- Plant invasive success associated with higher N-use efficiency and 1
- stoichiometric shifts in the soil-plant system in the Minjiang River 2
- tidal estuarine wetlands of China 3
- Wei-Qi Wang^{1*} . Chun Wang^1 . Jordi $\mathrm{Sardans}^{2,\,3*}$. Cong-Sheng Zeng^1 . Chuan 4
- Tong^1 . Josep Peñuelas 2,3 5
- ¹Institute of Geography, Fujian Normal University, 350007 Fujian, China 6
- 7 ²CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913 Cerdanyola del Vallès,
- 8
- 9
- Correspondence: Dr W.-Q. Wang; email: wangweiqi15@163.com; Dr J. Sardans; email: j.sardans@creaf.uab.es 10
- 11

Post-print of: Wang, W. et al. "Plant invasive success associated with higher N-use efficiency and stoichiometric shifts in the soil-plant system in the Minjiang River tidal estuarine wetlands of China" in Wetlands ecology and management (Ed. Springer), vol. 23, issue 5 (Oct. 2015), p. 865-880. The final versión is available at DOI 10.1007/s11273-015-9425-3

Abstract The tidal estuarine wetlands of China are rich in plant diversity, but several human-driven processes, such as species invasion, can affect the biogeochemical cycles of these ecosystems, and by changing soil conditions can inhibit the regeneration of native vegetation. We seasonally analyzed the carbon (C), nitrogen (N) and phosphorus (P) concentrations in soils and in leaves, stems and roots of the invasive species Spartina alterniflora and of the native species Cyperus malaccensis var. brevifolius Boeckeler. This latter species was analyzed both in natural non-invaded stands and in stands that had been invaded by Spartina but from which it had been removed and replaced by Cyperus. The aim was to investigate the effect of plant invasion, subsequent removal and replanting with a native species on C, N and P stoichiometry of the plant-soil system in the tidal wetlands of the Minjiang River. C and N concentrations averaged across seasons did not differ significantly among the plant species. P concentration was lower in the stems of Spartina than in the stems of the native species Cyperus but was not significantly different in the roots of the two species. The soil C and N concentrations were higher in the Spartina stand than in the Cyperus stand, whereas the soil P concentrations were not significantly different. The invasive species had a higher N-resorption capacity, N:P ratios in stem and roots, biomass, absolute growth and biomass N and had a lower relative growth rate and litter production than the native species. After the removal of the invasive plants, the regenerating native plants have a higher capacity to resorb N and lower relative growth rates. All these traits show that a conservative strategy and a high N-use efficiency and internal plant control of the N in the ecosystem underlie the invasive

JSCript

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35	success of Spartina in this N-limited wetland. Relative growth rate was associated	
36	with lower plant N:P ratios, whereas absolute growth rate was associated with higher	
37	nutrient-use efficiency and lower C and N turnover and storage capacities in the	
38	biomass. Changes in soil properties produced by the establishment of an invasive	
39	plant can condition the later regeneration of native plants.	
40		
41	Keywords: Carbon · ecological stoichiometry · nitrogen · N:P ratio · N resorption	
42	· phosphorus · wetlands	to
43	ISCII	4
44	i manus	
45	phosphorus · wetlands - phosphorus · wetlands - phosphorus · wetlands - phosphorus · wetlands	
46	ccepie	
47	25 200	
48	1001 J	
49	ZOIC	
50		
51		
52		
53		
54		
55		

Introduction

57

Tidal estuarine wetlands cover an estimated 12 000 km² of China's 18 000 km of 58 coastline (Shen and Zhu 1999; Huang et al. 2006). These tidal wetlands are generally 59 rich in animal and plant biodiversity (Zhou et al. 2006) and have important 60 61 biogeochemical roles within the entire estuarine ecosystem (Zeng et al. 2009a; Zeng 62 et al. 2009b; Wang et al. 2010a; Wang et al. 2010b; Tong et al. 2010). The Minjiang River estuary in southeastern China is an important tidal wetland ecosystem due to its 63 Spartina alterniflora and Cyperus malaccensis var. brevifolius Boeckeler aprise much of the emergent macrophytic biomes. unique location at the transition of the central and southern subtropical climatic zones 64 (Zheng et al. 2006). 65 66 comprise much of the emergent macrophytic biomass in the Minjiang River estuary 67 (Liu et al. 2006). Some stands of Cyperus have been invaded over the past 10 years by 68 Spartina, which is now the most prevalent plant species in the wetland area. This 69 change in dominance may be affecting the biogeochemical cycles of the estuarine 70 wetland, because the rates of litter decomposition and the soil profiles in the stands of 71 Spartina and Cyperus are known to differ (Zhang et al. 2008; Jia et al. 2008; Zeng et 72 al. 2009a; Tong et al. 2009). 73 74 The elemental composition of plant tissues is tightly associated with the nutrient 75 concentrations of litter, which in turn can feed back to the soil (McClaugherty et al. 1985; Bridgham et al. 1995; Ehrenfeld et al. 2005; Townsend et al. 2007; Aragon et al. 76 2014). Higher ratios of carbon (C) to other nutrients in litter can increase C storage 77 and reduce the mobility and rates of mineralization of key nutrients (Wang et al. 78

nutrient limitation of the soil microbial communities when provided with nutrient-poor organic material. Moreover, plants can have different capacities to use and resorb nutrients (Mulder et at. 2013). Nutrient-resorption capacity has been observed to be related to plant invasive success in some studies (Sardans and Peñuelas 2012; Wang et al. 2014). Plant-litter-soil interactions have been extensively modeled (Vitousek and Peter 1984; Northup et al. 1998; Meier and Bowman 2008), observed uscript in numerous ecosystems (Cebrian 1999; Cebrian and Lartigue 2004; Güsewell and Verhoeven 2006; Wurzburger and Hendrick 2009) and experimentally examined (Jobbágy and Jackson 2001; Hawlena and Schmitz 2010) in terrestrial ecosystems, but little is known about the effect of invasive success and its relationships with nutrient fluxes and stoichiometries in wetland plant-soil systems. Variable foliar ratios of C to nitrogen (N) (C:N) and to phosphorus (P) (C:P) are assumed to be caused by the physiological adjustment of plant species to the local supplies of nutrients (Broadley et al. 2004; Kerkhoff et al. 2006; Demars and Edwards 2007; Townsend et al. 2007; Elser et al. 2010; Peñuelas et al. 2010; Sardans and Peñuelas 2013). Evidence, however, is accumulating that intraspecific differences in terrestrial plants can match or exceed interspecific variability (Wright et al. 2004; Elser et al. 2010; Peñuelas et al. 2010; Sardans and Peñuelas 2013). These species-specific patterns of elemental composition likely reflect important differences in plant functional traits that have unique biochemical, and hence elemental, requirements (Sardans et al. 2014). The elemental composition of Cyperus may thus

2010b; Wang and Yu 2008). Such effects appear to be caused by the increasing

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

differ from that of *Spartina*, even for individuals growing under very similar environmental conditions, and thereby may affect the dynamics of soil nutrients by affecting the elemental composition of litter and/or the capacity to take up nutrients.

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Shifts in nutrient stoichiometry have frequently been associated with the success of invasive plants (Sardans and Peñuelas 2012). Successful invasive species in nutrient-rich environments usually have low C:nutrient ratios (Peñuelas et al. 2010) and high N:P ratios (Neves et al. 2010) in their tissues, but the effect of N:P ratios on the success of invasive plants is still unclear. Moreover, the positive relationship between N:P ratio and invasive success has seldom been reported for nutrient-poor environments. Contrasting patterns would be associated with environments with some important constraints to plant production (Kunk and Vitousek 2007; Sardans and Peñuelas 2012) such as the wetlands of China (Wang et al. 2014). Furthermore, some studies have observed that changes in soil nutrient status are related to plant invasive success in wetlands (Currie et al., 2014; Geddes et al., 2014). Wetland macrophyte plants are frequently limited by nutrients (Subedi et al., 2012; Currie et al., 2014) and in particular by N in China (Wang et al., 2010; Sun et al., 2012) including the studied wetland area of Minjiang River (Wang et al., 2014). Thus, we hypothesized that different nutrient use and consequently changes in plant-soil nutrient concentrations and stoichiometry should be underlying and related with invasive species success of Spartina in marsh wetlands of Minjiang River. Moreover, the effects of the changes in soil nutrient concentrations and stoichiometries that invasive plants can produce and the subsequent role of these changes in the soil on the

script

regenerative capacity of native species remain to be investigated.

