Supplementary material

Figure S1. Relationship between sapwood area (A_S) and stem basal area (A_B) for each species: (a) *Q. pubescens* (black diamond and black solid line), (b) *Q. ilex* (grey triangle and grey solid line), (c) *A. unedo* (black circle and black short dash line) and (d) *P. halepensis* (grey square and grey short dash line). Closed symbols depict actual A_S measurements in the studied species within the same region taken from the literature or from the Ecological and Forest Inventory of Catalonia (IEFC) in the case of *P. halepensis*. Regression lines are fitted to these data. Open symbols represent field measurements in a nearby location and they are shown for validation purposes (see Materials and Methods). Note the different scales in the x- and y-axes.

Figure S2. Representation of the response of sapflow per unit sapwood are (J_S) to volumetric soil water availability (θ) using a three-parameter sigmoid function. 75 % of $J_{S,Asym}$ (triangle), 50 % of $J_{S,Asym}$ (square), $J_{S,Asym}$ (cross), $\theta_{75\%}$ (circle) and θ_{mid} ("x"). The value of θ_{mid} is the value of θ where J_S is 50 % of $J_{S,Asym}$. The value of θ_{scal} represents the difference between θ_{mid} and the value of θ at which J_S is 75 % of $J_{S,Asym}$.

Figure S3. Example of tree water deficit (ΔW) calculation, showing the reference growth curve (red) and the actual dendrometer data (black) from an individual of *P*. *halepensis* levelled as number 850. Labels on the x axis represent time in month/year format (i.e. January 2011 is 1/2011).

از

Figure S4. Modelled responses of tree water deficit (ΔW) to vapour pressure deficit (VPD) at different values of volumetric soil water availability (θ) (0.075, 0.15 and 0.25 cm³ cm⁻³) for each species, according to model in Table 3. Panels on the left column depict results for 2011 and panels on the right, for 2012.

Figure S5. Reference growth curves used to calculate tree water deficit (ΔW) for each of the measured trees, separated by species: (a) *Q. ilex*, (b) A. *unedo*, (c) *Q.pubescens* and (d) *P. halepensis*. Labels on the x axis represent time in month/year format (i.e. January 2011 is 1/2011). Note the different scale in the y-axis for *P. halepensis*.

Table S1. Parameter values of the allometric equations extracted from IEFC (Gracia et al. 2004) relating total aboveground biomass (AGB) (kg) with diameter at breast height (DBH) (cm). Data from biomass carbon concentration (CC) (g C/100g biomass) for each aerial tree fraction also are shown. Annual aboveground carbon production (AGC, kg C year⁻¹) presented on Table 3 was calculated following the equation AGC = Mean CC $\cdot \frac{\Delta AGB}{100}$, where ΔAGB is the total aboveground biomass increment for a given year and Mean CC is carbon concentration averaged across all aerial fractions.

	Parameter	Q. ilex	Q. pubescens	A. unedo	P. halepensis
	a	0.16	0.11	0.15	0.12
ACP - 2 DPHb	b	2.27	2.35	2.26	2.22
AGD – a· DDH	n	722	280	C 9	1387
	R^2	0.94	0.95	0.86	0.92
	Wood	47.53	48.41	NA (50)	49.87
CC (ø/100ø)	Bark	46.76	47.06	NA (50)	52.30
	Leaves	50.26	48.74	NA (50)	52.96
AUC	Branchs	48.17	48.20	NA (50)	50.40

Table S2. Summary of the linear mixed models for sap flow density (J_S) and sap flow per tree (J_T) for each species and different periods of the year 2011 and 2012. Different letter represents statistically significant differences between species for a given season and year. Bold numbers represent statistically significant differences between years for a given season and species. Significance level is accepted at *P*<0.05.

