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Abstract: The microstructure, mechanical behaviour and biocompatibility (cell culture, 

morphology and cell adhesion) of nanostructured Ti45Zr15Pd35-xSi5Nbx with x = 0, 5 (at. %) 

alloys, synthesized by arc melting and subsequent Cu mould suction casting, in the form of rods 

with 3 mm in diameter, are investigated. Both Ti-Zr-Pd-Si-(Nb) materials show a multi-phase 

(composite-like) microstructure. The main phase is cubic β-Ti phase (Im3m) but hexagonal α-Ti 

(P63/mmc), cubic TiPd (Pm3m), cubic PdZr (Fm3m), and hexagonal (Ti,Zr)5Si3 (P63/mcm) 

phases are also present. Nanoindentation experiments show that the Ti45Zr15Pd30Si5Nb5 sample 

exhibits lower Young’s modulus than Ti45Zr15Pd35Si5. Conversely, Ti45Zr15Pd35Si5 is 

mechanically harder. Actually, both alloys exhibit larger values of hardness when compared to 

commercial Ti-40Nb, (HTi-Zr-Pd-Si ≈ 14 GPa, HTi-Zr-Pd-Si-Nb ≈ 10 GPa and HTi-40Nb ≈ 2.7 GPa). 

Concerning the biological behaviour, preliminary results of cell viability performed on several 

Ti-Zr-Pd-Si-(Nb) discs indicate that the number of live cells is superior to 94% in both cases. The 

studied Ti-Zr-Pd-Si-(Nb) bulk metallic system is thus interesting for biomedical applications 

because of the outstanding mechanical properties (relatively low Young’s modulus combined 

with large hardness), together with the excellent biocompatibility. 

Keywords: Bioimplant, Ti-based alloy, nanostructured material, mechanical behaviour, 

biological tests. 

 

 INTRODUCTION 

Due to the fast population aging, a concern related to the development of suitable materials for 

bone replacement is continuously arising.1,2 Specifically, the aim of current investigations is to 

develop orthopaedic implants that can stand for longer periods of time or even the entire lifetime 
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without failure or need for a revision surgery.3 These orthopaedic implants must therefore show 

bio- and mechanical-compatibility with bone. The ideal implant material should not cause any 

foreign-body inflammatory response, the growth of microorganisms should be suppressed, and it 

should be non-toxic, non-allergenic and non-carcinogenic.4 From the mechanical point of view, 

there are several issues having an impact on the selection of suitable permanent biomaterials. 

Namely, the candidate material must possess high strength, high hardness, high elastic strain 

limit, and relatively low Young’s modulus to avoid the occurrence of the so-called stress 

shielding effect.5-7 This phenomenon, which occurs when the Young’s modulus of the permanent 

implant differs significantly from the Young’s modulus of bone, can ultimately lead to implant 

loosening. Traditionally, 316L austenitic steel, Co–Cr and Ti alloys have been employed in the 

biomedical field.6 Thus, Ti and its alloys have become the most promising engineering materials 

because they combine high strength with relatively low Young’s modulus, reduced stiffness and 

rather low density (4.5 g/cm3). In addition, they show good biocompatibility and good corrosion 

resistance, in many cases superior to those of conventional steel and Co-Cr alloys.8 So far, the 

mostly used Ti-based alloys are Ti-6Al-4V (composed of α and β phases) and Ti-40Nb 

(composed of β phase).1,5,9-11 Both materials have found applications in many medical devices as 

biomaterials for orthopaedic implants because of their outstanding mechanical properties.3 

Nevertheless, these alloys face some undesired and unsolved problems. Ti-6Al-4V contains 

aluminium, which is known to cause certain bone diseases and neurological disorders.13 and 

vanadium may become toxic at excessive concentration levels. The toxicity of vanadium is well-

known, and can be exacerbated if the implant fractures and undergoes subsequently fretting.4 

Another major concern of Ti-6Al-4V is the mismatch between its Young’s modulus (E = 110 – 

120 GPa) and that of bone (E = 10 – 30 GPa)14 that, as aforementioned, can cause implant 
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failure.15 In spite of the exceedingly low stiffness, Ti-40Nb shows good biocompatibility and 

possesses lower Young’s modulus.15-19 Therefore, it is of outmost importance to further search 

for novel bulk Ti-based materials which satisfy: (i) chemical composition containing neither toxic 

nor allergenic elements, and (ii) suitable microstructures that promote the targeted mechanical 

properties. In recent years, bulk metallic glassy alloys based on titanium have been developed.20-

24 The progress in the design of bulk metallic glasses has also led to progress in the development 

of new in situ formed nano-scale structured materials, which may exhibit even better mechanical 

performance than bulk metallic glasses (BMGs) and/or traditional commercial Ti-based 

alloys.25,26 Although it is known that BMGs exhibit high strength and large elastic strain, they 

usually fail catastrophically by the fast propagation of shear bands, leaving zero global plastic 

strain under tension. Therefore, second phase particles are in-situ or ex-situ introduced to 

reinforce the metallic glass matrices and arrest the shear bands, leading to bulk metallic glass 

composites.27 In turn, composites made of nanocrystalline phases can exhibit very large hardness 