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

We investigated the relationships between invasive success and the changes in nutrient cycles and stoichiometries in the plant-soil system. We also studied the success of re-established native Cyperus after the removal of the invasive species. Specifically, we have examined the effects of the invasion of Spartina and regenerated communities of Cyperus on the seasonal variation of the stoichiometries of C, N and P in the plant-soil system in natural in the subtropical tidal wetlands of the Minjiang River in China. Our aims were (1) to describe the C:N, C:P and N:P ratios of the leaves, stems and roots of the invasive Spartina, the native Cyperus and the regenerated Cyperus over the growing season, (2) to determine if plant-specific tissue stoichiometry translates into differences between the nutrient concentrations of the litter and soil, (3) to examine the relationships between the success of plant invasion and the nutrient concentrations and stoichiometries of the plants, litter and soils, (4) to study the relationships of plant nutrient concentrations and stioichiometry with growth and nutrient resorption and (5) to determine if the changes in soil nutrient concentrations of C, N and P and in their stoichiometries produced during Spartina invasion can thereafter affect the regeneration of Cyperus.

uscript

Methods

146

147

145

Study area

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

This study was conducted in the Shanyutan wetland (26° 01′ 46″ N, 119° 37′ 31″ E; Fig. 1), the largest tidal wetland (approximately 3120 ha) in the estuary of the Minjiang River. The climate in this region is relatively warm and wet with a mean annual temperature of 19.6 °C and a mean annual precipitation of 1346 mm (Zheng et al. 2006). The soil surface is submerged across the study site beneath 10-120 cm of water for 3-3.5 h during each tidal inundation. The soil surfaces of the entire wetland are exposed at low tide, but the soil remains flooded at some depths. The average annual weight percentage of water in the soil and the soil redox potential are 116% [(soil wet weight-soil dry weight/soil dry weigth · 100] and 12.6 mV, respectively. The average salinity of the tidal water between May and December 2007 was 4.2 \pm S. alterniflora and C. malaccensis are the two dominant species of plants. They are typically found in the upper (mid to high) portions of mudflats. Spartina is an invasive plant. The decomposition rates of the litter of Spartina are slower than those of Cyperus (Tong et al. 2009). Wetland soils in areas dominated by Spartina biomass generally have a lower pH and bulk density than do areas dominated by Cyperus (Jia et al. 2008). Cyperus is a perennial herb that grows from March to September, with

JSCript

the root and some stems remaining during winter. Spartina is also a perennial herb. It

grows from the April to October, with the root and most stems remaining during winter. We studied and compared three different mono-species stands types: Cyperus, the native plant, *Spartina*, the invasive plant (communities more than 10 years old) and regenerated Cyperus stands where the invasive Spartina was removed three years previously and subsequently planted with Cyperus. In regenerated Cyperus stands, Spartina was removed by cutting the above ground and shallow below ground (0-20 cm) plant material, and then the native plant species Cyperus was planted in 2009

178

177

167

168

169

170

171

172

173

174

175

176

180

181

182

183

184

185

186

187

188

179

Soil samples were collected in July 2012, period of strong growth (Fig. 1). Sampling locations were established in the Cyperus (native plant), Spartina (invaded more than 10 years ago) and regenerated Cyperus (three years after removal of Spartina) communities. Three plots were randomly selected at each location, and soil profiles (width, 1 m; length, 1 m; depth, 0.6 m) were excavated. Samples were collected with a small sampler (length, 0.3 m; diameter, 0.1 m) from each of six soil layers (0-10, 10-20, 20-30, 30-40, 40-50 and 50-60 cm) at the center and both sides of the soil pit. These three samples were bulked to form one sample per layer. A total of 54 soil

samples (three plant communities \times three plots \times six soil layers) were thus collected. In the laboratory, the samples were air-dried, roots and visible plant remains were removed and the samples were finely ground in a ball mill.

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

Total soil organic C was determined by the K₂Cr₂O₇-H₂SO₄ digestion method (Sorrell et al. 1997; Bai et al. 2005), total soil N concentration was analyzed by the K 370 Kjeldahl method (Buchi Scientific Instruments, Switzerland) and total soil P determined by perchloric-acid digestion followed by concentration was colorimetry ammonium-molybdate and measurement UV-2450 using spectrophotometer (Shimadzu Scientific Instruments, Japan). Soil parameters were also determined. Soil salinity was measured by DDS-307 conductivity (Boqu Scientific Instruments, China), pH was measured with an 868 pH meter (Orion Scientific Instruments, USA), soil particle size was measured by a Master Sizer 2000 Laser Particle Size Analyser (Master Scientific Instruments, UK) and soil water content was measured gravimetrically (Lu 1999).

Iscript

Plant samples were collected in May, July, September and December 2012, corresponding to grass buds, stem elongation, budding blossom, and seed maturation stages, in order to capture potential seasonal differences in chemical composition. Most plant growth occurs between April and October, and litter is produced largely toward the end of the growing season into early winter. Plant samples were collected from a consistent height to reduce the potential effects of site-specific confounding variables. We selected stands of the three plant communities for the collection of aboveground biomass, randomly established one large quadrat $(10 \times 10 \text{ m})$ in each

stand and sampled the aboveground biomass from three randomly selected sub-quadrats (1×1 m). The harvested aboveground biomass was sorted into living and dead (litter) material. The living and litter fractions were then sorted into stems and leaves. The leaves of *Cyperus* were difficult to collect because they had degraded and fell easily from the plants (Liu et al. 2006) and so had very limited biomass (Zeng et al. 2009b). This material did not represent a major part of the aboveground biomass and so was not collected.

Belowground biomass was also harvested from these sample sub-quadrats. All plant material was gently washed with water and then oven-dried to a constant mass (80 °C for 24-36 h) and weighed. The total numbers of analyzed samples of plants and litters were 30 and 24, respectively, for the *Spartina* community and 33 and 15, respectively, for the natural and regenerated *Cyperus* communities.

The concentrations of C and N of the plants and litters were determined using a Vario EL III Elemental Analyzer (Elementar Scientific Instruments, Germany). P concentrations of the plants and litters were determined using the molybdate-blue reaction (Lu 1999) with a UV-2450 spectrophotometer (Shimadzu Scientific Instruments, Japan).

Measurements of resorption and growth

The nutrient resorption efficiency (NRE) was estimated as the percentage of N withdrawn from all green biomass before abscission:

- 233 $NRE = 100\% \times [(N_{biomass} - N_{litter}) / N_{biomass}]$
- where N_{biomass} and N_{litter} are the concentrations of N in all biomass and litter, 234
- 235 respectively (Huang et al. 2008).
- 236 Absolute growth rate (AGR) is the increase in biomass over time regardless of
- 237 plant size, whereas the relative growth rate (RGR) is the rate of biomass increase per
- 238 unit size and time. Its units are mass per mass and time:
- 239 $RGR = 1/B \cdot (dB/dt) = (Ln B_2 - Ln B_1)/t_2 - t_1$
- y manuscript 240 where B is the dry weight of the biomass. We thus calculated RGR and AGR by the
- 241 formulae (Foster and Gross 1997; Zhang et al. 2008):

242
$$RGR = (LnB_{i+1}-LnB_i)/(t_{i+1}-t_i)$$

243
$$AGR = (B_{i+1}-B_i)/(t_{i+1}-t_i)$$

where t_i is the collection time and B_i and B_{i+1} are the biomasses at times t_i and t_{i+1} . 244 Jor's acc

246 Data analysis

245

247

249

250

251

252

253

We calculated average C, N and P concentrations and C:N, C:P and N:P ratios (on a 248

molar basis) of the live plants, litters and soils and performed two-way analyses of

variance (ANOVAs) to compare the concentrations and ratios among the three plant

communities and six soil depths. We analyzed the Pearson correlation coefficients

between soil parameters (pH, salinity and water content), total soil C, N and P

concentrations and total soil C:N, C:P and N:P ratios. All univariate analyses were

254 performed using SPSS 13.0 (SPSS Inc., Chicago, USA). We used discriminant function analysis (DFA) to determine the impacts of the various plots on overall soil elemental composition (total soil C, N and P concentrations and total soil C:N, C:P and N:P ratios) and to discriminate between the effects of climate and taxonomy (including differences at the species level) on the elemental concentrations, stoichiometries and allocations between leaves and wood.

DFA is a supervised statistical algorithm that derives an optimal separation between groups established a priori by maximizing between-group variance while minimizing within-group variance (Raamsdonk et al. 2001). DFA is thus an adequate tool for identifying the variables most responsible for the differences among groups. The DFAs were performed using Statistica 6.0 (StatSoft, Inc. Tule, Oklahoma, USA).

