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Abstract Tidal estuarine wetlands of China are rich in plant diversity, but several global 14 

change drivers, such as species invasion, are currently affecting the biogeochemical cycles of 15 

these ecosystems. We seasonally analyzed the carbon (C), nitrogen (N) and phosphorus (P) 16 

concentrations in litters and soils and in leaves, stems and roots of the C3 invasive species 17 

Phragmites australis (Cav.) Trin. ex Steud. and of the C4 native species Cyperus malaccensis 18 

var. brevifolius Boeckeler to investigate the effect of C3 plant invasion on C, N and P 19 

stoichiometry in the C4 plant-dominated tidal wetlands of the Minjiang River. When averaged 20 

across seasons, the invasive species P. australis had higher N concentrations and lower P 21 

concentrations in leaves than the native species C. malaccensis. N and P concentrations were 22 

lower in litter (stem and leaf) whereas C concentrations in leaf litter were higher in P. 23 

australis than in C. malaccensis.  The C, N and P concentrations of the soil also did not 24 

differ, but plants had a lower C:N and much higher N:P ratios than soils. Root C:P and N:P 25 

ratios were lower in the growing season, both in the invasive and the native species. The leaf 26 

C:N, C:P and N:P ratios peaked in summer. The invasive species had lower C:N ratio in 27 

leaves and roots, and higher N:P ratios in all biomass organs and litter than the native species, 28 

an effect related with the higher N-resorption capacity of the invasive species Interspecific 29 

differences in C:N, C:P and N:P ratios may likely reflect the differences in plant morphology, 30 

nutrient-use efficiency and photosynthetic capacity between the C3 (P. australis) and C4 (C. 31 

malaccensis) plants. Our results generally suggested that invasive success in these wetlands 32 

was related to the slow-growth and to the higher resorption capacity of P and N that implied a 33 

conservative use of nutrients, particularly of N, that the results suggested to be limiting.  34 

 35 
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Introduction  58 

Tidal estuarine wetlands cover an estimated 12 000 km
2
 of China’s 18 000-km coastline (Shen 59 

and Zhu 1999; Huang et al. 2006). These tidal wetlands are generally rich in animal and plant 60 

biodiversity (Zhou et al. 2006) and are reported to have important biogeochemical roles 61 

within the entire estuarine ecosystem (Zeng et al. 2009a,b; Wang et al. 2010a,b; Tong, Wang 62 

and Zeng 2010). The Minjiang River estuary in southeastern China is an important tidal 63 

wetland ecosystem due to its unique location at the transition between central and southern 64 

subtropical climatic zones (Zheng et al. 2006).  65 

Phragmites australis (Cav.) Trin. ex Steud. and Cyperus malaccensis var. brevifolius 66 

Boeckeler (syn. Cyperus malaccensis subsp. monophyllus (Vahl) T. Koyama) comprise much 67 

of the emergent macrophytic biomass in the Minjiang River estuary (Liu et al. 2006). Some 68 

stands of C. malaccensis have been invaded over the past 30 years by P. australis, which is 69 

now the single most prevalent plant species in the wetland. This change in dominance may be 70 

affecting the biogeochemical cycles of the estuarine wetland, because the soil properties and 71 

rates of litter decomposition in the stands of P. australis and C. malaccensis are known to 72 

differ (Zhang et al. 2008; Jia et al. 2008; Zeng et al. 2009; Tong and Liu 2009). Here we 73 

examine the nutrient stoichiometry of P. australis and C. malaccensis as a potential source of 74 

the differences between the litters and soils associated with these species and with the success 75 

invasive plants. 76 

The elemental composition of plant tissues is tightly associated with the nutrient 77 

concentration of litter, which in turn can feed back into the soils (McClaugherty et al. 1985; 78 

Bridgham et al. 1995; Ehrenfeld et al. 2005; Townsend et al. 2007). Higher ratios of carbon 79 
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(C) to other nutrients in litter can increase C storage and reduce the mobilities and rates of 80 

mineralization of key nutrients (Wang et al. 2010b; Wang and Yu 2008). Such effects appear 81 

to be caused by the increasing nutrient limitation of soil microbial communities when 82 

provided with nutrient-poor organic material. Plant-litter-soil interactions have been 83 

extensively modeled (Vitousek and Peter 1984; Northup et al. 1998; Meier and Bowman 84 

2008), observed in numerous ecosystems (Cebrian 1999; Cebrian and Lartigue 2004; 85 

Güsewell and Verhoeven 2006; Wurzburger and Hendrick 2009) and experimentally 86 

examined (Jobbágy and Jackson 2001; Hawlena and Schmitz 2010) in terrestrial ecosystems, 87 

but little is known about the effect of the relative flux of nutrients through estuarine plants 88 

into the litter on the soils of tidal estuarine ecosystems. 89 

Variable leaf ratios of C to nitrogen (N) (C:N) and to phosphorus (P) (C:P) are assumed 90 

to be caused by the physiological adjustment of plant species to the local supplies of nutrients 91 