(due to dislocation pile-up at grain boundaries) and high plasticity (particularly when additional 

deformation mechanisms are activated such as intergranular grain boundary sliding).28 This has 

triggered the interest in nanostructured bulk metallic composites in several fields like 

biomaterials, aerospace industry and other structural applications. Considering the biomedical 

applications, we have focused on the development of new nano/ultrafine-structured Ti-based 

alloys free of any toxic or allergic elements (e.g. Ni, Cu, Al, V, etc.) and succeeded in finding 

compositions with superior mechanical properties. Here, the synthesis and characterization of a 

new Ti-based alloy composition (i.e., Ti45Zr15Pd35-xSi5Nbx with x = 0 and 5 at. %) in bulk form is 

reported. This particular composition (without Nb) had been previously synthesised in the form 

of melt-spun amorphous ribbons but not in bulk.29 According to Oak et al. and Inoue, this alloy 

has the potential to be applied in the biomedical field as an orthopaedic bone fixation device.29 In 
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our work, niobium was chosen to partially replace palladium for several reasons. First of all, Nb 

is much cheaper than Pd and it is a well-known non-toxic and non-allergic element.30 Besides, 

addition of Nb promotes the formation of β-phase because it belongs to the β-stabilizer 

elements.31 In general, an increase in the amount of β-phase causes a decrease of the Young’s 

modulus, an improvement of the alloy formability and an enhancement of the corrosion 

resistance.32 Indeed, β-Ti alloys are better suited for biomedical applications than α-Ti alloys. 

Finally, it has been reported that Nb can be alloyed to Ti in order to reduce the Young’s modulus 

without compromising the strength.33,34 Our results reveal that the addition of Nb to Ti45Zr15Pd35-

xSi5 brings about a reduction of Young’s modulus while preserving reasonably high strength 

values and not causing detrimental effects on the alloy biocompatibility.  

MATERIALS AND METHODS 

Master alloys with composition Ti45Zr15Pd35-xSi5Nbx (where x = 0 and 5 at. %) were prepared by 

arc melting a mixture of the highly pure elements (> 99.99% wt. %) under a Ti-gettered Ar 

atmosphere on a water cooled Cu heart. Rods of 3 mm in diameter were obtained from the melt 

by suction casting into a Cu mould. The microstructures of as-cast samples were examined using 

a scanning electron microscope (SEM Zeiss Merlin), equipped with an energy dispersive X-ray 

detector (EDX, Oxford Instruments, INCA system). The samples were structurally characterised 

by X-ray diffraction (XRD) (Philips X’Pert diffractometer with monochromatic Cu-Kα radiation). 

MAUD (Material Analysis Using Diffraction) software based on the Rietveld method was 

applied to calculate lattice parameters and phase percentages from powder XRD. Transmission 

electron microscopy (TEM) (JEOL JEM 2011, 200 kV) was used for microstructure 

observations. Samples for TEM imaging were mechanically pre-thinned to 80 µm and afterwards 
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the thickness was reduced to 30 µm by mechanical dimpling at one side of the samples. Finally, 

further thinning of the disks was carried out by ion beam milling at 4 keV at an incident angle of 

5˚. The elastic properties were evaluated by ultrasonic measurements (pulse-echo overlap 

technique) along with density assessment (Archimedes’ method). The mechanical properties of 

the as-cast Ti-Zr-Pd-Si-(Nb) alloys were determined by nanoindentation measurements using 

UMIS equipment from Fischer-Cripps laboratories,35 equipped with a Berkovich pyramidal-

shaped indenter tip. The thermal drift was always kept below ± 0.05 nm s−1. Arrays of 50 and 100 

indentations with maximum applied loads of 250 mN and 3 mN, respectively, were carried out to 

probe both the average and local mechanical behaviour of the samples and to verify the accuracy 

of the indentation data. Prior to the nanoindentation tests, the specimens were carefully polished 

to mirror-like appearance using diamond paste. The method of Oliver and Pharr was used to 

determine the hardness and the reduced Young’s modulus.36 Finally, the elastic/total indentation 

energies were also calculated. The total mechanical work done by the indenter during loading, 

Utot, was calculated from the area enclosed between the loading indentation segment and the 

displacement axis. This energy is the sum of the elastic, Uel, and the plastic, Upl, energies:  

 Utot= Uel + Upl            (1) 

where Uel is obtained from the area enclosed between the unloading segments and displacement 

axis.37-39 The elastic recovery and plasticity index were evaluated from the Uel/Utot and Upl/Utot 

ratios, respectively. The mechanical and elastic properties were compared with those of 

commercial Ti-40Nb alloy. Electrochemical tests were carried out at 37 ºC in a three-electrode 

cell filled with 100 ml Hank’s solution, connected to an Autolab PGSTAT 302N. A Ag/AgCl, 

KCl (3M) (E = +0.210 V versus NHE) electrode, a platinum spiral and the sample were used as 

the reference, the counter and the working electrode, respectively. A copper wire was welded to 
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one side of the sample disk, afterwards embedded in a non-conductive resin and finally carefully 

polished (up to 4000 SiC grit followed by diamond paste of 6, 3 and 1 µm) leaving only a net 

surface for corrosion tests. The solution was de-aerated with Argon flux after each measurement. 

The open-circuit potential (EOCP) versus time was recorded for 30 min and immediately 

afterwards the potential was scanned from (EOCP −0.3) V to + 0.8 V at a scan rate of 0.5 mV/s. 