Results

278

277

Effect of plant invasion and removal on soil C, N and P concentrations and 279

stoichiometries 280

281

283

284

285

286

288

289

292

293

294

295

The concentrations of total soil C, N and P concentrations were positively correlated 282

(P < 0.05) (Fig. S1A-C). The C, N and P concentrations generally varied with soil

depth, Spartina invasion and removal and the interaction of soil depth with Spartina

invasion and removal (P < 0.01, Table 1, Figs. S2A-C); P concentrations were not

uscript significantly affected by the interaction of soil depth with plant invasion and removal.

Soil C and N concentrations were generally higher in the Spartina community than in 287

the natural and regenerated Cyperus communities (P < 0.01, Table 2). Soil P

concentration was lower in the regenerated Cyperus community than in the Spartina

and natural *Cyperus* communities (P < 0.01). 290

The C:N ratios varied significantly with soil depth (P < 0.01, Table 1, Fig. S3A) 291

similarly in all communities. The C:P and N:P ratios also varied significantly with soil

depth (P < 0.01, Table 1, Figs. S3B and S3C). Soil C:P and N:P ratios were

significantly lower in the natural Cyperus community than in the Spartina and

regenerated *Cyperus* communities (P < 0.01, Table S1).

296

Effect of plant invasion and removal on soil parameters

298

Soil pH and salinity were significantly lower in the Spartina community than in the 299 natural and regenerated Cyperus communities (P < 0.01) (Table 1 and S1, Figs. 2 and 300 S4A, 4C). Soil water content did not differ significantly among the three communities 301 302 (P > 0.05, Table 1 and S1, Fig. S4B), but soil clay content did (P < 0.01, Table 1 and303 S1, Fig. S4D). 304 305 Effects of soil parameters on total soil C, N and P concentrations and stoichiometries with pH, and total soil P concentration was negatively correlated with salinity. The 306 307 308 309 negatively with pH and positively with salinity. The N:P ratio was correlated 310 negatively with pH and positively with water content (Table 3). 311 312 313 Effects of seasonality and plant invasion and regeneration on plant C, N and P 314 concentrations and stoichiometries 315 The C concentrations of foliar, stems, litters and roots varied with season (P < 0.05, 316 Figs. S2, S5, S6 and S6, Table 4). Stem C concentrations were higher in Spartina than 317 in Cyperus (P < 0.05). Stem N concentrations varied with season, and N 318 concentrations were lower in stems and higher in litter in Spartina than in the native 319

species (P < 0.05). P stem and litter concentrations varied with season, and the P

321	concentrations of stems and roots were higher in the natural Cyperus stands than in
322	<i>Spartina</i> ($P < 0.05$).
323	Stem and root C:N ratios were lower and N:P ratios were higher in spring ($P <$
324	0.05, Figs. S6 and S7, Table 5). The stem C:N ratio was higher in <i>Spartina</i> than in the
325	native species ($P < 0.05$). Stem and litter N:P ratios were lower in the natural Cyperus
326	community than in the regenerated community and in Spartina ($P < 0.05$).
327	
328	N and P resorption
329	ISCIIP
330	The average seasonal rates of N resorption for natural and regenerated Cyperus and
331	N and P resorption The average seasonal rates of N resorption for natural and regenerated <i>Cyperus</i> and for <i>Spartina</i> were $16.3 \pm 5.7\%$, $23.2 \pm 6.2\%$ and $57.2 \pm 3.3\%$, respectively, and the
332	rates of P resorption were 45.0 \pm 8.0%, 39.4 \pm 7.0% and 55.3 \pm 8.4%, respectively.
333	The rates of both N and P resorption were thus higher for Spartina than for natural
334	and regenerated <i>Cyperus</i> , particularly for N ($P < 0.05$, Fig. 3).
335	Aur.
336	Growth rate
337	
338	The average seasonal RGRs for natural and regenerated Cyperus and for Spartina
339	were 0.0035 ± 0.0004 , 0.0023 ± 0.0003 and 0.0010 ± 0.0003 g g ⁻¹ d ⁻¹ , respectively.
340	The RGRs were higher for both natural and regenerated Cyperus than for Spartina,
341	and the RGR was higher for natural than for regenerated $Cyperus$ ($P < 0.05$, Fig. 4A).

The average seasonal AGRs for natural and regenerated Cyperus and for Spartina

were 1.35 ± 0.66 , 2.08 ± 0.76 and 4.84 ± 1.17 g m⁻²d⁻¹, respectively. The AGRs were lower for both natural and regenerated Cyperus than for Spartina (P < 0.05, Fig. 4B) but did not differ significantly between natural and regenerated *Cyperus* (P > 0.05). Litter production

The total annual litter productions for natural and regenerated Cyperus and for Ingrier for natural Cyperus than for regenerated Cyperus and Spartina (P < 0.05, Fig. 5) but did not differ significantly between regenerated Cyperus and Spartina (P > 0.05).

Multivariate analysis

The multivariate analysis confirmed the overall differences in soil properties and in plant elemental compositions among the three communities. The differences between the invaded stands and the natural and regenerated native stands were larger than the differences between the natural and regenerated native stands (Fig. 6). The DFAs of the soil parameters identified differences in N concentration, salinity, soil water content, clay content and pH among the three communities (Table 6). The squared Mahalanobis distances between Spartina and natural Cyperus, regenerated Cyperus and natural Cyperus and Spartina and regenerated Cyperus were F = 5.18 (P <

0.0019), F = 4.21 (P < 0.001) and F = 16.2 (P < 0.001), respectively. In a PCA of plant elemental compositions and soil parameters in the samples collected in July, the first PC axis separated invasive *Spartina* stands from both natural (P < 0.001) and regenerated (P < 0.0001) *Cyperus* stands by higher soil C, N and P concentrations, higher soil N:P and C:P ratios and higher stem C concentrations and C:N and C:P ratios. The natural *Cyperus* stands, however, were significantly separated (P < 0.0001) from the regenerated stands mainly due to higher N:P ratios in stems and litter in the regenerated stands.

Discussion

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

The invasive species (Spartina) had higher C:N, C:P and N:P ratios than the native species difference that is consistent with the observed higher capacity of the invasive species to resorb N and thus to have a more conservative use and use efficiency than the native species. The invasive species had higher litter N concentrations but produced more biomass and much less litter than the native species. The invasive species consequently lost less N in its litter than the native species (Figure 7). Moreover, by having higher N resorption it had more total N content and lost a much lower proportion of N of its total stocks than the native species and produced much more new biomass per unit of N lost. These results indicated a much more efficient use of N, the limiting nutrient (Wang et al., 2014), in the invasive than in the native species. Interspecific differences in the C:N, C:P and N:P ratios may likely reflect differences in plant morphology, nutrient-use efficiency and photosynthetic capacity between the Poaceae (Spartina) and Cyperaceae (Cyperus) plants. The lower N losses by litter together with the higher N in soils suggest slower N mineralization rates in soils under the invasive species Spartina than in soils under Cyperus (Figure 7) such as observed by Tong et al. (2009). The C:N ratios of the litter were strongly correlated with the rates of litter decomposition in the communities, with lower C:N ratios usually associated with higher rates of decomposition (Windham 2001). The litter C:N ratios of Spartina were higher than those of Cyperus. These results are consistent with the low rates of litter decomposition in the Minjiang River estuary (Tong and Liu 2009) and with the

JSCript

negative correlation between rate of decomposition of soil C and the C:N ratio in this estuary (Wang et al. 2010b). Our results thus support the C:N ratio as an indicator of litter and organic-matter decomposition (Elser et al. 2003) and suggest that the rates of litter decomposition can be lower in invaded than in native stands (Tong and Liu 2009). The C:P and N:P ratios were lower in the native plants than in the invasive plants in summer (the growing season), with a consistently higher RGR for *Cyperus* than for the invasive *Spartina*. The RGRs of *Cyperus* and *Spartina* were 0.004 and 0.001 g g⁻¹ d⁻¹, respectively. Lower C:P and N:P ratios have been associated with higher growth rates (Elser et al. 2003; Peñuelas et al. 2013). Conversely, AGR (the new total biomass produced per unit time) was higher in the invasive species, coinciding with its much higher biomass (allowing a lower RGR), higher N concentrations and contents and lower losses of N in the litter, all indicating a high retention and conservative use of N in the invasive species.

uscript

The invasive plant species in our study thus grows more slowly than the native species (Zhang et al. 2008; Zeng et al. 2009a; Zeng et al. 2009b), with low C and N turnovers. The lower litter production and the trend to lower respiration rates in *Spartina* than in the native *Cyperus* observed in other studies (Tong et al. 2014) are also consistent with the lower RGR of the invasive species and the more conservative strategy of stress tolerance of *Spartina* than of *Cyperus*. Most studies in environments with no limitations of resources such as water, light or nutrients generally find that plant invasion is frequently dependent on higher rates of nutrient uptake and cycling (Sardans and Peñuelas 2012). The strategy for plant success in terrestrial

environments where at least one important resource is clearly limiting has not been clearly defined, but despite the low number of studies and frequent contradictory results, most studies suggest that a more conservative use, higher uptake and storage capacity of the limiting resource underlie plant success (Funk and Vitousek 2007; Sardans and Peñuelas 2012).