(Broadley et al. 2004; Kerkhoff et al. 2006; Demars and Edwards 2007; Townsend et al. 2007; 92 

Elser et al. 2010; Peñuelas et al. 2010; Sardans and Peñuelas 2014). Evidence, however, is 93 

accumulating that intraspecific differences in terrestrial plants can match or exceed 94 

interspecific variability (Wright et al. 2004; Elser et al. 2010; Peñuelas et al. 2010; Sardans 95 

and Peñuelas 2013). These species-specific patterns of elemental composition likely reflect 96 

important differences in plant functional traits that have unique biochemical, and hence 97 

elemental, requirements. The elemental composition of C. malaccensis may thus differ from 98 

that of P. autralis, even for individuals growing under very similar environmental conditions, 99 

and thereby may affect the dynamics of soil nutrients by affecting the elemental composition 100 

of litter and/or the capacity to take up nutrients. Shifts in nutrient stoichiometry have 101 
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frequently been associated with the success of invasive plants (Sardans and Peñuelas 2012). 102 

Successful invasive species in nutrient-rich environments usually have low C:nutrient ratios 103 

(Peñuelas et al. 2010) and high N:P ratios (Neves et al. 2010) in their tissues, but the effect of 104 

N:P ratios on the success of invasive plants is still unclear. Moreover, positive relationship 105 

between N:P ratio and invasive success has not often been reported for nutrient-poor 106 

environments.  107 

Plants, such as C. malaccensis with C4 metabiolism traits have been proved to be 108 

frequently in advantage in drier environments with respect C3 metabolism plants, such as P. 109 

australis (Wilson et al. 2007; Zand et al. 2006; Kocacinar and Sage 2003). However, less is 110 

known with respect the competitive advantage between these two strategies in wetland areas 111 

with other limiting resources than water. In wetland environments where water is not the 112 

limiting factor, nutrient-use strategy can be crucial in the competitive relationships among 113 

plant species and also in invasive success. To test this hypothesis, we have examined the link 114 

between the invasion of a C3 monocot with the seasonal variation of the C, N and P 115 

stoichiometry of a C4 monocot that dominates the subtropical tidal wetlands of the Minjiang 116 

River in China. Our aims were (1) to study the C:N, C:P and N:P ratios of the leaves, stems 117 

and roots and their relationships in the invasive C3 plant, P. australis, and of the native C4 118 

plant, C. malaccensis, over the year and specially during the growing season, and (2) to 119 

examine the relationships between the success of plant invasion and the nutrient 120 

concentrations and stoichiometries of the plants, litters and soils.  121 

 122 

 123 
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Materials and methods 124 

 125 

Study area 126 

 127 

This study was conducted in the Shanyutan wetland (26°01′46″N; 119°37′31″E, Fig. 1), the 128 

largest tidal estuarine wetland (approximately 3120 ha) in the estuary of the Minjiang River. 129 

The climate in this region is relatively warm and wet, with a mean annual temperature of 19.6 130 

ºC and a mean annual precipitation of 1346 mm (Zheng et al. 2006). The soil surface is 131 

submerged across the study site beneath 10-120 cm of water for 3-3.5 h during each tidal 132 

inundation. Soil surfaces of the entire wetland are exposed at low tide, and the average annual 133 

weight percentage of water in soil and soil redox potential are 116.39% and 12.57 mV, 134 

respectively, and soil remains flooded at some depths. The average salinity of the tidal water 135 

between May and December 2007 was 4.2 ± 2.5‰. 136 

P. australis and C. malaccensis are the two dominant species of plants. They are typically 137 

found in the upper (mid to high) portions of mudflats. P. australis is an invasive plant that has 138 

invaded this area over the past 30 years, to now become the single most prevalent plant 139 

species in the wetland. It mainly invaded the native C. malaccensis wetland, typically found 140 

in the upper (mid to high) portions of mudflats. P. australis grows between April and October, 141 

the highest population height is about 2 m, and the density is about 250 m
-2

. C. malaccensis is 142 

a native plant, typically found in the upper (mid to high) portions of mudflats that grows 143 

between April and October, the highest population height is about 1.5 m, and the density is 144 

about 1000 m
-2

. Below-ground rhizomes are creeping growth in the topsoil layers. 145 
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The decomposition rates of the litter of P. australis are slower than those of C. 146 

malaccensis (Tong et al. 2009). Both species are placed in sites with similar flooding intensity, 147 

but despite this, wetland soils in areas dominated by P. australis biomass generally have a 148 

lower pH and bulk density and a higher salinity than do areas dominated by C. malaccensis 149 