All tests have been repeated several times to ensure reliability of the data. The biological 

behavior of Ti45Zr15Pd35-xSi5Nbx (x=0, 5 at. %) alloys were tested in cell culture, analyzing cell 

viability, morphology and adhesion. Alloy disks were glued individually onto a glass coverslip 

with silicone (Bayer), introduced into a 4-multiwell culture plate and sterilized under UV light for 

at least 2 h. Once sterilized, 50,000 cells from the human osteosarcoma cell line Saos-2 (ATCC) 

were cultured into each well in Dulbecco’s modified Eagle medium (Invitrogen) with 10% foetal 

bovine serum (Gibco) in standard conditions (37°C and 5% CO2) for 24 h. For all experiments 

three groups were analyzed: cells grown on top of the alloy disk, cells grown on the coverslip in 

presence of the alloy and cells grown in absence of the alloy (control culture). All experiments 

were conducted in triplicate. Cell viability was analysed by Live/Dead Viability/Cytotoxicity Kit 

for mammalian cells (Invitrogen), according to the manufacturer’s protocol. Images from 

different regions of the alloy disk and its coverslip, and from the control culture were captured 

using an Olympus IX71 inverted microscope equipped with epifluorescence. A minimum of 200 

cells were analyzed per group. Data were analysed for significance using the Fisher’s exact test 

for comparison between groups. Statistical significance was considered when p < 0.05. For cell 

morphology analyses, cultured cells were rinsed twice in phosphate buffered saline (PBS), fixed 

in 4% paraformaldehyde (Sigma) in PBS for 45 min at room temperature (RT) and rinsed twice 

in PBS. Cell dehydration was performed in a series of ethanol (50, 70, 90 and twice 100%), 7 min 
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each. Finally, samples were dried using hexamethyl disilazane (HMDS; Electron Microscopy 

Sciences) for 15 min, mounted on special stubs and analysed using SEM (Zeiss Merlin). Cell 

adhesion was determined by the presence of focal contacts. Phalloidin was used to visualize actin 

filaments whereas an antibody against vinculin was used to detect the focal contacts. Cells 

(50,000) were seeded into a well containing an alloy and, after 24 h of culture cells were fixed in 

4% paraformaldehyde in PBS for 45 min at RT, permeabilised with 0.1% Triton X-100 (Sigma) 

in PBS for 15 min and blocked for 25 min with 1% PBS-bovine serum albumin (Sigma) at RT. 

Samples were then incubated with a mouse anti-vinculin primary antibody (Chemicon) for 60 

min at RT and washed with 1% PBS-BSA. Next, samples were incubated with a mixture of 

Alexa fluor 594-conjugated phalloidin (Invitrogen), Alexa fluor 488 goat anti-mouse IgG1 

(Sigma) and Hoechst 33258 (Sigma) for 60 min at RT. Finally, samples were washed in 1% PBS-

BSA and air dried. Samples were mounted on specific bottom glass dishes (MatTek) using 

Fluoroprep mounting solution (Biomerieux) and imaged in a confocal laser scanning microscope 

(Leica SP5).  

RESULTS AND DISCUSSION 

Microstructure 

The XRD patterns of the as-cast (a) Ti45Zr15Pd35Si5 and (b) Ti45Zr15Pd30Si5Nb5 alloys are shown in 

Figure 1. The most intense XRD diffraction peaks belong to the cubic β-Ti phase (Im3m). The 

remaining peaks indicate the presence of the following phases: hexagonal α-Ti (P63/mmc), cubic 

TiPd (Pm3m), cubic PdZr (Fm3m), and hexagonal (Ti,Zr)5Si3 (P63/mcm) phases. Although the 

α- and β-Ti reflections are partially overlapped, the relative peak intensities do indicate that the 

β-Ti phase is predominant (as noticed on comparing the JCPDS 44-1288 and 23-1300 cards and 

further confirmed by Rietveld fitting). Notice also that most of the TiPd reflections are also 
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overlapped with the β-Ti peaks. Nevertheless, the peak located at 2θ = 48.87º which is univocally 

assigned to the TiPd phase, indicates that its phase amount is rather low. Although both patterns 

consist of the same phases, the reflections in the diffractogram of Ti45Zr15Pd30Si5Nb5 are sharper 

and more intense, particularly those belonging to the β-Ti phase. This suggests the presence of 

bigger crystals (and lower microstrains) and possibly larger volume fraction of β-Ti. Taking into 

account the atomic radii of Ti (1.60 Å), Zr (1.75 Å), Pd (1.39 Å), Si (1.11 Å) and Nb (1.65 Å) 

and their percentages, the following considerations can be done. The tabulated lattice parameter 

of the β-Ti phase is considerably larger (atab. = 3.30 Å) than the calculated value (acal. = 3.212 Å), 

indicating the probable dissolution of Pd in the β-Ti cubic lattice. Moreover, the tabulated cell 

parameter of TiPd phases (atab. = 3.19 Å) is slightly lower than the calculated one (acal. = 3.22 Å). 