The soil of the *Spartina* community had lower clay content, related to the high capacity of the community to trap larger sediments, which can improve soil aeration during the periods between flooding and could explain the lower salinity, lower capacity to retain salts and higher drainage capacity of the soil. These factors can also contribute to improving the capacity of the plants to take up N by generating more favorable conditions for root activity by more equilibrate soil texture, allowing for example higher capacity of soil enzyme activity in conditions of better soil ventilation (Renella et al., 2006; Vasconcellos et al., 2013). Lower clay content probably allows to better mixing of litter with soil preventing litter losses with tidal water fluxes favoring higher organic soil C concentrations such as been observed.

script

The average N:P ratios (on a molar basis) were 28.7 ± 5.1 and 16.2 ± 1.7 for *Spartina* (leaves, stems and roots) and *Cyperus* (stems and roots), respectively, which were higher than the average N:P ratios (14.8-15.9) of terrestrial and aquatic plants and algae in their natural environments (Elser et al. 2000; Güsewell and Koerselman 2002; Geider and La Roche 2002; Knecht and Göransson 2004). The foliar N:P ratio is often used to represent nutrient limitation during plant growth (Tessier and Raynal 2003; Wang and Yu 2008), and a high N:P ratio suggests that P can be also limiting

(the foliar N:P ratio was 38.3 for *Spartina*). In contrast, the wetland soils of our study had particularly low N:P ratios (4.1-4.3 on a molar basis) compared to the soils from other ecosystems (Cleveland and Liptzin 2007; Tian et al. 2010), indicating that the limiting nutrient was N in the soil of this wetland area (Fig. 3). A high N:P ratio has also been observed in the invasive plant *Phragmites australis* in an area near the Minjiang estuary (Wang et al. 2014). The N:P ratio and N-resorption capacity were higher in this invasive species than in the native species, and the soils had lower N:P ratios.

Nutrient limitation is especially significant in tidal wetlands, likely because the periodic inundation of the soil limits the access of the plants to the soil nutrients by slowing mineralization (Adame et al. 2010), by the anoxic effects on root growth (Amlin and Rood 2001; Kirwan and Guntenspergen 2012) and by high levels of leaching of P and particularly of N (Noe and Hupp 2007; Kobayashi et al. 2009). Subtropical zones have high precipitation and temperatures that favor the erosion and loss of N and P, which can also limit nutrient levels (Olde et al. 2003; Tian et al. 2010).

uscript

To summarize, we found lower N and P concentrations in soils than in plants in the tidal estuarine wetlands of the Minjiang River, indicating that plants retain nutrients, especially N. We also observed higher N:P ratios in the plants than in the soils. *Spartina* was more efficient than the native *Cyperus* in storing more N (the limiting nutrient) in the biomass, in accordance with its invasive success. These results are consistent with the few previous similar studies, indicating that the success

of invasive plants in nutrient-poor soils depends on conservative strategies, such as the more efficient use, storage and retention of the limiting resource (Funk and Vitousek 2007; González et al. 2010; Matzek 2011; Wang et al. 2014), allowing longer nutrient residence times (Laungani and Knops 2009). Notably, our results clearly linked plant N:P ratios with growth rates. The results of this study are consistent with the growth rate hypothesis, with a clear relationship between low N:P ratio and high RGR, indicating that the new biomass produced relative to the total plant biomass is associated with lower N:P ratios but not with AGR, which should also depend on the turnover of biomass and on resource-use efficiency. All these results are also consistent with the higher litter production of the invasive *Spartina* than of the native *Cyperus*.

Cyperus replanted after the removal of Spartina had soil and plant elemental compositions different than those for the natural Cyperus community. These differences were mainly due to the higher stem and litter N:P ratios and lower RGR in the regenerated than in the natural Cyperus community. The shift toward higher soil and root N:P ratios in the invaded community may thus be associated with the subsequent higher stem and litter N:P ratios and lower RGR in the regenerated relative to the natural Cyperus community. Moreover, soil P is lower in Cyperus replanted than in the natural Cyperus community, likely as a result of the lower concentration of P in the litter of Cyperus replanted than in the natural Cyperus community. Invasion shifted the overall plant-soil nutrient concentrations, distributions and stoichiometries, especially those linked to N, and these shifts further

influenced the plant-soil nutrient status and limited the RGR of the native species in the early to middle stages of the regeneration of the native species.

Conclusions

The nutrient compositions and stoichiometries in the plants, litter and soils, the great N resorption and previous studies (Wang et al., 2014) indicated that N was the limiting factor in this tidal estuarine wetland. The success of plant invasion under these environmental conditions was related to a low RGR and to a high capacity to resorb, store and efficiently use nutrients, in this case N. Plant invasion was thus associated with a more conservative use of nutrients, as suggested by other studies under conditions of nutrient limitation. RGR was associated with lower plant N:P ratios, whereas AGR was associated with higher nutrient-use efficiency and lower C and N turnover and storage capacities in the biomass. The physical removal of the invasive species and restoration with a native species tended to reestablish the soil properties to some extent, but some significant differences remained between the natural and regenerated communities three years after the removal of the invasive plants, indicating that the presence of the invasive plants had changed the soil properties and affected the regeneration.

uscript

519	Acknowledgements	
520	This work was supported by grants from the National Science Foundation of China	
521	(31000209) and the Fujian Provincial Department of Education Foundation (JA13081) and by	
522	the Spanish Government grant CGL2013-48074-P, the Catalan Government grant SGR	
523	2014-274, and the European Research Council Synergy grant ERC-2013-SyG-610028	
524	IMBALANCE-P.	
525		
526		
527		
528		to:
529		CCUP.
530		Na
531	, mai	
532	+60	
533	68010	
534	acco.	
535	ar's	
536	14hoi	
537	Author's accepted man	
538 539		
540		
541		
542		
543		
544		
545		
546		
547		

548	References
549	Adame MF, Virdis B, Lovelock CE (2010) Effect of geomorphological setting and rainfall on
550	nutrient exchange in mangroves during tidal inundation. Mar Freshwater Res 61:
551	1197–1206
552	Amlin NA, Rood SB (2001) Inundation tolerances of riparian willows and cottonwoods. J Am
553	Water Resour Assoc 37:1709–1720
554	Aragón R, Sardans J, Peñuelas J (2013) Soil enzymes associated with carbon and nitrogen
555	cycles in invaded and native secondary forests of northwestern Argentina. Plant Soil. In
556	press.
557	Bai JH, Yang HO, Deng W, Zhu YM, Zhang XL, Wang QG (2005) Spatial distribution
558	characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands. Geoderma 124:181–192 Bridgham SD, Pastor J, McClaugherty CA, Richard CJ (1995) Nutrient-use efficiency: a
559	wetlands. Geoderma 124:181–192
560	Bridgham SD, Pastor J, McClaugherty CA, Richard CJ (1995) Nutrient-use efficiency: a
561	litterfall index, a model, and a test along a nutrient-availability gradient in North
562	Carolina peatlands. Am Nat 145:1–21
563	Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ
564	(2004) Phylogenetic variation in the shoot mineral concentration of angiosperms. J Exp
565	Bot 55:321–336
566	Cebrian J (1999) Patterns in the fate of production in plant communities. Am Nat
67	154:449–468
568	Cebrian J, Lartigue J (2004) Patterns of herbivory and decomposition in aquatic and terrestrial
569	ecosystems. Ecol Monogr 74:237–259
570	Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a "Redfield ratio" for
571	the microbial biomass? . Biogeochemistry 85:235–252
572	Currie WS, Goldberg DE, Martina J, Wildova R, Farrer E, Elgersma KJ, (2014) Emergence of
573	nutrient-cycling feedbacks related to plant size and invasion success in a wetland
574	community-ecosystem model. Ecological Modelling 282: 69-82.
575	Demars BOL, Edwards AC (2007) Tissue nutrient concentrations in freshwater aquatic
576	macrophytes: high inter - taxon differences and low phenotypic response to nutrient
577	supply. Freshwater Biol 52:2073–2086