(Jia et al. 2008).  150 

 151 

Sample collection and measurements 152 

 153 

Plant, litter and soil samples were collected in May, July, September and December 2007 to 154 

capture potential seasonal differences in chemical composition. Most plant growth occurs 155 

between April and October, and litter is produced largely toward the end of the growing 156 

season into early winter. Plant samples were collected always at the same height above the 157 

ground. We selected stands of the two plant communities for the collection of aboveground 158 

biomass, randomly established one large quadrat (10 ×10 m) in each stand and sampled the 159 

aboveground biomass from three randomly selected sub-quadrats (1 × 1 m). The harvested 160 

aboveground biomass was sorted into living and dead (litter) material. The plant organs and 161 

litter fraction were then sorted into stems and leaf tissues. Litter was sampled with great 162 

frequency (each week during the studied seasons) and only fresh litter was used to conduct 163 

the analyses. Root biomass was also harvested from these sample sub-quadrats. All plant 164 

material was gently washed with water and then oven dried to a constant mass (80 ºC for 165 

24-36 h) and weighed. Soil samples from the top layer (0-30 cm) were concurrently collected 166 

from the three replicate sub-quadrats and air dried, and any other roots or visible plant 167 
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remains were removed. These dried and cleaned soil samples were then finely ground in a 168 

ball mill. The total numbers of analyzed samples of plants, litters and soils were 30, 24 and 169 

12, respectively, for the P. australis wetland and 33, 15 and 12, respectively, for the C. 170 

malaccensis wetland. We also determined biomasses by ha to calculate mineralomasses in 171 

above- and below-ground biomass, especially in summer after at the end growing season, and 172 

those mineralomasses produced by litter during entire year. 173 

Concentrations of C and N of the plants and litters were determined using a Vario EL III 174 

Elemental Analyzer (Elementar Scientific Instruments, Germany). Total soil organic C was 175 

determined by the K2Cr2O7-H2SO4 digestion method (Sorrell et al. 1997; Bai et al. 2005). 176 

Total soil N was analyzed with the Kjeldahl method (K-370, Buchi Scientific Instruments, 177 

Switzerland). P concentration of plants, litters and soils were measured using molybdate-blue 178 

reaction (Lu 1999) with a UV-2450 spectrophotometer (Shimadzu Scientific Instruments, 179 

Japan). 180 

 181 

Data analysis 182 

 183 

We used analysis of variance (ANOVA) to compare C, N and P concentrations and C:N, C:P 184 

and N:P ratios of the plants, litters and soils of the two plant communities using species and 185 

seasonality as independent categorical factors. We also used ANOVA to analyze the 186 

community species differences of mineralomasses (C, N and P) in above- and below-ground 187 

biomasses in summer, after the growing season. We calculated average C, N and P 188 

concentrations and mineralomasses, and mass ratios (C:N, C:P and N:P ratios) of different 189 
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plant organs (leaves, stems and roots), litters and soils and performed all these statistical 190 

analyses using SPSS 13.0 (SPSS Inc., Chicago, USA). Pearson correlation analyses identified 191 

the relationships among the C:N, C:P and N:P ratios of the plants, litters and soils of the 192 

estuarine system. We used major axis (MA) and standardized major axis (SMA) (SMATR 193 

package; http://www.bio.mq.edu.au/ ecology/SMATR) regression to compare the slopes of 194 

the regressions of the relationships among the C:N, C:P and N:P ratios of the plants, litters 195 

and soils.  196 

The rate of nutrient resorption (NRE) was estimated as the percentage of nutrient 197 

withdrawn from green leaves before leaf abscission: 198 

NRE=100%×[(Nbiomass﹣Nlitter)/ Nbiomass] 199 

where Nbiomass and Nlitter are the concentrations of nutrient in the biomass and litter in winter 200 

because it is in this season that there is the largest litter production (Huang et al. 2008). 201 

 202 

Results  203 

 204 

Seasonal variation of C, N and P concentrations and ratios in plant organs, litters and soils 205 

 206 

C, N and P concentrations varied seasonally in P. australis and C. malaccensis and in the 207 

litters and soils of the stands dominated by these species (Tables 1 and 2). In general, in 208 

aboveground plant organs (leaf and stems) N and P concentrations were higher in spring and 209 

C:N, C:P and N:P ratios in summer, whereas C concentrations were higher in summer (leaves) 210 

and in autumn (stems) (Table 1). In stem litter, leaf litter, roots and soils, the C, N and P 211 

http://www.bio.mq.edu.au/%20ecology/SMATR
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concentrations and C:N, C:P and N:P ratios frequently changed among seasons, but without 212 

any clear patterns (Table 1). P. australis had higher N concentrations in leaves and lower N 213 

concentrations in leaf litter than C. malaccensis (Tables 1 and 2). P. australis had lower P 214 

concentrations and higher C:P ratio in leaves, stems and leaf litter and greater N:P ratio in 215 

leaves, stems, roots and stem and leaf litter than C. malaccensis (Tables 1 and 2).  216 