This difference can be explained by either the presence of substitutional Zr atoms in Ti positions 

or by slight variations in the stoichiometry (i.e., the concentration of Ti atoms is slightly larger 

than 1). Figure 2 shows the SEM images (obtained using backscattered electrons) of the Ti-Zr-

Pd-Si-(Nb) alloys. These materials exhibit similar composite-like microstructure with the 

presence of at least five different phases (see Figure 3). The images are representative of the 

microstructure at the centre of the discs and show four different regions with varying grey scale 

(A-D), together with eutectic lamellae (E). A zoomed detail of the eutectic matrix is provided as 

insets of Figure 2(a, b). No significant differences were observed between Ti45Zr15Pd35Si5 and 

Ti45Zr15Pd30Si5Nb5 alloys. Energy dispersive x-ray (EDX) mapping analysis was performed on 

selected zones of the samples to determine the distribution of Ti, Zr, Pd, Si and Nb elements 

(Figure 3a-d). The EDX mapping of Ti-Zr-Pd-Si-(Nb) alloys (Figure 3(a,c)) indicates that the 

light grey precipitates (zone A) are rich in palladium, whereas the black precipitates (zone B) are 

enriched in Zr, Si (and Nb in case of Ti-Zr-Pd-Si-Nb sample) (see Table I). Ti is almost equally 
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distributed everywhere, although a larger amount was found in the dark grey region (zone C) 

(Table I). On the other hand, the EDX mapping of eutectic regions in Ti-Zr-Pd-Si-(Nb) alloys 

(Figure 3(b, d)) reveals that the interfaces between the eutectic domains (zone D) are rich in Zr, 

whilst larger amounts of Si (and Nb in case of Ti-Zr-Pd-Si-Nb sample) are concentrated within 

the eutectic lamellae (zone E). Unfortunately, for this sample, the EDX spot analyses were not 

conclusive because of its fine microstructure, so that very similar element percentages were 

observed in both regions, this is, the interfaces between the eutectic domains and eutectic 

lamellae. Taking XRD and EDX results of Ti-Zr-Pd-Si-(Nb) system into account, the following 

considerations can be made. As for the Ti45Zr15Pd35Si5 alloy is concerned, zone A likely 

corresponds to TiPd phase with Zr in solid solution. This is supported by both the smaller cell 

parameter of the TiPd phase compared with the tabulated value and the moderate content of Zr 

determined by EDX (Table I). Besides, zone B could be assigned to (Ti, Zr)5Si3 phase, whereas 

the zone C can be mainly linked to α- or β-Ti phases. For the Ti45Zr15Pd30Si5Nb5 alloy, the zone 

D could belong to PdZr phase, while the other phases would be forming the surrounding eutectic 

domains (zone E). In order to gain deeper insight of the microstructure character of the eutectic 

region, the Ti-Zr-Pd-Si alloy was analysed by TEM (Figure 4 (a)-(d)). Figure 4(a) shows a TEM 

image of the eutectic lamellae. The corresponding selected area electron diffraction (SAED) 

pattern indicates that the eutectic colonies are composed of α-Ti, β-Ti and cubic TiPd phases 

(Fig. 4(b)). Zoomed details of the bright and dark regions suggest that the former is actually 

composed of α-Ti and β-Ti phases whereas TiPd phase is present in the dark region. The crystal 

enclosed in the white box of the HRTEM image of Figure 4(c) actually corresponds to α-Ti 

phase, as corroborated by insets (I) and (II). Namely, the interplanar distance of the spots in the 

FFT (inset I) match the α-Ti phase and the same holds for the fringes in the Fourier filter 
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reconstruction (inset II). Similarly, the crystal enclosed in the white box in the HRTEM image of 

Figure 4(d) corresponds to TiPd phase, as corroborated from the interplanar distance of the spots 

in its FFT (inset I). 

Mechanical characterization 

Figure 5 shows representative nanoidentation load-displacement (P–h) curves of the 

Ti45Zr15Pd35Si5, Ti45Zr15Pd30Si5Nb5 and commercial Ti–40Nb alloys, measured to a maximum 

load of 250 mN. The Ti-40Nb alloy was used for a comparison aim. Indentations using such a 

high load are large enough to embrace all the existing phases (A-E), so that the obtained hardness 

values are representative of the average strength of the alloy. A typical indent made in 

Ti45Zr15Pd35Si5 is shown as an inset in Figure 5. Table II shows that the addition of Nb decreases 

the Young’s modulus from about 117 GPa to a 85 GPa value, which is just slightly larger than 

the value of the commercial Ti-40Nb alloy (72 GPa). Ultrasonic measurements were performed 

to compare the values of Young’s modulus with those of nanoindentation tests. Additionally, the 

other elastic properties values (the Poisson’s coefficient (v), Young’s modulus (E), shear modulus 

(G), and bulk modulus (K)) were also evaluated (Table III). The Young’s modulus significantly 

decreases from 100 GPa for Ti45Zr15Pd35Si5 to 87.3 GPa for Ti45Zr15Pd30Si5Nb5 alloy, in 

agreement with nanoindentation data. Besides the elastic modulus, the values of hardness were 

also determined by nanoindentation tests. Remarkably, both the Ti45Zr15Pd35Si5 and 

Ti45Zr15Pd30Si5Nb5 alloys are significantly harder than Ti-40Nb (by a factor 5 and 4, 

respectively). The Ti45Zr15Pd35Si5 alloy is mechanically harder than the Ti45Zr15Pd30Si5Nb5 and 