578	Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-soil system. Annu Rev
579	Environ Resour 30:75–115
580	Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Watts T, Hobbie S, Fagan W, Schade J,
581	Hood J, Sterner RW (2003) Growth rate- stoichiometry couplings in diverse biota. Ecol
582	Lett 6:936–943
583	Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interland S, Kilham
584	SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000) Nutritional constraints in
585	terrestrial and freshwater food webs. Nature 408:578-580
586	Elser JJ, Peace AL, Kyle M, Wojewodzic M, McCrackin ML, Andersen T, Hessen DO (2010)
587	Atmospheric nitrogen deposition is associated with elevated phosphorus limitation of
588	lake zooplankton. Ecol Lett 13:1256–1261
589	Atmospheric nitrogen deposition is associated with elevated phosphorus limitation of lake zooplankton. Ecol Lett 13:1256–1261 Foster BJ, Gross KL (1997) Partitioning the effects of plant biomass litter on Andropogon Gerardi in old-field vegetation. Ecology 78:2091-2104
590	Gerardi in old-field vegetation. Ecology 78:2091-2104
591	Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource
592	systems. Nature 446:1079–1081
593	Geddes P, Grancharova T, Kelly JJ, Treering D, Tuchman NC, (2014) Effects of invasive
594	Thypa x glauca on wetland nutrient pools, denitrification, and bacterial communities are
595	influenced by time since invasion. Aquatic Ecology 48: 247-258.
596	Geider R, La Roche J (2002) Redfield revisited: variability of C: N: P in marine microalgae
597	and its biochemical basis. Eur J Phycol 37:1–17
598	González AL, Kominoski JS, Danger M, Ishida S, Iwai N, Rubach A (2010) Can ecological
599	stoichiometry help explain patterns of biological invasion? Oikos 119:779–790
500	Güsewell S, Koerselman W (2002) Variation in nitrogen and phosphorus concentrations of
501	wetland plants. Perspect Plant Ecol Evol Syst 5:37-61
602	Güsewell S, Verhoeven JTA (2006) Litter N: P ratios indicate whether N or P limits the
503	decomposability of graminoid leaf litter. Plant Soil 287:131–143
504	Hawlena D, Schmitz OJ (2010) Herbivore physiological response to predation risk and
505	implications for ecosystem nutrient dynamics. PNAS 107:15505–15507
506	Huang GL, He P, Hou M (2006) Present status and prospects of estuarine wetland research in
507	China. Chin J Appl Ecol 17:1751–1756

608	Huang JY, Zhu XG, Yuan ZY, Song SH, Li X, Li LH (2008) Changes in nitrogen resorption
509	traits of six temperate grassland species along a multi-level N addition gradient. Plant
510	Soil 306:149–158
511	Jia RX, Tong C, Wang WQ, Zeng CS (2008) Organic carbon concentrations and storages in
512	the salt marsh sediments in the Min River estuary. Wetland Sci 6:492–499
513	Jobbágy EG, Jackson R (2001) The distribution of soil nutrients with depth: global patterns
514	and the imprint of plants. Biogeochemistry 53:51–77
515	Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006) Phylogenetic and growth form variation
516	in the scaling of nitrogen and phosphorus in the seed plants. Am Nat 68:E103-E122
517	Kirwan ML, Guntenspergen GR (2012) Feedbacks between inundation, root production, and
518	shoot growth in a rapidly submerging brackish marsh. J Ecol 100:764–770
519	shoot growth in a rapidly submerging brackish marsh. J Ecol 100:764–770 Knecht MF, Göransson A (2004) Terrestrial plants require nutrients in similar proportions. Tree Physiol 24:447–460
520	Tree Physiol 24:447–460
521	Kobayashi T, Ryder DS, Gordon G, Shannon I, Ingleton T, Carpenter M, Jacobs \$J (2009)
522	Short-term response of nutrients, carbon and planktonic microbial communities to
523	floodplain wetland inundation. Aquat Ecol 43;843–858
524	Laungani R, Knops JMH (2009) Species-driven changes in nitrogen cycling can provide a
525	mechanism for plant invasions. Proc Natl Acad Sci USA 106:12400-12405
526	Liu JQ, Zeng CS, Chen N (2006) Research of Minjiang River estuary wetland. Beijing:
527	Science Press
528	Lu RK (1999) Analysis methods of soil science and agricultural chemistry. Beijing:
529	Agriculture Science and Technology Press
530	Matzek V (2011) Superior performance and nutrient-use efficiency of invasive plants over
531	non-invasive congeners in a resource-limited environment. Biol Invasions 13:3005–3014
532	McClaugherty CA, Pastor J, Aber JD, Melillo JM (1985) Forest litter decomposition in
533	relation to soil nitrogen dynamics and litter quality. Ecology 66:266–275
534	Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and
535	below-ground ecosystem function. PNAS 105:19780–19785
636	Mulder C, Ahrestani FS, Bahn M, Bohan DA, Bonkowski M, Griffiths BS, Guicharnaud RA,
537	Kayvge J. Krogh PH. Layorel S. Lewis OT. Mancinelli H. Naeem S. Peñuelas J. Poorter

538	H, Reich PB, Rossi L, Rusch GM, Sardans J, Wright IJ (2013) Connecting the green and						
539	brown worlds: allometric and stoichiometric predictability of above- and below-ground						
540	networks. Adv Ecol Res 49:69–175						
541	Neves JP, Simões MP, Ferreira LF, Madeira M, Gazarini LC (2010) Comparison of biomass						
542	and nutrient dynamics between an invasive and a native species in a Mediterranean						
543	saltmarsh. Wetlands 30:817–826						
544	Noe GB, Hupp CR (2007) Seasonal variation in nutrient retention during inundation of a short						
545	- hydroperiod floodplain. River Res Appl 23:1088–1101						
546	Northup RR, Dahlgren RA, Mccoll JG (1998) Polyphenols as regulators of plant-litter-soil						
547	interactions in northern California's pygmy forest: a positive feedback?.						
548	Biogeochemistry 42:189–220						
549	Olde VH, Wassen MJ, Verkroost AWM, Buiter PCD (2003) Species richness-productivity						
550	Biogeochemistry 42:189–220 Olde VH, Wassen MJ, Verkroost AWM, Buiter PCD (2003) Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 84:2191–2199						
551	Renella G, Landi L, Ascher J, Ceccherini MT, Pietramellara G, Nannipieri P (2006)						
552	Phosphomonoesterase production and persistence and composition of bacterial						
553	communities during plant material decomposition in soils with different pH values. Soil						
554	Biology and Biochemistry 38:795-802.						
555	Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y,						
556	Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013) Human-induced						
557	nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe.						
558	Nature Comm 4:2934						
559	Peñuelas J, Sardans J, Llusia J, Owen SM, Carnicer J, Giambelluca TW, Rezende EL, Waite						
660	M, Niinenmets U (2010) Faster returns on 'leaf economics' and different biogeochemical						
661	niche in invasive compared with native plant species. Glob Change Biol 16:2171–2185						
662	Raamsdonk LM, Teusink B, Broadhurst D, Zhang NS, Hayes A, Walsh MC, Berden JA,						
663	Brudle KM, Kell DK, Rowland JJ, Westerhoff HV, van Dam K, Oliver SG (2001) A						
664	functional genomics strategy that uses metabolome data to reveal the phenotype of silent						
665	mutations. Nat Biotechnol 19:45–50						
666	Sardans J, Peñuelas J (2012) The role of plants in the effects of Global Change on nutrient						
567	availability and stoichiometry in the plant-soil system. Plant Physiol 160:1741–1761						

