J. Parallel Distrib. Comput. 86 (2015)98-111

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Fault tolerance at system level based on RADIC architecture

CrossMark

Marcela Castro-Le6n *, Hugo Meyer, Dolores Rexachs, Emilio Luque
Computer Architecture and Operating Systems Department, Universitat Autonoma de Barcelona, Campus UAB, Edifici Q, 08193 Bellaterra (Barcelona),

Spain

HIGHLIGHTS

A system-level fault-tolerant mechanism for message passing applications.

Fully decentralized and transparent, for applications and communication library.
Protection, detection and recovery functions, implemented at socket API level.
Semi-coordinated vs. uncoordinated checkpoints: performance based election.

ARTICLE INFO

Article history:

Received 18 February 2015
Received in revised form

23 June 2015

Accepted 20 August 2015
Available online 28 August 2015

Keywords:

Software fault tolerance
Resilience

RADIC

Message passing
Semi-coordinated checkpoint
Uncoordinated checkpoint
Socket

ABSTRACT

The increasing failure rate in High Performance Computing encourages the investigation of fault tolerance
mechanisms to guarantee the execution of an application in spite of node faults. This paper presents
an automatic and scalable fault tolerant model designed to be transparent for applications and for
message passing libraries. The model consists of detecting failures in the communication socket caused
by a faulty node. In those cases, the affected processes are recovered in a healthy node and the
connections are reestablished without losing data. The Redundant Array of Distributed Independent
Controllers architecture proposes a decentralized model for all the tasks required in a fault tolerance
system: protection, detection, recovery and masking. Decentralized algorithms allow the application
to scale, which is a key property for current HPC system. Three different rollback recovery protocols
are defined and discussed with the aim of offering alternatives to reduce overhead when multicore
systems are used. A prototype has been implemented to carry out an exhaustive experimental evaluation
through Master/Worker and Single Program Multiple Data execution models. Multiple workloads and an
increasing number of processes have been taken into account to compare the above mentioned protocols.
The executions take place in two multicore Linux clusters with different socket communications libraries.
© 2015 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The remarkable increase in the failure rate of the systems [7,39]
encourages the investigation of fault tolerance (FT) mechanisms. A

The number of components in HPC systems is continuously in-
creasing. On the one hand, there are more sockets per node to
accomplish the demand of more performance, and, on the other
hand, the deploy of system with more but less powerful com-
ponents, allows to save power consumption. A growing number
of components implies that the probability of failure increases as
well. Although the Mean Time Between Failures (MTBF) of each
component tend to be high, the system can fail frequently because
itis composed by a higher number of them [34]. Moreover, reliabil-
ity issues come up when chips are operated at significantly lower
voltage [37].

* Corresponding author.
E-mail addresses: marcela.castro@uab.es (M. Castro-Le6n),
hugo.meyer@caos.uab.es (H. Meyer), dolores.rexachs@uab.es (D. Rexachs),
emilio.luque@uab.es (E. Luque).

http://dx.doi.org/10.1016/j.jpdc.2015.08.005

node failure during the execution causes the loss of computation
done until this point. The fault tolerance strategies have the aim to
minimize fault’s effects on applications to guarantee the execution
in spite of node faults, in such cases in which the reliability to
achieve a successfully end is very required.

Fault tolerance techniques based on rollback-recovery are
highly recommended in the literature for message passing appli-
cations [14,13]. One of the most implemented approaches is based
on coordinated checkpointing. It is a straightforward technique to
recover the global state but it forces to roll back all the processes
and the checkpoint coordination may slow down the application
execution because of congestions on I/O [7,21]. However, current
research is focusing on improving these scaling issues [35,32].

This research provides a transparent FT model, that is, it can
be used without changing the parallel application and can be
adopted at system level, independently of the message passing

0743-7315/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.

0/).

M. Castro-Ledn et al. /J. Parallel Distrib. Comput. 86 (2015)98-111 99

Parallel Process

Message Passing Library

Operative System

Network / Physical System

(a) Parallel node.

Parallel Process
Message Passing Library
FT Functions

Reliable Socket Manager

Parallel Computer (Fault
Probable

(b) Parallel computer.

Fig. 1. Fault tolerance software tiers.

library chosen. It is based on RADIC Redundant Array of Distributed
Independent Controllers [38,12], an FT model architecture for
message passing application, which works in a distributed and
decentralized way during failure-free operations and recovery to
allow the application to scale.