Ti-40Nb alloys, as can be deduced from (P–h) curve from the smallest values of penetration 

depth using force of 250 mN (Figure 5). It is worth mentioning that the hardness of 

Ti45Zr15Pd35Si5 and Ti45Zr15Pd30Si5Nb5 alloys are also larger than that of Ti–39.3Nb–13.3Zr–
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10.7Ta and Ti–31.0Fe–9.0Sn alloys, which has been previously investigated as suitable material 

for bone replacement due to its good mechanical properties.40 Difference in the mechanical 

response between Ti45Zr15Pd35Si5 and Ti45Zr15Pd30Si5Nb5 alloys can be explained by the relative 

fraction of bcc β phase, the chemical composition and the difference in crystal size. In particular, 

Ti45Zr15Pd30Si5Nb5 alloy has larger fraction of bcc β phase and larger crystal sizes, resulting in 

lower hardness than for Ti45Zr15Pd35Si5. In materials with small crystallites, the grain boundaries 

hinder the dislocation motion and increase the stress concentration and dislocation pile up at the 

grain boundaries, ultimately leading to increased hardness.41 Niobium is considered to be the 

strongest beta stabilizer, effectively decreasing Young's modulus of titanium alloys.42 In fact, the 

Young’s modulus of commercial Ti-40Nb, composed only of β -Ti, is the lowest among the 

examined alloys. According to Abdi et al.,43 addition of Nb to (Ti,Zr)5Si3 phase causes a local 

decrease of Er as compared to the Nb-free alloy. This is to some extend expected since the 

Young’s modulus of Nb is lower than that of Ti.  

Listed in Table II are the ratios of H/Er and H3/Er
2 for all investigated alloys. These parameters 

are associated with wear resistance and are important to estimate the lifetime of the implant. H/Er 

indicates the elastic strain to failure44 while H3/Er
2 is related to the resistance of a material to 

plastic deformation in loaded contact.45 Due to large hardness and relatively low values of 

Young’s modulus of Ti45Zr15Pd35Si5 and Ti45Zr15Pd30Si5Nb5, the values of H/Er and H3/Er
2 are 

almost twice larger than those of Ti-40Nb. In fact, the elastic recovery, Uel/Utot, is also higher in 

the new Ti-Zr-Pd-Si-(Nb) system. Hence, these materials would be more resistant to impact 

loading than Ti–40Nb.46 With the aim to study the contribution of the individual phases or 

regions, to the overall mechanical response, nanoindentation tests applying a maximum load of 3 

mN were carried out for Ti45Zr15Pd35Si5 sample. The mean values of hardness (H) and reduced 
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Young’s modulus (Er) corresponding to the different regions (A-D) are listed in Table IV. SEM 

images of representative indents on each region are presented in Figure 6 (a)-(d). The size of 

indents is different, being that on the zone B (Figure 6b), the smallest. The values of hardness for 

the light grey precipitates (Figure 6a), black precipitates (Figure 6b) grey area between the 

eutectic domains (Figure 6c) and eutectic lamellae (Figure 6d), are equal to 8.9 GPa, 13.7 GPa, 

10.1 GPa and 9.7 GPa, respectively (Table IV). The black precipitates are mechanically harder 

presumably due to the presence of the intermetallic (Ti,Zr)5Si3 phase. In fact, the hardness of (Ti, 

Zr)5Si3 phase has been reported to be 13.7 GPa in Abdi’s study.43 Besides, comparable hardness 

values were reported by Mitra.47 Nevertheless, depending on the crystal size the values can 

slightly vary. For instance, hardness of 12.7 GPa stands for crystal size between 5 to 10 µm, 

while for smaller crystals (1-2 µm), the hardness values increase up to 17.2 GPa.47 On the 

contrary, the hardness of the light grey precipitates (TiPd phase) and eutectic lamellae (phase 

mixture), are the lowest among all phases (Table IV). Additional consideration can be made on 

the Young’s modulus of white precipitates (TiPd phase) and eutectic lamellae. According to the 

literature, the calculated Young’s modulus of Ti-Pd phase is 80 GPa.48,49 However, this value 

increases when it comes to the light grey precipitates region (104 GPa), composed of TiPd phase. 

This can be explained by the co-existence of α-Ti, which has larger Young´s modulus (120 GPa) 

within this region. Zone C (Figure 6c) which is composed mainly of α-Ti phase exhibits a 

Young’s modulus of 120 GPa. On the contrary, the value of the eutectic is found to be 

experimentally equal to 110 GPa, which can be attributed to the large amounts of inter-phase 

boundaries existing in the eutectic regions, as a consequence of phase mixture (Figure 6d). 

Corrosion resistance and biocompatibility 
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Prior to the biocompatibility studies, the corrosion resistance of the Ti45Zr15Pd30Si5Nb5 bulk 

metallic glass composite was electrochemically evaluated by potentiodynamic polarization in 

Hank’s solution at 37 ºC and the response compared to that of Ti-40Nb sample (taken as a 

reference). Although Ti45Zr15Pd30Si5Nb5 is made of several phases and one would a priori expect 

low corrosion resistance because of the eventual occurrence of galvanic pairs, Figure 7 shows 

that this is not actually the case. Both samples exhibit similar corrosion current density values 

and the corrosion potential of Ti45Zr15Pd30Si5Nb5 sample is shifted toward more positive values 

compared to Ti-40Nb alloy. Moreover, the current density on the anodic branch is lower for the 

nanostructured Ti45Zr15Pd30Si5Nb5 sample.  