668	Sardans J, Peñuelas J (2013) Climate and taxonomy underlie different elemental	
669	concentrations and stoichiometries of forest species: the optimum "biogeochemical	
670	niche". Plant Ecol 215:441-455	
671	Sardans J, Janssens I, Alonso R, Veresoglou SD, Rillig MC, Sanders T, Carnicer J, Filella I,	
672	Farré-Armengol G, Peñuelas J. (2014) Foliar elemental composition of European forest	
673	tree species associated with evolutionary traits and present environmental and	
674	competitive conditions. Global Ecol Biogeogr. In press.	
675	Shen HT, Zhu JR (1999) The land and ocean interaction in the coastal zone of China. Mar Sci	
676	Bull 18:11–17	
677	Sorrell B, Brix H, Schierup HH, Lorenzen B (1997) Die-back of <i>Phragmites australis</i> :	<u>.</u>
678	influence on the distribution and rate of sediment methanogenesis. Biogeochemistry 36:	Join
679	173–188	15CITP
680	Subedi SC, Ross MS, Scinto LJ (2012) Nutrient limitation in two everglades tree species	0,5
681	influence on the distribution and rate of sediment methanogenesis. Biogeochemistry 36: 173–188 Subedi SC, Ross MS, Scinto LJ (2012) Nutrient limitation in two everglades tree species planted on constructed tree islands. Wetlands 32: 1163-1173. Sun ZG, Mou XJ, Sun JK, Song HL, Yu X, Wang LL, Jiang HH, Sun WL, Sun WG, (2012)	
682	Sun ZG, Mou XJ, Sun JK, Song HL, Yu X, Wang LL, Jiang HH, Sun WL, Sun WG, (2012)	
683	Nitrogen biological cycle characteristics of seepweed (Suaeda salsa) wetland in	
684	interdidal zone of Huanghe (Yellow) River estuary. Chinese Geographical Science 22:	
685	15-28.	
686	Tessier JT, Raynal DJ (2003) Use of nitrogen to phosphorus ratios in plant tissue as indicator	
687	of nutrient limitation and nitrogen saturation. J Appl Ecol 40: 523-534	
688	Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS (2010) Pattern and variation of C:N:P	
689	ratios in China's soils: a synthesis of observational data. Biogeochemistry 98: 139-151	
690	Tong C, Liu BG (2009) Litter decomposition and nutrient dynamics in different tidal water	
691	submergence environments of estuarine tidal wetland. Geogr Res 28: 118-128	
692	Tong C, Wang C, Huang JF, Wang WQ, E Y, Liao J, Yao C (2014) Ecosystems respiration	
693	does not differ before and after tidal inundation in Brackish Marshes of the Min River	
694	Estuary, Southeast China. Wetlands 34: 225–233	
695	Tong C, Wang WQ, Zeng CS, Marrs R (2010) Methane emission from a tidal marsh in the	
696	Min River estuary, southest China. J Environ Sci Health Part A-Toxic/Hazard Subst	
697	Environ Eng 45: 506–516	

598	long C, Zhang L, Wang WQ, Gauci V, Marss R, Liu B, Jia R, Zeng CS (2011) Constrain	
699	nutrient stocks and litter decomposition in stands of native and invasive species in a	
700	sub-tropical estuarine marsh. Environmental Research 111: 909-916	
701	Townsend A, Cleveland CC, Asner GP, Bustamante MC (2007) Controls over foliar N: P	
702	ratios in tropical rain forests. Ecology 88: 107-118	
703	Vasconcellos RLF, Bonfim JA, Andreote FD, Mendes LW, Baretta D (2013) Microbiological	
704	indicators of soil quality in a riparian forest recovery gradient. Ecological Engineering 53:	
705	313-320.	
706	Vitousek PM, Peter M (1984) Nutrient cycling, and nutrient limitation in tropical forests.	
707	Ecology 65: 285–298	<u> </u>
708	Wang SQ, Yu GR (2008) Ecological stoichiometry characteristics of ecosystem carbon,	uscript
709	nitrogen and phosphorus elements. Acta Ecol Sin 28: 3937–3947	15CIT
710	Wang WQ, Sardans J, Zeng CS, Zhang LH, Peñuelas J (2014) Invasive success of <i>Phragmites</i>	U
711	australis is associated with lower C:N and higher N:P ratios and higher N resorption in	
712	the Minjiang River tidal estuarine wetlands of China. Plant Ecol Submitted	
713	Wang WQ, Tong C, Jia RX, Zeng CS (2010a) Ecological stoichiometry of characteristics of	
714	wetland soil carbon, nitrogen and phosphorus in different water-flooded frequency. J Soil	
715	Water Conserv 24: 238–242	
716	Wang WQ, Tong C, Zeng CS (2010b) Stoichiometry characteristics of carbon, nitrogen,	
717	phosphorus and anaerobic carbon decomposition of wetland soil of different texture.	
718	China Environ Sci 30: 1130–1134	
719	Wang Y, Liu JS, Dou JX, Zhao GY. (2010) Seasonal characteristics of Carex lasiocarpa	
720	biomass and nutrient accumulation in the typical wetland of Sanjiang Plain, China.	
721	Journal of Forestry Research 21: 389-393.	
722	WANG W., SARDANS J., ZENG C., ZHONG C., LI Y., PEÑUELAS J. 2014. Responses of soil	
723	nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal	
724	wetland. Geoderma 232-234: 459-470.	
725	Windham L (2001) Comparison of biomass production and decomposition between	
726	Phragmites australis (common reed) and Spartina patens (salt hay grass) in brackish	

tidal marshes of New Jersey, USA. Wetlands 21: 179–188

728	Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J,	
729	Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J,	
730	Hikosaka K, Lamont BB, Lee T, Lee W, Lusk W, Midgley C, Navas JJ, Niinemets ML,	
731	Oleksyn Ü, Osada J, Porter N, Poot H, Prior L, Pyankov VI, Roumet C, Thomas SC,	
732	Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum.	
733	Nature 428: 821–827	
734	Wurzburger N, Hendrick R (2009) Plant litter chemistry and mycorrhizal roots promote a	
735	nitrogen feedback in a temperate forest. J Ecol 97: 528-536	
736	Zeng CS, Zhang LH, Tong C (2009a) Seasonal dynamics of nitrogen and phosphorus in	
737	Phragmites australis and Spartina alterniflora in the wetlands of Min River estuary.	
738	Wetland Sci 7: 16–24 Zeng CS, Zhang LH, Tong C (2009b) Seasonal variation of nitrogen and phosphorus concentrations and accumulation of <i>Cyperus malaccensis</i> in Minjiang River estuary. Chin J Ecol 28: 788–794 Zhang LH, Zeng CS, Tong C (2008) Study on biomass dynamics of <i>Phragmites australis</i> and	Join
739	Zeng CS, Zhang LH, Tong C (2009b) Seasonal variation of nitrogen and phosphorus	ISCIIP
740	concentrations and accumulation of Cyperus malaccensis in Minjiang River estuary.	U
741	Chin J Ecol 28: 788–794	
742	Zhang LH, Zeng CS, Tong C (2008) Study on biomass dynamics of <i>Phragmites australis</i> and	
743	Spartina alterniflora in the wetlands of Minjiang River estuary. J Subtrop Resour	
744	Environ 3: 25–33	
745	Zheng CH, Zeng CS, Chen ZQ (2006) A Study on the changes of landscape pattern of Estuary	
746	wetlands of the Minjiang River . Wetland Sci 4: 29–34	
747	Zhou LJ, Tu YY, Song YC (2006) The biodiversity of wetland and its prevention measures in	
748	Min River Estuary. Ecol Sci 25: 330–334	
749		
750		
751		
752 753		
754		
755		
756		
757		
758		
759		
760		

Tables

Table 1 Summary of factorial ANOVAs of the effects of plant invasion and removal and soil depth on soil nutrient concentrations, stoichiometry and soil parameters.

on soil nutrient concentrations, stoicniometry an	df	F	P
C concentration			
Soil depth	5,36	7.198	< 0.001
Plant invasion and removal	2,36	8.319	0.002
Plant invasion and removal × Soil depth	10,36	3.431	0.003
N concentration			
Soil depth	5,36	27.187	< 0.001
Plant invasion and removal	2,36	5.609	0.008
Plant invasion and removal × Soil depth	10,36	4.635	< 0.001
P concentration			
Soil depth	5,36	42.395	< 0.001
Plant invasion and removal	2,36	14.691	< 0.001
Plant invasion and removal × Soil depth	10,36	1.715	0.115
C:N ratio			<0.001 0.115 <0.001 0.295 0.546
Soil depth	5,36	8.664	< 0.001
Plant invasion and removal	2,36	1.262	0.295
Plant invasion and removal × Soil depth	10,36	0.896	0.546
C:P ratio		4	(110
Soil depth	5,36	7.474	< 0.001
Plant invasion and removal	2,36	4.327	0.021
Plant invasion and removal × Soil depth	10,36	3.154	0.005
N:P ratio			
Soil depth	5,36	5.405	0.001
Plant invasion and removal	2,36	3.705	0.034
Plant invasion and removal × Soil depth	10,36	4.504	< 0.001
pH			
Soil depth	5,36	0.568	0.724
Plant invasion and removal	2,36	11.611	< 0.001
Plant invasion and removal × Soil depth	10,36	0.995	0.465
Water content			
Soil depth	5,36	0.588	0.709
Plant invasion and removal	2,36	0.341	0.713
Plant invasion and removal × Soil depth	10,36	1.301	0.267
Salinity			
Soil depth	5,36	3.963	0.006
Plant invasion and removal	2,36	6.301	0.005
Plant invasion and removal \times Soil depth	10,36	0.630	0.778
Clay content			
Soil depth	5,36	7.830	< 0.001
Plant invasion and removal	2,36	41.322	< 0.001
Plant invasion and removal × Soil depth	10,36	5.349	< 0.001

Table 2 Soil (average of soil depths) C, N and P (mean \pm S.E.) concentrations (mg g⁻¹) in the three communities.