There was a significant interaction effect of species x season on the C concentrations 217 

in leaves and N concentration in leaf, stem and soil, C:N ratios in stem litter and soil, C:P and 218 

N:P ratios in leaf, stem and stem litter, N:P ratio in roots, and P concentration in stems and 219 

stem litter (P < 0.05, Tab. 1, Fig. S1-S6). 220 

 221 

Relationships among C:N, C:P and N:P ratios 222 

 223 

The correlations of C:N, C:P and N:P ratios among plant organs (leaf, stems and roots), litters 224 

and soils are shown in Figs. 8-10. Litter C:N ratios were positively correlated with plant 225 

organs C:N ratios for C. malaccensis (P < 0.01), and litter C:P ratios were positively 226 

correlated with plant organs C:P ratios for both P. australis and C. malaccensis (P < 0.01). 227 

Litter N:P ratios were positively correlated with those of plant organs for P. australis (P < 228 

0.05), however, this relationships were not observed in C. malaccensis. Plant organs N:P 229 

ratios were negatively correlated with those of the soil for both P. australis and C. 230 

malaccensis (P < 0.05). Soil C:N, C:P and N:P ratios were not significantly correlated with 231 

those of litter for either species (P > 0.05). Furthermore, none of the slopes of the regression 232 

lines of the C:N, C:P and N:P ratios differed significantly between P. australis and C. 233 
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malaccensis (P > 0.05, SMA test of common slopes, Figs. 2-4). 234 

 235 

N and P resorption 236 

 237 

The average seasonal rates of N resorption for P. australis and C. malaccensis were 35.4 ± 238 

9.0% and 9.0 ± 6.6%, respectively, and the rates of P resorption for P. australis and C. 239 

malaccensis were 41.2 ± 10.9% and 26.5 ± 8.1%, respectively. The rates of both N and P 240 

resorption for P. australis were significantly higher than those for C. malaccensis, 241 

particularly for N (P < 0.05, Fig. 5). 242 

 243 

Mineralomasses production 244 

At the end of the growing season, total C content in aboveground biomass was higher in P. 245 

australis than in C. malaccensis and the C content in belowground biomass was higher in C. 246 

malaccensis than in P. australis. The total C content in total biomass was not different 247 

between the two species (Fig. 6). The total N content in aboveground and total biomass was 248 

higher in P. australis than in C. malaccensis, whereas total P contents were not statistically 249 

different between the two species biomasses (Fig. 6). 250 

 251 

Discussion 252 

 253 

Seasonal variation in C:N, C:P and N:P ratios 254 

 255 
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C:N, C:P and N:P ratios of the plant matter from P. australis and C. malaccensis changed 256 

considerably over the seasons. Leaf C:N, C:P and N:P ratios peaked in summer coinciding 257 

with the main growth phase for P. australis and C. malaccensis. The invasive species had 258 

generally lower C:N ratios and higher C:P and N:P ratios than did the native species, an effect 259 

associated with the higher capacity of the invasive species to resorb N and P, but in more 260 

proportion N, and also to the general higher concentrations of N and lower of P in different 261 

tissues in the invasive P. australis than in the native C. malaccensis. Interspecific differences 262 

in C:N, C:P and N:P ratios may likely reflect differences in plant morphology, nutrient-use 263 

efficiency and photosynthetic capacity between the C3 (P. australis) and C4 (C. malaccensis) 264 

monocots.  265 

C:N, C:P and N:P ratios also changed seasonally in the soils. Both C:N and C:P ratios 266 

peaked in the autumn, but N:P ratios were lowest in autumn for both the P. australis and C. 267 

malaccensis wetlands. Soil properties such as pH, salinity and water content can influence the 268 

seasonal variation in C, N, P concentrations and therefore in C:N, C:P and N:P ratios, as 269 

reported by Wang et al. (2010). Seasonal variation in the total soil C:N, C:P and N:P ratios in 270 

both wetlands may also have been affected by the absorption of nutrients by the plants and 271 

the release of nutrients from the litter. 272 

 273 

Relationships of changes in C:N, C:P and N:P ratios with ecosystem functioning 274 

 275 

C:N ratios of litter are generally strongly correlated with the rates of litter decomposition in 276 

wetlands, with lower C:N ratios usually associated with higher rates of decomposition 277 
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(Windham 2001). Litter accumulates in the winter, which is consistent with the low rates of 278 

litter decomposition in the Minjiang River estuary (Tong and Liu 2009) and with the negative 279 

correlation between rate of decomposition of soil C and litter C:N ratio in this estuary (Wang 280 

et al. 2010b). Our results also support the C:N ratio as an indicator of litter and 281 

organic-matter decomposition (Elser et al. 2003; Mulder et al., 2013) and further suggest that 282 

rates of litter decomposition can be lower in invaded than in native stands since litter C:N 283 

ratios of P. australis were higher than those of C. malaccensis. 284 

C:P and N:P ratios were lower in the native plants than in the invasive plants in summer 285 