In order to assess the biocompatibility of the TiZrPdSi(Nb) specimens, cultured human Saos-2 

cells were distributed randomly onto the metal alloys and coverslips. The percentage of live cells 

was higher than 94 % in all groups, and no significant differences were observed between the two 

alloy compositions, or between them and the coverslip and control plate (Figure 8). These results 

indicate that the addition of Nb to the alloy composition does not cause any cytotoxic effect, in 

agreement with the observations done by other authors.50,51 After 24 h of culture, the cells were 

attached to the surface of Ti45Zr15Pd35Si5 and Ti45Zr15Pd30Si5Nb5 alloys and of coverslips, and 

showed a similar morphology under SEM. Cell density was similar in all cultures analysed and in 

all cases the cells showed a flattened polygonal morphology with nuclei presenting several 

nucleoli (Figure 9), an indication of high cellular activity. The actin cytoskeleton structure and its 

involvement in focal contacts are key to maintain cell adhesion, but also for cell proliferation and 

differentiation. In this sense, the formation of focal contacts on the surface of the alloy gives 

information about its biocompatibility. Focal contact analysis showed that Saos-2 cells were 

completely adhered to the surface of the two alloyed compositions (Figure 10) and coverslips. 
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Actin stress fibres were well-defined in all cases, and some of them extended across the cell and 

ended in focal contacts. The results indicate that Ti45Zr15Pd35Si5 and Ti45Zr15Pd30Si5Nb5 alloys 

allow cell adhesion, in agreement with other studies of biocompatible bulk metallic glasses.52,53 

Furthermore, the formation of focal contacts on the two alloys suggests that ECM proteins, 

necessary for cell adhesion, can be adsorbed on the alloy surface.54
 

CONCLUSIONS 

The microstructure and mechanical properties of nanostructured Ti45Zr15Pd35-xSi5Nbx with x = 0, 

5 (at. %) alloys have been investigated and compared to those of commercial Ti-40Nb. Both Ti-

Zr-Pd-Si-(Nb) rods show a composite-like microstructure consisting of several phases: a 

predominant β-Ti and additional phases (TiPd, PdZr, α-Ti and (Ti, Zr)5Si3 intermetallics) in 

smaller volume fraction, as identified by XRD, SEM and TEM analyses. In terms of mechanical 

behaviour, nanoindentation experiments reveal that the Ti45Zr15Pd30Si5Nb5 alloy exhibits lower 

Young’s modulus and hardness than Ti45Zr15Pd35Si5 (ErTi-Zr-Pd-Si ≈ 117 GPa and ErTi-Zr-Pd-Si-Nb ≈ 85 

GPa). This can be explained by the relative amount of β phase in both alloys and the differences 

in the mean crystal size values. Remarkably, both alloys exhibit larger values of hardness, wear 

resistance (indirectly estimated through the H/Er ratio) and elastic recovery than commercial Ti-

40Nb, (HTi-Zr-Pd-Si ≈ 14.2 GPa, HTi-Zr-Pd-Si-Nb ≈ 10.4 GPa and HTi-40Nb ≈ 2.7 GPa. Hence, the newly 

developed Ti45Zr15Pd35-xSi5Nbx alloys with x = 0, 5 (at. %) are interesting for biomedical 

applications because they combine relatively low Young’s modulus (particularly in 

Ti45Zr15Pd30Si5Nb5) with large values of hardness. Moreover, Ti45Zr15Pd30Si5Nb5 sample does not 

exhibit worse corrosion resistance than commercially used Ti-40Nb alloy in spite of the presence 

of multiple phases. Additionally, the biological compliance with body system (cell culture, cell 

viability and cell adhesion) of these two alloys was analysed. Preliminary results of cell viability 
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performed on several Ti-Zr-Pd-Si-(Nb) discs indicate that the number of live cells is superior to 

94 % in both cases. From these outstanding mechanical properties and the excellent 

biocompatibility these alloys turn out to have a large potential to be used as permanent implants 

for bone replacement. 
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Figures and Tables Captions 

 

FIGURE 1. X-ray diffraction patterns (XRD) corresponding to the as-cast (a) Ti45Zr15Pd35Si5 and (b) 

Ti45Zr15Pd30Si5Nb5 alloys. 
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FIGURE 2. Scanning electron microscope (SEM) images (backscattered electrons) of the as-cast (a) 

Ti45Zr15Pd35Si5 and (b) Ti45Zr15Pd30Si5Nb5 alloys taken at the centre of the discs. Shown as insets (a, b), are 

zoomed details of the eutectic region. 

FIGURE 3. SEM (backscattered electrons) images and corresponding energy dispersive x-ray mapping of 

Ti, Zr, Pd, Si (and Nb) elements in Ti45Zr15Pd35Si5 and Ti45Zr15Pd30Si5Nb5 discs taken at central part of the 

rod showing (a, c) A, B and C regions and (b, d) D, E regions. 