			Q. ilex	Q. pubescens	A. unedo	P. halepensis
	TT 7 *	2011	47.38 ± 6.34^{a}	18.09 ± 3.33^{b}	30.63 ± 4.70^{b}	17.74 ± 3.50^{b}
	w mer	2012	56.22 ± 7.98^a	17.47 ± 5.82^b	31.51 ± 6.52^b	16.42 ± 4.32^{b}
		2011	60.71 ± 6.92^{ab}	85.36 ± 13.52^{b}	53.09 ± 9.95^{ab}	32.00 ± 4.78^{a}
$J_{ m S}$	Spring	2012	74.14 ± 9.37^a	60.80 ± 4.60^{a}	48.34 ± 10.50^{ab}	$16.25\pm5.34^{\mathrm{b}}$
$(g \text{ cm}^{-2}\text{day}^{-1})$	~	2011	43.82 ± 4.97^{a}	75.68 ± 12.05^{b}	40.22 ± 8.61^{a}	19.44 ± 3.42^{a}
	Summer	2012	37.58 ± 5.16^{ab}	50.40 ± 6.26^{a}	22.46 ± 9.95^{bc}	$\textbf{4.93} \pm \textbf{0.37}^{c}$
	Autumn	2011	32.70 ± 4.87^{a}	30.07 ± 3.69^{ab}	21.31 ± 4.61^{ab}	16.58 ± 3.41^{b}
		2012	38.06 ± 6.07^{a}	31.24 ± 5.96^{ab}	18.41 ± 5.87^{ab}	11.89 ± 1.64^{b}
	Winter	2011	11.95 ± 3.39^{a}	1.21 ± 0.18^{b}	5.37 ± 1.04^{b}	7.04 ± 1.41^{ab}
		2012	$14.20\pm3.86^{\mathrm{a}}$	1.00 ± 0.24^{b}	5.72 ± 1.47^{ab}	6.14 ± 2.36^{ab}
	Spring	2011	16.07 ± 3.23^{a}	6.06 ± 1.22^{b}	9.32 ± 2.13^{ab}	12.64 ± 1.84^{ab}
J _T (kg day ⁻¹)		2012	17.91 ± 3.94^a	$\textbf{3.95} \pm \textbf{0.61}^{b}$	8.77 ± 2.32^{ab}	$\textbf{6.08} \pm \textbf{2.37}^{b}$
	Summer	2011	11.57 ± 2.30^{a}	5.40 ± 1.13^{b}	7.07 ± 1.83^{ab}	7.71 ± 1.38^{ab}
		2012	8.50 ± 1.51^{a}	$\textbf{3.20} \pm \textbf{0.34}^{b}$	4.13 ± 1.77^{b}	$\boldsymbol{1.79 \pm 0.01^{b}}$
	Autumn	2011	8.74 ± 2.03^{a}	2.07 ± 0.29^{b}	$3.77 \pm 1.01^{\text{b}}$	6.59 ± 1.38^{ab}
		2012	8.85 ± 2.13^a	1.92 ± 0.21^{b}	3.37 ± 1.24^{b}	4.39 ± 0.91^{ab}

Table S3. Main structural characteristics and estimated growth/transpiration data of trees monitored with sap flow sensors and dendrometers for 2011 and 2012. Abbreviations: $A_{\rm B}$: basal area; $A_{\rm S}$: sapwood basal area; $A_{\rm L}$: total leaf area; BAI: basal area increment; $J_{\rm T}$: whole-tree transpiration; WUE_{BAI}: growth-based water use efficiency.