(the growing season), consistently with a higher growth rate for C. malaccensis than for the 286 

invasive P. australis. The average rates of growth of C. malaccensis and P. australis were 287 

2.1% and 1.4% weekly, respectively (Zhang et al. 2008; Zeng et al. 2009a,b). Furthermore, 288 

net primary productivity of the roots was higher for
 
C. malaccensis (724.25 gC m

-2
 y

-1
) than 289 

for P. australis (443.04 gC m
-2

 y
-1

, Zhang et al. 2008; Zeng et al. 2009a; Zeng et al. 2009b), 290 

which is thus associated with the lower C:P and N:P ratios in C. malaccensis. Lower C:P and 291 

N:P ratios are usually associated with higher growth rates (Elser et al. 2003; Peñuelas et al. 292 

2013). 293 

The invasive plant species in our study is a slower growing species than the native 294 

species (Zhang et al. 2008; Zeng et al. 2009a; Zeng et al. 2009b), suggesting that invasive 295 

success in the Minjiang River estuarine tidal wetland depends on a lower growth rate and a 296 

more conservative use of nutrients. Most studies in environments with no limitation of any 297 

resource such as water, light or nutrients generally find that plant invasion is frequently 298 

dependent on higher rates of nutrient uptake and cycling (Funk and Vitousek, 2007; Gonzàlez 299 
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et al., 2010; Matzek, 2011; Sardans and Peñuelas 2012), whereas invasive success in 300 

environments with a serious limitation of resources is instead frequently dependent on a more 301 

conservative use of the limiting resource, despite the low number of studies and the 302 

frequently contradictory results (González et al., 2010; Neves et al., 2010; Sardans and 303 

Peñuelas 2012). In this study, the invasive species P. australis, interestingly, had a high 304 

capacity to allocate N to photosynthesis enhances invasive success in both nutrient-rich and 305 

nutrient-poor sites (Feng, 2008; Matzek, 2011). 306 

Subtropical zones have high precipitation and temperatures that favor the erosion and 307 

loss of N and P, so nutrients are limited (Olde Venterink et al. 2003; Tian et al. 2010). 308 

Nutrient limitation is especially significant in tidal wetlands, likely because of the periodic 309 

inundation of the soil that limits the access of the plants to the soil nutrients by the anoxic 310 

effects on root growth (Amlin and Rood 2001; Kirwan and Guntenspergen 2012), by slowing 311 

mineralization (Adame et al. 2010) and by high levels of leaching of P and particularly of N 312 

(Noe and Hupp 2007; Kobayashi et al. 2009). The higher N:P and lower C:N ratios together 313 

with the higher capacity of P. australis to resorb N and P indicate a more conservative use of 314 

nutrients in this invasive species than in the native species.  315 

The average N:P ratios (on a mass basis) were 14.0±2.6 and 8.1±1.0 for P. australis and 316 

C. malaccensis, respectively, which are from similar to lower than the average N:P ratios 317 

(14-16) of terrestrial plants and aquatic macrophytes and algae in their natural environments 318 

(Elser et al. 2000; Güsewell and Koerselman 2002; Geider and La Roche 2002; Knecht and 319 

Göransson 2004; Sardans et al., 2012). Leaf N:P ratio is often used to represent nutrient 320 

limitation during plant growth (Tessier and Raynal 2003; Wang and Yu 2008). Thus, the foliar 321 
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N:P ratios of this study suggest that N can be limiting. The wetland soils of our study had 322 

particularly low N:P ratios, 2.5-2.7 on a mass basis, compared to the soils from other 323 

ecosystems, on average 5.9 on a mass basis, at global scale (Cleveland and Liptzin 2007; Tian 324 

et al. 2010), indicating that N should be probably more limiting in the soil of this wetland 325 

area. The higher N:P ratios in plants than in soils and the negative relationships between plant 326 

N:P ratio and soil N:P ratio (Fig. 3) suggested again N limitation since plants made a greater 327 

effort to conserve N than P, especially when soil N:P ratios were lower, whereas the opposite 328 

occurred with P. Both plant species had much higher N:P ratio than soil, and the negative 329 

relationship between plant N:P ratio and soil N:P ratio further suggest that when N is more 330 

limiting, plants tend to accumulate even more N. Moreover, the slopes between plant C:N 331 

ratio and soil C:N ratio are below 1 whereas the corresponding slopes of C:P ratio are above 1 332 

suggesting again that plants retain more strongly N than P. Despite this general trend toward a 333 

high retention capacity of N in biomass observed in these wetlands, this capacity to retain and 334 

efficiently use N was greater in the invasive P. australis than in the native C. malaccensis. P. 335 

australis had higher resorption capacity for P, and specially for N, higher foliar N 336 

concentration and C:N ratio in stem litter, and lower C:N ratio in leaves and roots than C. 337 

malaccensis. All this was also related with the observed higher N content in total biomass in 338 