FIGURE 4. (a) Transmission electron micrograph (TEM) of the eutectic matrix in the Ti45Zr15Pd35Si5 

alloy, (b) selected area electron diffraction pattern of image (a), revealing the existence of β-Ti, α-Ti and 

TiPd phases. (c) Zoomed detail of the bright region of the eutectic matrix; insets (I) and (II) are the FFT 

and Fourier filter reconstruction, respectively, of the crystal enclosed in the white box, which belongs to 

α-Ti. (d) Zoomed detail of the dark region of the eutectic matrix; inset (I) is the FFT of the crystal 

enclosed in the white box, which belongs to TiPd. The white arrows depicted in insets (I) point to the 

diffraction spots, with interplanar distances matching α-Ti (d = 0.2276 nm) and TiPd (d = 0.3138 nm for 

upper left arrow).  

FIGURE 5. Load-displacement (P-h) nanoindentation curves for Ti-40Nb, Ti45Zr15Pd35Si5 and 

Ti45Zr15Pd30Si5Nb5 alloys obtained applying a maximum force, (Pmax. = 250 mN). Shown in the inset is a 

backscattered SEM image of an indent performed on the Ti45Zr15Pd35Si5 alloy. It can be seen that the 

indent embraces all existing phases (A-E).  

FIGURE 6. Representative SEM (backscattered electrons) images belonging to Ti45Zr15Pd35Si5 

composition. Shown in the pictures [(a)-(d)] are the indents inside: (a) the light grey precipitates, (b) black 

precipitates, (c) grey area between the eutectic domain and (d) the eutectic lamellae, (PMax = 3 mN). The 

size of the imprints on the D regions was larger than the actual size of the region and therefore the 

corresponding SEM image is not presented. 

Page 21 of 36

John Wiley & Sons, Inc.

Journal of Biomedical Materials Research: Part B - Applied Biomaterials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

22 
 

FIGURE 7. Potentiodynamic polarization curves of the Ti45Zr15Pd30Si5Nb5 and Ti-40Nb alloys immersed 

in Hank’s solution at 37 ºC. 

FIGURE 8. Mean percentage of live cells attached to the surface of the tested alloys, their coverslips and 

in control cultures. 

FIGURE 9. SEM images of Saos-2 cells on the surface of alloy disks; (a) Ti45Zr15Pd35Si5 and (b) 

Ti45Zr15Pd30Si5Nb5. Flattened cells with polygonal morphologies showing nuclei with several nucleoli can 

be observed in all cases. 

FIGURE 10. Cells adhered on the surface of the alloys. (a) Ti45Zr15Pd35Si5 and (b) Ti45Zr15Pd30Si5Nb5. 

Stress fibres (actin; red), focal contacts (vinculin; green) and nuclei (DNA; blue) can be observed. 

TABLE I. Energy dispersive X-ray (EDX) compositional analyses corresponding to the selected areas 

shown for as-cast Ti45Zr15Pd35Si5 alloy (Figure 3a, c) and Ti45Zr15Pd30Si5Nb5 (Figure 3b, d). Data estimated 

with the error of 1-2 %. 

TABLE II. Summary of the mechanical properties (H, Er, H/Er, H3/E2
r, Uel/Utot, and Upl/Utot denote 

hardness, reduced Young’s modulus, elastic, plastic and total indentation energies, respectively), assessed by 

nanoindentation measurements, corresponding to the Ti45Zr15Pd35Si5, Ti45Zr15Pd30Si5Nb5 alloys and Ti–

40Nb (Fmax. = 250 mN). 

TABLE III. Summary of the elastic properties (v, EAcoust, G and K denote the Poisson’s coefficient, 

Young’s modulus, shear modulus and bulk modulus, respectively) of the as-cast Ti45Zr15Pd35-xSi5Nbx (x = 

0, 5) alloys. Results for the commercial Ti–40Nb are shown for comparison purposes. 

TABLE IV. The mean values of hardness (H) and reduced Young’s modulus (Er) calculated for the indents 

in different regions in Ti45Zr15Pd35Si5 [see examples in Fig. 6 (a)-(d)]. The mean values of H and Er are the 

result of 10 nanoindentation tests in each region. 
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Figure 1. X-ray diffraction patterns (XRD) corresponding to the as-cast (a) Ti45Zr15Pd35Si5 and (b) 
Ti45Zr15Pd30Si5Nb5 alloys.  

1083x829mm (150 x 150 DPI)  
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Figure 2. Scanning electron microscope (SEM) images (backscattered electrons) of the as-cast (a) 
Ti45Zr15Pd35Si5 and (b) Ti45Zr15Pd30Si5Nb5  

alloys taken at the centre of the discs. Shown as insets (a, b), are  

zoomed details of the eutectic region.  
71x107mm (300 x 300 DPI)  
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Figure 3. SEM (backscattered electrons) images and corresponding energy dispersive x-ray mapping of Ti,  
Zr, Pd, Si (and Nb) elements in Ti45Zr15Pd35Si5 and Ti45Zr15Pd30Si5Nb5 discs taken at central part of the rod  

showing (a, c) A, B and C regions and (b, d) D, E regions.  
140x70mm (300 x 300 DPI)  
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Figure 4. (a) Transmission electron micrograph (TEM) of the eutectic matrix in the Ti45Zr15Pd35Si5 alloy, (b) 
selected area electron diffraction pattern of image (a), revealing the existence of α-Ti, β-Ti and TiPd phases. 
(c) Zoomed detail of the bright region of the eutectic matrix; insets (I) and (II) are the FFT and Fourier filter 