Tree	Specie	Year	DBH	Height	A_{B}	$A_{\rm S}$	$A_{ m L}$	BAI	J_{T}	WUE _{BAI}
ID			(cm)	(m)	(cm^2)	(cm ²)	(m ²)	$(cm^2 year^{-1})$	$(m^3 \cdot year^{-1})$	$(cm^2 m^{-3})$
620	0 ilan	2011	13.5	9.5	143.1	109.1	30.1	-	1.3	-
038	Q. llex	2012	-	-	-	-	-	-	1.8	-
636	0 iler	2011	24.5	12.9	471.4	391.7	45.9	11.9	5.8	2.1
030	Q. nex	2012	24.8	-	483.3	402.3	46.4	1.6	5.5	0.3
404	0 iler	2011	19.4	10.0	295.6	237.5	34.1	9.5	2.9	3.3
-0-	Q. 11CA	2012	19.7	-	305.1	245.6	34.6	0.5	2.8	0.2
410	0 iler	2011	20.6	10.6	333.3	270.1	26.7	5.3	1.7	3.1
410 Q. llex	g. nex	2012	20.8	-	338.6	274.7	27.0	0.0	-	-
198 Q. ilex	O ilex	2011	22.1	8.9	383.6	314.0	43.5	10.3	5.6	1.8
	2	2012	22.4	-	393.9	323.1	44.0	0.0	-	-
411 <i>Q. ilex</i>	0 iler	2011	22.4	10.9	394.1	323.2	29.2	10.8	6.2	1.7
	Q. 11CA	2012	22.7	-	404.9	332.8	29.7	0.6	7.0	0.1
637	Q. ilex	2011	16.3	8.4	208.7	163.5	26.0	10.0	3.0	3.3
037		2012	16.7	-	218.7	171.9	26.6	1.7	3.7	0.5
756	Q. pubescens	2011	18.2	9.8	260.2	92.8	46.2	13.5	1.8	7.5
		2012	18.7	-	273.7	96.2	47.1	5.4	1.1	4.9
876	Q. pubescens	2011	16.9	11.2	224.3	83.5	26.6	6.9	1.0	6.9
020		2012	17.2	-	231.2	85.3	27.1	2.3	-	-

753 Q. pube	0 nubescens	2011	12.3	9.3	118.8	53.1	25.4	-	1.0	-
	Q. pubescens	2012	-	-	-	-	-	-	0.7	-
759 Q. pubescent	0 nubascans	2011	18.0	8.6	254.5	91.3	28.4	9.6	2.4	4.0
	Q. pubescens	2012	18.3	-	264.1	93.7	28.9	2.8	-	-
9 2 9 0	0 nubascans	2011	11.8	8.8	109.4	50.1	24.7	3.4	1.3	2.6
020	Q. pubescens	2012	12.0	-	112.8	51.2	25.0	1.7	0.9	1.9
831	0 nubascans	2011	14.3	10.1	160.6	65.8	23.3	7.2	1.3	5.5
0.51	Q. pubescens	2012	-	-	-	-	-	-	0.7	-
905	0 nubescens	2011	12.0	9.1	113.1	51.3	20.7	9.4	0.4	23.5
705	Q. pubescens	2012	12.5	-	122.5	54.3	21.5	3.0	-	-
405	A unedo	2011	17.2	8.5	231.0	197.8	22.2	3.6	3.3	1.1
405	11. <i>uncuo</i>	2012	17.3	-	234.6	200.7	22.4	0.6	3.0	0.2
402	A unedo	2011	14.8	6.7	170.9	148.6	6.5	5.7	1.0	5.7
402	11. <i>uncuo</i>	2012	15.0	-	176.6	153.3	6.9	1.1	-	-
187	A unedo	2011	15.2	8.3	180.3	156.4	47.0	3.8	2.2	1.7
107	n. uncuo	2012	15.3		184.1	159.5	47.1	0.1	1.5	0.1
631	A unedo	2011	16.5	9.0	213.8	183.8	26.5	9.4	1.7	5.5
0.51		2012	16.9	-	223.2	191.4	27.1	1.4	1.1	1.2
818	P halenensis	2011	33.3	17.4	870.9	391.6	55.3	50.8	3.7	13.7
010	1. haiepensis	2012	34.3	-	921.7	411.4	56.9	17.9	2.0	9.1
793	P halenensis	2011	30.7	17.6	740.2	339.9	49.6	35.2	2.0	17.6
	1.11410pensis	2012	31.4	-	775.4	353.9	50.7	11.6	1.0	11.2
850	P. halenensis	2011	36.7	16.2	1057.8	463.8	62.3	32.6	2.6	12.5
050	1.1000000	2012	37.3	-	1090.4	476.2	63.3	18.4	-	-