P. australis than in C. malaccensis despite the total biomass was lower (but not significantly) 339 

in the invasive species. Altogether suggest greater N use efficiency in the community 340 

dominated by the invasive plant. 341 

To summarize, we found low N and P soil availabilities and low soil N:P ratios in the 342 

Minjiang River tidal estuarine wetlands. We observed lower C:N ratios and much higher N:P 343 
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ratios in the plants than in the soils indicating that plants retain nutrients, especially N. P. 344 

australis was more efficient than the native C. malaccensis in the use of N to fix C, being this 345 

probably related with its invasive success, as observed in previous studies showing that more 346 

conservative use of resources, when limiting, is related with the invasive capacity (Funk and 347 

Vitousek, 2007; Matzek, 2011; Sardans and Peñuelas 2012). These results were consistent 348 

with previous studies indicating that the success of invasive plants in nutrient-poor soils 349 

depended on conservative strategies, such as a higher nutrient-use efficiency (Funk and 350 

Vitousek 2007; González et al. 2010; Matzek 2011), especially on short time scales (Funk 351 

and Vitousek 2007) and long nutrient residence times (Laungani and Knops 2009). The 352 

results of our study thus suggest that a conservative use of nutrients (in particular N, that the 353 

results suggested as limiting) could contribute to the invasive success of P. australis in the 354 

Minjiang River tidal estuarine wetlands in China and determines the N-cycle in this wetland 355 

area. 356 

In general C4 plants are considered more conservative and, in general as a group, more 357 

stress tolerants than C3 plants. Plants, such as C. malaccensis with C4 metabolism traits have 358 

been proved to be frequently in advantage with respect C3 metabolism plants, such as P. 359 

australis in drier environments (Zand et al. 2006; Kocacinar and Sage 2003). In general 360 

reductions in water availability affect more to C3 than to C4 plants (Wilson et al. 2007; Luo 361 

et al., 2013), and during dry periods in wetlands C4 plants tend to substitute C3 plants 362 

(Malone et al. 2013). However, less is known with respect the competitive advantage 363 

between these two strategies in wetland areas with other limiting resources than water. Our 364 

results show that the invasive C3 species has more conservative traits such as slow growth rates, 365 



 

18 

 

higher foliar N:P ratios and higher N nutrient resorption efficiency. In our particular pair of 366 

species we have observed the contrary, the invasive C3 showed values more according with a 367 

conservative strategy than the native C4, at least for the studied traits. In fact, P. australis is an 368 

invasive plant that invaded the wetland during the past 30 years and is now the single most 369 

prevalent plant species. Thus in this wetland P. australis have reached a high level of invasive 370 

success and the role of stoichiometry differences reported here the highest height and a plant 371 

density about 4 times lower than C. malaccensis suggest that other traits, such as the use of 372 

nutrients and the ecological and growth strategy can be underlying the invasive success of P. 373 

australis even more than the C-fixation metabolism type. 374 

 375 

Conclusions 376 

The nutrient composition and stoichiometry in plants, litters and soils showing low 377 

concentration of soil N and very low soil N:P ratio strongly suggested that N would be a 378 

limiting factor in these tidal estuarine wetlands. Plant strategies under these environmental 379 

conditions are based on low plant growth and a high capacity to retain nutrients in the 380 

biomass associated with a high capacity to resorb nutrients. Our results also suggested that 381 

the success of plant invasion was related with a more conservative use of nutrients, in this 382 

case P and mainly N, in the invasive relative to the native species. 383 
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Table 1. C, N and P concentrations and ratios (Average ± SD) in plants, stem litters and soils. 576 