Nutrient	Natural C. malaccensis	S. alterniflora	Regenerated C. malaccensis
С	$20.9 \pm 1.0 \text{ b}$	$23.4 \pm 2.0a$	21.2 ± 1.6b
N	1.27 ± 0.06 a	$1.37 \pm 0.12b$	$1.26 \pm 0.08a$
P	0.69 ± 0.04 a	$0.70\pm0.03a$	$0.64 \pm 0.03a$

Different letters within a row indicate significant differences (P < 0.05).

Author's accepted manuscript

Table 3 Pearson correlation coefficients of soil nutrient concentrations and ratios with soil parameters.

Community	Index	pН	Water content	Salinity	Clay content
Natural <i>C</i> .	[C]	-0.422	0.585*	-0.113	0.855**
malaccensis (n =	[N]	-0.391	0.472*	-0.409	0.664**
18)	[P]	-0.084	0.287	-0.404	0.400
	C:N	0.154	-0.067	0.501*	-0.102
	C:P	-0.288	0.269	0.328	0.384
	N:P	-0.484*	0.400	-0.166	0.559*
S. alterniflora (n =	[C]	-0.233	0.746**	0.453	0.051
18)	[N]	-0.299	0.729**	0.118	0.000
	[P]	-0.356	0.334	-0.112	-0.093
	C:N	0.185	-0.092	0.651**	0.118
	C:P	-0.060	0.715**	0.605**	0.127
	N:P	-0.195	0.817**	0.204	0.058
Regenerated C.	[C]	-0.680**	-0.031	0.559*	0.058 -0.238 -0.070 -0.011 -0.174
malaccensis (n =	[N]	-0.259	0.388	-0.156	-0.070
18)	[P]	0.478*	0.272	-0.690**	-0.011
	C:N	-0.511*	-0.345	0.745**	-0.174
	C:P	-0.706**	-0.154	0.769**	-0.096
	N:P	-0.724**	0.018	0.655**	-0.010
Total $(n = 54)$	[C]	-0.453**	0.207	0.140	-0.004
	[N]	-0.356**	0.192	-0.167	0.073
	[P]	-0.082	-0.031	-0.469**	-0.063
	C:N	-0.117	-0.004	0.495**	-0.110
	C:P	-0.359**	0.225	0.493**	0.086
4/0	N:P	-0.369**	0.285*	0.225	0.191

^{*} significant at P < 0.05, ** significant at P < 0.01

Community	Sample	Ele	ment N	Iean ± S.E. (mg	g g ⁻¹)	_	
	Leaf	С	_			_	
Natural C.	Stem	C	3	96.0 ± 5.2			
malaccensis	Root	C	3	63.1 ± 19.1			
	Litter	C	3	85.3 ± 6.6			
	Leaf	С	4	06.8 ± 5.9			
S. alterniflora	Stem	C	4	08.8 ± 14.2			
	Root	C	3	57.8 ± 9.4			
	Litter	C	3	77.1 ± 17.6			
Regenerated	Leaf	C	_			_	
C. malaccensis	Stem	C	3	95.7 ± 5.3			
	Root	C	3	81.3 ± 6.1			
	Litter	C	3	88.7 ± 2.4			
	Leaf	N	_			-	*
Natural C.	Stem	N	1	2.09 ± 1.53			Join
malaccensis	Root	N		$.78 \pm 0.18$			uscript
	Litter	N	1	0.56 ± 0.46		- 1	150,
	Leaf	N	1	7.49 ± 1.81		\sim 0	U
S. alterniflora	Stem	N	9	.97 ± 5.47	0	J. (1)	
	Root	N	7	$.35 \pm 0.34$	A II	110	
	Litter	N	1	1.30 ± 2.34	au i		
Regenerated	Leaf	N	_	201		_	
C. malaccensis	Stem	N		2.43 ± 2.07			
	Root	N	8	$.45 \pm 0.88$			
	Litter	CN		0.17 ± 0.89			
. 1	Leaf	P	_			_	
Natural C.	Stem	P	1	$.90 \pm 0.22$			
malaccensis	Root	P	1	$.05 \pm 0.15$			
	Litter	P	1	$.01 \pm 0.13$			
	Leaf	P	1	$.15 \pm 0.18$		_	
S. alterniflora	Stem	P	0	$.99 \pm 0.34$			
	Root	P	0	$.91 \pm 0.21$			
	Litter	P	0	$.83 \pm 0.06$		_	
Regenerated	Leaf	P	_			=	
C. malaccensis	Stem	P	1	$.13 \pm 0.15$			
	Root	P	0	$.99 \pm 0.16$			
	Litter	P	0	$.86 \pm 0.07$			
Factorial ANOVA statistics		Stem	Litter	Root	_		
С						=	
Season			F = 19.6	F = 16.2	F = 3.09		
			P < 0.001	P < 0.001	P = 0.046		
Plant invasion a	nd removal		F = 9.19	F = 2.96	F = 2.00		
			P = 0.001	P = 0.07	P = 0.16		

Season × Plant invasion and removal	F = 11.2 $P < 0.001$	F = 6.92 $P < 0.001$	F = 1.70 P = 0.17	
N	1 (0.001	1 < 0.001	1 - 0.17	
Season	F = 119	F = 17.5	<i>F</i> = 1.43	
	P < 0.001	P < 0.001	P = 0.26	
Plant invasion and removal	F = 8.13	F = 1.63	F = 2.13	
	P = 0.002	P = 0.22	P = 0.14	
Season × Plant invasion	F = 24.2	F = 7.32	F = 2.49	
and removal	P < 0.001	P < 0.001	P = 0.052	
P				
Season	F = 21.6	F = 0.57	F = 4.29	
	P < 0.001	P = 0.64	P = 0.014	
Plant invasion and removal	F = 94.4	F = 3.91	F = 0.53	
	P < 0.001	P = 0.034	P = 0.60	
Season × Plant invasion	F = 25.6	F = 4.56	F = 4.49	<u> </u>
and removal	P < 0.001	P = 0.003	P = 0.052	Ini
Season × Plant invasion and removal	acc	ept	ed man	USCITA

Community	Sample	Ratio	Mean ± S.l	E. (mg g ⁻¹)	•	
	Leaf	C:N				
Natural C.	Stem	C:N	40.4 ± 5.2			
malaccensis	Root	C:N	55.0 ± 3.5			
	Litter	C:N	43.3 ± 2.3			
	Leaf	C:N	28.1 ± 2.6			
S. alterniflora	Stem	C:N	89.1 ± 25.0	0		
	Root	C:N	58.3 ± 3.8			
	Litter	C:N	44.3 ± 8.4			
Regenerated	Leaf	C:N				
C. malaccensis	Stem	C:N	40.4 ± 5.4			
	Root	C:N	55.6 ± 5.7			
	Litter	C:N	47.2 ± 4.4		ed man	*
	Leaf	C:P				JOIN.
Natural C.	Stem	C:P	564 ± 59			CITY
malaccensis	Root	C:P	1006 ± 164	4		150.
	Litter	C:P	1070 ± 184	4	α	O.
	Leaf	C:P	1028 ± 140	0	mai	
S. alterniflora	Stem	C:P	1574 ± 563	3	9/1/1	
	Root	C:P	1197 ± 171	1	60	
	Litter	C:P	1253 ± 54	$\Delta \Omega \Lambda$		
Regenerated	Leaf	C:P	\overline{C}	CT.		
C. malaccensis	Stem	C:P	983 ± 131			
	Root	C:P	1151 ± 255	5		
	Litter	C:P	1212 ± 107	7		
	Leaf	N:P				
Natural <i>C</i> .	Stem	N:P	14.2 ± 0.8			
malaccensis	Root	N:P	18.3 ± 2.9			
	Litter	N:P	24.6 ± 3.6			
	Leaf	N:P	38.3 ± 8.6			
S. alterniflora	Stem	N:P	27.2 ± 120)		
	Root	N:P	20.7 ± 3.4			
	Litter	N:P	32.4 ± 7.5			
Regenerated	Leaf	N:P				
C. malaccensis	Stem	N:P	27.3 ± 7.9			
	Root	N:P	22.6 ± 6.1			
	Litter	N:P	27.3 ± 4.4			
Factorial ANOVA	statistics	Stem	Litter	Root		
C:N						
Season		F = 31.2	F = 10.1	F = 3.18		
		P < 0.001	P = 0.002	P = 0.042		
Plant invasion a	nd removal	F = 60.7	F = 0.84	F = 0.45		