reconstruction, respectively, of the crystal enclosed in the white box, which belongs to α-Ti. (d) Zoomed 
detail of the dark region of the eutectic matrix; inset (I) is the FFT of the crystal enclosed in the white box, 
which belongs to TiPd. The white arrows depicted in insets (I) point to the diffraction spots, with interplanar 

distances matching α-Ti (d = 0.2276 nm) and TiPd (d = 0.3138 nm for upper left arrow).  
84x77mm (300 x 300 DPI)  
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Figure 5. Load-displacement (P-h) nanoindentation curves for Ti-40Nb, Ti45Zr15Pd35Si5 and Ti45Zr15Pd30Si5Nb5 
alloys obtained applying a maximum force, (Pmax. = 250 mN). Shown in the inset is a  

backscattered SEM image of an indent performed on the Ti45Zr15Pd35Si5 alloy. It can be seen that the indent  
embraces all existing phases (A-E).  

212x148mm (72 x 72 DPI)  
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Figure 6. Representative SEM (backscattered electrons) images belonging to Ti45Zr15Pd35Si5 composition.  
Shown in the pictures [(a)-(d)] are the indents inside: (a) the light grey precipitates, (b) black precipitates, 
(c) grey area between the eutectic domain and (d) the eutectic lamellae, (PMax. = 3 mN). The size of the  

imprints on the D regions was larger than the actual size of the region and therefore the corresponding SEM 
image is not presented.  

146x100mm (150 x 150 DPI)  
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Figure 7. Potentiodynamic polarization curves of the Ti45Zr15Pd30Si5Nb5 and Ti-40Nb alloys immersed in 
Hank’s solution at 37 ºC.  

1188x840mm (150 x 150 DPI)  
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Figure 8. Mean percentage of live cells attached to the surface of the tested alloys, their coverslips and in 
control cultures.  

134x81mm (72 x 72 DPI)  
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Figure 9. SEM images of Saos-2 cells on the surface of alloy disks; (a) Ti45Zr15Pd35Si5 and (b) 
Ti45Zr15Pd30Si5Nb5. Flattened cells with polygonal morphologies showing nuclei with several nucleoli can be 

observed in all cases.  
398x151mm (72 x 72 DPI)  
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Figure 10. Cells adhered on the surface of the alloys. (a) Ti45Zr15Pd35Si5 and (b) Ti45Zr15Pd30Si5Nb5. Stress 
fibres (actin; red), focal contacts (vinculin; green) and nuclei (DNA; blue) can be observed.  

190x88mm (72 x 72 DPI)  
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TABLE I. 

 Element concentration (at. %) 

Ti-Zr-Pd-Si Ti-Zr-Pd-Si-Nb 

Ti Pd Zr Si Ti Pd Zr Si Nb 

Nominal comp. 45 35 15 5 45 30 15 5 5 

Zone(s) Fig. 3 (a) Fig. 3 (c) 

A 40 45 15 < 1 38 40 16 1 5 

B 41 9 21 29 33 6 20 31 10 

C 49 35 14 1 44 35 16 <1 4 

Zone(s) Fig. 3 (b) Fig. 3 (d) 

D 43 32 24 <1 43 33 21 1 2 

E 43 36 16 5 40 33 17 5 5 
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TABLE II. 

Sample H (GPa) Er (GPa) H/Er H
3
/Er

2 
(GPa) Uel/Utot Upl/Utot 

Ti45Zr15Pd35Si5 14.2 ± 0.5 117 ± 5 0.122 ± 0.005 0.211 ± 0.030 0.586 ± 0.029 0.414 ± 0.021 

Ti45Zr15Pd30Si5Nb5 10.4 ± 0.3   85 ± 2 0.123 ± 0.003 0.156 ± 0.016 0.543 ± 0.017 0.475 ± 0.015 

Ti-40Nb   2.7 ± 0.1   72 ± 1 0.038 ± 0.001 0.004 ± 0.001 0.225 ± 0.004 0.775 ± 0.013 
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TABLE III. 

Sample v  EAcoust. (GPa) G (GPa) K (GPa) 

Ti45Zr15Pd35Si5 0.405 ± 0.003      100.0 ± 0.1 30.1 ± 0.1 148.6 ± 0.7 

Ti45Zr15Pd30Si5Nb5 0.397 ± 0.001  87.3 ± 0.2 31.3 ± 0.1 139.5 ± 0.2 

Ti-40Nb 0.403 ± 0.001  73.8 ± 0.1 26.3 ± 0.1 126.6 ± 0.1 

 

 

 

 

Page 35 of 36

John Wiley & Sons, Inc.

Journal of Biomedical Materials Research: Part B - Applied Biomaterials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

TABLE IV. 

Specified area of nanoindents H (GPa) Er (GPa) 

Fig 6 (a) – light grey precipitates (zone A)   8.9 ± 0.3 104.3 ± 2.1 

Fig 6 (b) – black precipitates (zone B) 13.7 ± 1.5 135.5 ± 2.6 

Fig 6 (c) – grey area between the eutectic domains (zone C) 10.1 ± 0.5 122.0 ± 2.8 

Fig 6 (d) – eutectic lamellae (zone E)   9.7 ± 0.7 109.3 ± 2.6 
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