Variable Leaf  Stem  Root Stem litter  Soil  

C      

Spring (both species) 410±20b 400±16b 326±45b 386±17c 19.0±2.1a 

Summer (both species) 430±4a 406±19ab 370±24a 411±24ab 18.7±1.4ab 

Autumn (both species) 404±8b 410±12a 382±32a 404±27b 20.0±1.7a 

Winter (both species) — 409±9a 367±35a 417±23a 17.5±1.0b 

Season F = 22.2 

P < 0.001 

F = 5.0 

P = 0.039 

F = 8.46 

P = 0.003 

F = 10.2 

P < 0.001 

F = 10.4 

P < 0.001 

P. australis wetland 420±18 419±6a 360±21 424±23a 19.4±2.4 

C. malaccensis wetland 410±28 396±16b 363±57 385±20b 18.2±2.1 

Species F = 4.22 

P = 0.109 

F = 131 

P < 0.001 

F = 0.016 

P = 0.907 

F = 104 

P < 0.001 

F = 3.23 

P = 0.147 

Season × species F = 11.4 

P = 0.005 

F = 2.39 

P = 0.154 

F = 3.39 

P = 0.054 

F = 0.878 

P = 0.480 

F = 11.59 

P < 0.001 

N Leaf  Stem  Root Stem litter  Soil  

Spring (both species) 31.5±7.7a 13.8±2.8a 8.2±0.9 11.2±1.3a 2.4±0.3a 

Summer (both species) 22.4±4.4b 8.4±1.2b 8.1±1.1 8.0±1.8b 2.4±0.2a 

Autumn (both species) 21.7±5.0b 11.3±1.6ab 9.1±1.3 8.8±1.9b 1.6±0.3b 

Winter (both species) — 13.1±0.6a 8.3±1.9 10.1±1.5ab 2.2±0.3a 

Season F = 39.8 

P < 0.001 

F = 25.8 

P < 0.001 

F = 2.71 

P = 0.092 

F = 11.6 

P < 0.001 

F = 10.4 

P < 0.001 

P. australis wetland 30.0±12.6a 10.6±3.5 9.1±1.0 8.5±3.6b 2.2±0.5 

C. malaccensis wetland 20.4±6.2b 12.1±5.4 7.8±0.7 10.6±1.6a 2.0±0.7 

Species F = 69.6 

P < 0.001 

F = 1.38 

P = 0.306 

F = 2.01 

P = 0.229 

F = 185 

P = 0.013 

F = 3.23 

P = 0.147 

Season × species F = 4.61 

P = 0.047 

F = 5.48 

P = 0.032 

F = 1.00 

P = 0.425 

F = 2.93 

P = 0.077 

F = 11.5 

P < 0.001 

P Leaf  Stem  Root Stem litter  Soil  

Spring (both species) 2.6±0.3a 1.8±0.7a 1.0±0.2b 1.1±0.2a 0.8±0.1 

Summer (both species) 1.5±0.3b 1.0±0.6c 1.3±0.4a 0.7±0.4b 0.8±0.1 

Autumn (both species) 1.6±0.2b 1.3±0.4b 0.6±0.2d 0.7±0.3b 0.8±0.2 

Winter (both species) — 1.9±0.3 0.8±0.4c 0.5±0.2c 0.8±0.2 

Season F = 407 

P < 0.001 

F = 128 

P < 0.001 

F = 21.3 

P < 0.001 

F = 30.2 

P < 0.001 

F = 1.54 

P = 0.256 

P. australis wetland 1.7±0.5b 0.9±0.7b 0.8±0.5 0.5±0.2b 0.8±0.2 

C. malaccensis wetland 2.1±0.5a 1.9±0.5a 1.1±0.5 1.0±0.2a 0.8±0.3 

Species F = 19.4 

P = 0.012 

F = 543 

P < 0.001 

F = 1.55 

P = 0.281 

F = 52.2 

P = 0.002 

F = 0.039 

P = 0.854 

Season × species F = 1.80 

P = 0.226 

F = 25.1 

P < 0.001 

F = 1.91 

P = 0.182  

F = 6.90 

P = 0.006 

F = 0.679 

P = 0.114 

C:N ratio Leaf  Stem  Root Stem litter  Soil  

Spring (both species) 13.6±2.7b 30.2±7.3bc 39.9±2.0a 35.0±4.9c 8.1±0.5c 
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Summer (both species) 18.3±5.5a 43.2±16.5a 41.0±15.8a 47.8±22.1a 8.1±0.9c 

