r05_sc10 680 × 512 × 224 9.09 7.52 5.70 3.34 1.76

Yellowstone Radiance YR f060925t01p00r12_sc00 677 × 512 × 224 10.33 8.75 6.92 4.49 2.71
Yellowstone Uncalibrated YU f060925t01p00r12_sc00 680 × 512 × 224 12.62 11.04 9.16 6.63 4.71

Hyperion

Agricultural Calibrated A EO1H0280342004074110PX 256 × 3129 × 242 10.05 8.74 7.16 4.95 3.32
Coral Reef Calibrated C EO1H0830742003120110PW 256 × 3127 × 242 8.46 7.11 5.44 3.22 1.93

Urban Calibrated U EO1H0440342002212110PY 256 × 3176 × 242 10.01 8.70 7.10 4.85 3.24
Erta Ale Uncalibrated E EO1H1680502010057110KF 256 × 3242 × 242 9.46 7.88 6.03 3.54 1.76

Lake Monona Uncalibrated L EO1H0240302009166110PF 256 × 3352 × 242 9.91 8.33 6.47 3.97 2.18

TABLE II: Comparison of different near-lossless for several values of δ. Coding performance is reported in bits per pixel per
band. Bold font indicates highest coding performance. Results for CCSDS-123.0 + Quantizer are from [34].

Img M-CALIC CCSDS-123.0 + Quantizer Preq. + MC-JPEG2000 Proposal
δ 0 1 5 32 128 0 1 5 32 128 0 1 5 32 128 0 1 5 32 128
H 2.84 1.57 0.65 0.20 0.10 2.63 1.39 0.40 — — 2.89 2.28 2.06 1.57 0.54 2.45 1.01 0.18 0.07 0.07
M 2.89 1.62 0.69 0.23 0.12 2.72 1.46 0.45 — — 3.02 2.40 2.20 1.96 1.55 2.62 1.16 0.23 0.07 0.07

YR 4.13 2.64 1.28 0.39 0.16 — — — — — 3.90 2.89 2.38 2.16 1.91 3.76 2.24 0.70 0.18 0.07
YU 6.32 4.73 2.91 1.03 0.41 6.20 4.59 2.77 — — 6.11 4.52 3.07 2.46 2.24 5.96 4.37 2.54 0.53 0.23

A 5.29 4.05 2.61 0.99 0.34 5.32 4.01 3.43 — — 5.79 4.44 3.11 2.16 1.91 6.12 4.53 2.78 0.84 0.18
C 4.62 3.47 2.09 0.70 0.30 4.94 3.63 3.09 — — 5.41 4.13 2.86 1.96 1.70 5.81 4.22 2.41 0.61 0.12
U 5.15 3.97 2.54 0.99 0.39 5.31 4.01 3.42 — — 5.79 4.44 3.15 2.20 1.92 6.14 4.56 2.81 0.89 0.23
E 4.75 3.19 1.59 0.28 0.07 4.61 3.09 2.42 — — 4.46 3.19 2.51 2.14 1.61 4.55 3.00 1.26 0.12 0.06
L 4.93 3.35 1.72 0.34 0.07 4.69 3.17 2.49 — — 4.60 3.30 2.53 2.13 1.69 4.65 3.09 1.38 0.17 0.06

to 0). "Prequantization+MC-JPEG2000" performs a spectral
Reversible KLT [36] and JPEG2000 (BOI) with a reversible
5/3 spatial wavelet transform with 5 levels. Our proposal
performs a KLT spectral transform and JPEG2000 (BOI) with
an irreversible 9/7 spatial wavelet transform with 5 levels;
encoding of the residual is implemented in java with an
arithmetic encoder derived from the MQ coder of JPEG2000.

Table II reports results in terms of bit rate. Results for
prediction-based techniques illustrate how the bit rate de-
creases quickly as a function of δ. The prequantization-
based technique leads to good results for δ = 0, but its
performance deteriorates for larger values of δ. For AVIRIS
images, our proposal yields always the best performance.
For Hyperion uncalibrated images, the prequantization-based
technique beats our proposal by a negligible margin only for
δ = 0. For Hyperion calibrated images, M-CALIC proves
superior by 13% for δ ≤ 5; however, M-CALIC doesn’t offer
any degree of embedding, while the proposed method offers
a fully embedded codestream; for δ > 5, our proposal is the
most competitive.

B. Embedded SNR performance

In order to study the rate-distortion performance in terms
of SNR (l2 norm), we compare our proposal against an-
other approach that also provides fully embedded code-
streams and that has been optimized minimizing the l2 norm,
namely, Prequantization+MC-JPEG2000. Results for CCSDS-
123 with Quantizer are not included in this section, as those
available in [14] are only for on-board operation (employ-
ing a heavily constrained rate control method). Other near-
lossless coding techniques do not provide either an embedded
codestream or a competitive performance and are thus not
compared here.

Fig. 3 reports results for three images and two different δ
values. Reporting results for larger values of δ would show
the poor performance of the prequantization-based technique
(these results are not reported due to space constraints). On
most occasions, our two-stage proposed method has the same

SNR performance as MC-JPEG2000 until the lossy bit rate
(for example, in (b) optimal lossy bit rate is 0.6 bpp for
δ = 0 and for δ = 1; note that these values of δ determine
the maximum bit rate as well). At some point the errors
introduced in the reversible lifting network of the RKLT start
dragging down the performance of the prequantization-base
method. This is very noticeable for the Hawaii image and
increases with larger δ values. In general and in addition to
its near-lossless capabilities, the proposed technique provides
better progressive SNR performance while achieving similar
lossless results; it is thus a good candidate to replace the use
of a RKLT+JPEG2000 approach to supply progressive lossy-
to-lossless compression.

C. Embedded PAE performance

To conclude the analysis of the rate-distortion performance,
the PAE metric (l∞ norm) is investigated. Fig. 4 reports
results for, again, three images and two different δ values.
We see that the PAE of the proposed method decreases
significantly, and in flat steps, after the optimal lossy bit rate
(for both δ = 0 and δ = 1), as it enters near-lossless operation
mode. On the other hand, PAE decreases in a non-constant
manner for the other embedded coding technique.

V. CONCLUSION

A two-stage near-lossless coding technique providing a
fully embedded codestream has been proposed. The two-
stage coder consists of a lossy layer (usually already pro-
viding embedded codestreams) and a near-lossless layer. Our
proposal introduces embeddedness in the near-lossless layer
through mapping, bitplane-by-bitplane processing and arith-
metic encoding. In addition, a spectral transform was included
to account for the spectral correlation among components in
hyperspectral images. Experimental results indicate that the
proposed technique yields a competitive coding performance
for lossless compression, and the best coding performance
for near-lossless compression for δ ≥ 5. Moreover, thanks
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Fig. 3: SNR performance of the proposed method for δ = 0 and δ = 1 as compared to Prequantization+JPEG2000.
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Fig. 4: PAE performance of the proposed method for δ = 0 and δ = 1 as compared to Prequantization+JPEG2000.

to its lossy-to-lossless scalability in both l2 and l∞ norms, it
also provides the highest throughput for both SNR and PAE
metrics.
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