	P < 0.001	P = 0.44	P = 0.64
Season × Plant invasion	F = 10.6	F = 4.86	F = 2.88
and removal	P < 0.001	P = 0.002	P = 0.029
C:P			
Season	F = 27.4	F = 0.92	F = 5.63
	P < 0.001	P = 0.45	P=0.0046
Plant invasion and removal	F = 79.1	F = 1.51	F = 1.42
	P < 0.001	P = 0.24	P = 0.26
Season × Plant invasion	F = 38.1	F = 3.52	F = 5.86
and removal	P < 0.001	P = 0.012	P < 0.001
N:P			
Season	F = 63.7	F = 13.6	F = 7.12
	P < 0.001	P < 0.001	P=0.0014
Plant invasion and removal	F = 29.8	F = 5.40	F = 1.05
	P < 0.001	P = 0.012	P = 0.36
Season × Plant invasion	F = 22.8	F = 8.47	F = 2.83
and removal	P < 0.001	P < 0.001	P = 0.032

- r<0.001 P=0.032

Author's accepted manuscript

Table 6 Statistics (Wilks' λ and P) of the discriminant functional analysis of the soils with pH; salinity; depth; moisture and clay contents; total C, N and P concentrations and C:N, C:P and N:P ratios as variables. Bold type indicates a significant effect of the variable in the model (P < 0.05).

Wilk's λ	F	Р
0.941	1.16	0.33
0.799	4.07	0.014
0.951	0.947	0.40
0.612	11.7	0.0001
0.797	4.72	0.015
0.604	12.1	<0.0001
0.702	7.87	0.0014
0.776	4.62	0.0086
0.993	0.138	0.87
0.963	0.708	0.50
0.678	1.59	0.13
	0.941 0.799 0.951 0.612 0.797 0.604 0.702 0.776 0.993 0.963	0.941 1.16 0.799 4.07 0.951 0.947 0.612 11.7 0.797 4.72 0.604 12.1 0.702 7.87 0.776 4.62 0.993 0.138 0.963 0.708

Author's accepted manuscript

Figure captions

Fig. 1 Location of the sampling sites.

Fig. 2 Comparison of average pHs (mean \pm S.E.) at the various soil depths in the three communities. Different letters indicate significant differences between communities (P < 0.05).

Fig. 3 Nutrient-resorption rates (mean \pm S.E.) for N and P in the three communities. Different letters indicate significant differences between communities (P < 0.05).

Fig. 4 Relative (A) and absolute (B) growth rates (mean \pm S.E.) in the three communities. Different letters indicate significant differences between communities (P < 0.05).

Fig. 5 Annual litter production in the three communities. Different letters indicate significant differences between communities (P < 0.05).

Fig. 6 Biplots of the PCAs conducted with soil, litter, root and stem data for July (summer) as variables for the natural *Cyperus* community (C), invasive *Spartina* community (S) and regenerated *Cyperus* community after removal of invasive *Spartina* (CR). Arrows indicate significant differences of the PC scores (P < 0.05) among the communities.

Fig. 7 N-cycle in plant-soil system in native *Cyperus* stands and in invasive *Spartina* stands.

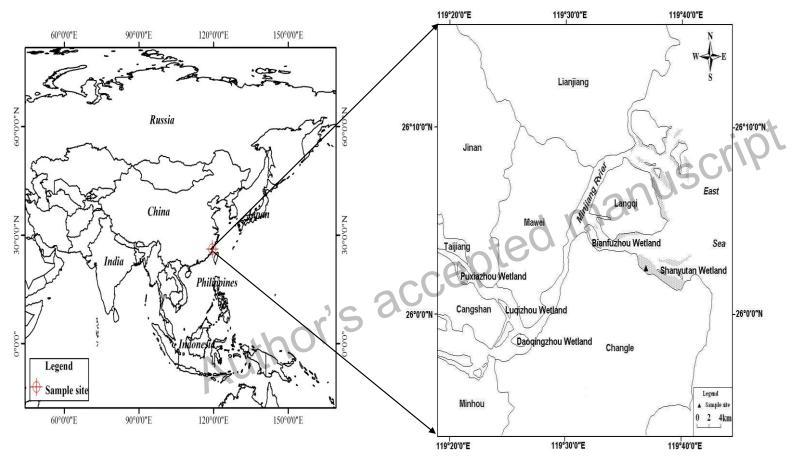
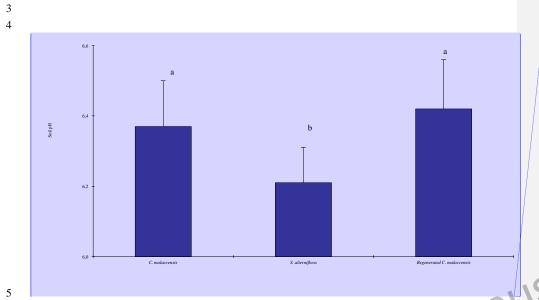



Fig. 1

Comentari [j1]: Please weiqi Figures from 2 to 5 make considerable greater the legends of the axes "X" and "Y" in this case "Soil pH" "C. malaccensis" and so on.

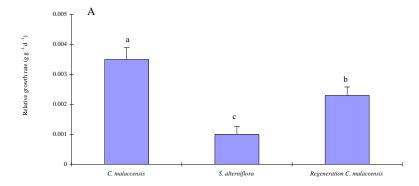
Author's accepted manuscript

Fig. 2



Fig. 3

Author's accepted manuscript



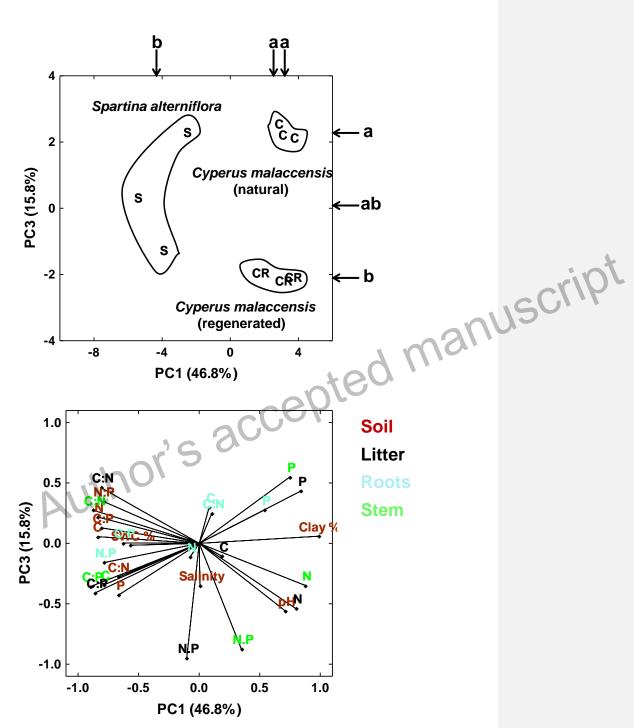


Fig. 4

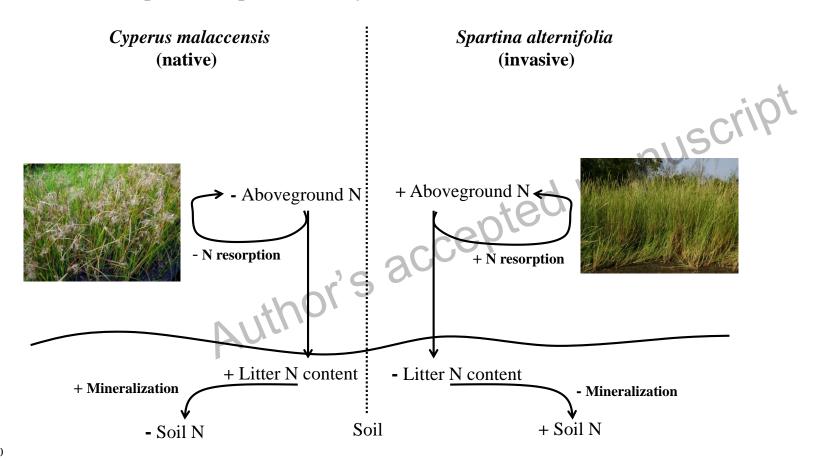


Fig. 5

Fig. 6

Comparison of plant-soil N cycle in invaded and native stands