Autumn (both species) 17.9±5.1a 33.0±11.9b 37.8±13.3a 42.5±18.9b 11.9±1.6a 

Winter (both species) — 27.1±8.8c 41.1±14.6a 37.9±12.1bc 9.0±2.4b 

Season F = 49.2 

P < 0.001 

F = 25.6 

P < 0.001 

F = 2.54 

P = 0.106 

F = 23.4 

P < 0.001 

F = 164 

P < 0.001 

P. australis wetland 14.6±3.0b 41.7±10.2 40.0±4.4b 52.5±12.8a 8.9±1.8 

C. malaccensis wetland 20.6±3.4a 34.6±8.7 47.2±6.6a 37.1±5.5b 9.4±2.4 

Species F = 93.2 

P < 0.001 

F = 2.34 

P = 0.201 

F = 11.2 

P = 0.029 

F = 73.7 

P < 0.001 

F = 0.711 

P = 0.447 

Season × species F = 1.33 

P = 0.317 

F = 2.06 

P = 0.190 

F = 2.97 

P = 0.074 

F = 11.6 

P < 0.001 

F = 8.52 

P = 0.003 

C:P ratio Leaf  Stem  Root Stem litter  Soil  

Spring (both species) 161±23c 255±112c 324±52c 363±82c 23.8±2.9a 

Summer(both species) 294±53a 640±432a 312±71c 792±531a 22.3±2.9b 

Autumn(both species) 218±90b 300±157b 556±291a 611±427b 26.0±4.8a 

Winter (both species) — 172±99d 462±226b 799±498a 23.0±5.3ab 

Season F = 196 

P < 0.001 

F = 120 

P < 0.001 

F = 17.8 

P < 0.001 

F = 8.64 

P = 0.003 

F = 8.20 

P = 0.003 

P. australis wetland 264±71a 609±323a 517±206 981±408a 23.8±3.8 

C. malaccensis wetland 206±50b 218±46b 390±142 414±142b 23.2±4.2 

Species F = 24.3 

P = 0.008 

F = 1273 

P < 0.001 

F = 5.08 

P = 0.087 

F = 140 

P < 0.001 

F = 0.045 

P = 0.843 

Season × species F = 7.33 

P = 0.016 

F = 86.7 

P < 0.001 

F = 0.945 

P = 0.450 

F = 4.00 

P = 0.035 

F = 1.55 

P = 0.252 

N:P ratio Leaf  Stem  Root Stem litter  Soil  

Spring (both species) 12.5±4.2ab 8.2±2.4b 8.1±1.2c 10.3±1.3c 2.9±0.3a 

Summer (both species) 13.9±7.2a 11.4±8.6a 6.3±2.2d 11.8±6.7c 2.8±0.1a 

Autumn (both species) 12.0±5.4b 8.5±3.7b 13.7±7.0a 12.3±5.6b 2.2±0.4b 

Winter (both species) — 5.8±2.4c 10.8±5.5b 19.0±9.9a 2.6±0.2ab 

Season F = 5.15 

P = 0.037 

F = 16.2 

P = 0.002 

F = 20.5 

P < 0.001 

F = 18.8 

P < 0.001 

F = 19.8 

P < 0.001 

P. australis wetland 18.0±2.8a 14.1±5.2a 13.1±5.5a 18.5±6.9a 2.7±0.4 

C. malaccensis wetland 9.9±0.9b 6.4±0.9b 8.3±2.7b 11.1±3.1b 2.5±0.4 

Species F = 829 

P < 0.001 

F = 35.7 

P = 0.004 

F = 17.9 

P = 0.013 

F = 65.8 

P < 0.001 

F = 1.64 

P = 0.270 

Season × species F = 1.58 

P = 0.265 

F = 24.7 

P < 0.001 

F = 3.83 

P = 0.039 

F = 3.97 

P = 0.035 

F = 2.10 

P = 0.154 

 577 

Different letters within season indicate statistical differences (P<0.05). 578 

 579 

 580 
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Table 2. C, N and P concentrations and ratios (Average ± SD) in leaf litter. 581 

Variable C N P C:N C:P N:P  

Season       

Spring (P. australis) 363±15c 17.2±5.4a 1.3±0.2a 22.2±5.4c 298±60d 13.7±2.8c 

Summer(P. australis) 408±2a 14.4±2.1b 1.1±0.2a 28.7±4.3b 388±63c 13.5±0.7c 

Autumn(P. australis) 386±18b 11.5±0.6c 0.7±0.1b 33.5±0.8a 584±16b 17.4±0.4b 

Winter (P. australis) 390±10b 15.0±2.9b 0.6±0.1b 26.7±6.0b 693±144a 26.0±1.1a 

 

Species 

F =6.07 

P =0.019 

F =0.546 

P =0.276 

F =14.0 

P =0.002 

F =3.11 

P =0.089 

F =13.7 

P =0.002 

F = 41.8 

P < 0.001 

P. australis (Spring) 363±15 17.2±5.4 1.3±0.2b 22.2±5.4 298±60a 13.7±2.8a 

C. malaccensis (Spring) 368±2 

F =0.272 

P =0.629 

17.9±1.5 

F =0.040 

P =0.851 

1.8±0.2a 

F =9.46 

P =0.037 

20.7±1.7 

F =0.221 

P =0.663 

205±23b 

F =8.18 

P =0.042 

9.9±0.6b 

F =7.69 

P =0.049 

 582 

Different letters within season and species indicate statistical differences (P<0.05) 583 

 584 

 585 
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Figure captions 586 

Figure 1: Study area and sampling site (▲) in southeastern China. 587 

Figure 2: Relationships of litter C:N(a), C:P(b) and N:P(c) ratios with the corresponding 588 

ratios in the plants. 589 

Figure 3: Relationships of plant C:N(a), C:P(b) and N:P(c) ratios with the corresponding 590 

ratios in the soils. 591 

Figure 4: Relationships of soil C:N(a), C:P(b) and N:P(c) ratios with the corresponding ratios 592 

in the litters. 593 

Figure 5: Nutrient-resorption rates of P. australis and C. malaccensis. Different letters 594 

indicate significant differences between species (P < 0.05). 595 

Figure 6: C (a), N (b) and P (c) contents (mean ± S.E., kg ha-1) in P. australis and C. 596 

malaccensis in above-, below- and total biomass at the end of growing season. Different 597 

letters indicate significant differences between species (P < 0.05). 598 

 599 
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 601 
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