A complete FT model should provide a way to protect the state,
detect faults as soon as possible and automatically recover a con-
sistent state in order to finish the execution. Automatic recovery
allows us to decrease the Mean Time to Repair (MTTR). The Avail-
ability, defined as the degree to which a system or component is
operational and able to perform its designed function, is calculated
as follows:

Availability = MTBF /(MTBF + MTTR). (1)

Therefore, a reduction in the Mean Time To Repair (MTTR)
implies a higher availability even though the MTBF of the system
increases.

A message passing parallel application is able to resume and
successfully end its execution in case of a node failure when it is
provided for fault tolerant functionality. According to Gropp and
Lusk [20], FT can be added at different layers with distinct degrees
of transparency for the application.

Fig. 1(a) represents the software tiers in a parallel node.
Usually, message passing libraries use the Socket Application
Program Interface (API) to make inter-processes communications.
The socket API is a de-facto standard for network programming
in most used operative systems (OS) and provides means for
interconnecting processes through the network. This API is widely
used because of its simplicity, robustness and portability [2].
Fig. 1(b) aggregates the tiers in the parallel computer and it depicts
the location of our proposal. Fault tolerance at system level can be
used as a transparent service for the message passing library and
for the application.

Our approach is located at system level and has two pillars.
The first, which is called reliable socket manager (RSM), consists
of replacing the socket communications for reliable connections
which are able to detect and recover from network errors. Instead
of returning a fatal error when a socket is closed due to a remote
failure, the connection is reestablished again without losing data,
by using the new IP address where the remote process has been
migrated. Secondly, FT functions based on RADIC are devised at
socket level in order to save the state of the processes and to
recover only the affected ones when a node faults.

The actions related to saving the state, detecting the errors, re-
covering the processes state and keeping reliable communications
are triggered when the processes use the socket API, which works
at OS level. The default socket behavior is transformed into reliable
connections with fault tolerance mechanisms by intercepting calls
to socket API as a dynamic library. The mechanism is transparent
not only for the application designer, but also for the system ad-
ministrator because the failure is automatically detected and re-
covered, and the application is able to finish successfully without
human intervention.

RADIC architecture has been applied as an FT model for two
main reasons: firstly, because it has a completely distributed and
decentralized behavior which allows the application to scale and,
secondly, because it is based on an uncoordinated checkpoint
with message logging. This rollback recovery protocol allow us
to recover only the failed processes instead of recovering all of
them [14]. Specifically, pessimistic receiver-based logging allows
us to recover the failed process in an autonomous way. Further-
more, only the last checkpoint and the messages received from it
have to be kept. However, that protocol is slower than other alter-
natives such as sender-based or causal algorithms.

In order to reduce the overhead of the log procedure, we
propose using the semi-coordinated checkpoint [10]. Current HPC
systems based on multicore processors tend to execute several
parallel processes in each node of the system, usually following
the strategy of one process by core. Semi-coordinated checkpoint
consists of relating the processes running in a node because all of
them are affected in case of node faults. The logging of messages
among them is avoided and they are checkpointed coordinately.
The receiver-based pessimistic log is applied for messages between
processes in different nodes.

This paper provides a global vision of the system architecture
presented in previous works [8-10] and the functionality of the
following rollback recovery protocols are described and their
impact in the performance is analyzed and compared.

e Fully uncoordinated checkpoint (NCO): It is the default
RADIC protocol using uncoordinated checkpoint combined with
receiver-based pessimistic message log.

e Blocking Semi-coordinated checkpoint (BSCO): It performs a
blocking coordinated checkpoint [10] among processes in a
node combined with receiver-based pessimistic message log for
inter-node messages.

e Semi-coordinated checkpoint (SCO): It performs a non-blocking
coordinated checkpoint among processes in a node combined
with receiver-based pessimistic message log for inter-node
messages.

Two popular distributed programming schemes which follow
a well-known communication patterns, such as master-worker
(M/W) and Single Program Multiple Data (SPMD), have been
selected for the experimental evaluation. Both patterns allow us
to analyze the overhead of the semi-coordinated alternative in the
worst scenario, when no message is interchanged among processes
on the same node, and, on the contrary, when there are internal
communications.

Experiments using different input size are carried out to analyze
and compare the FT overhead using distinct relations between the
computation and the communication time needed for each task. In
other sets of executions, the number of processes are increased as
well in order to check whether the FT system affects the scalability
of the application.

The content of this paper is organized as follows. In Section 2
we mention the related works. Section 3 defines the RADIC

100 M. Castro-Leén et al. / . Parallel Distrib. Comput. 86 (2015) 98-111

architecture used as a model for our solution. Section 4 explains
the devise of our approach at socket level and Section 5 describes
the semi-coordinated rollback recovery protocols which can be
selected as alternatives to reduce overhead. The experimental
evaluation is presented in Section 6, and lastly, we state the
conclusions and the future work in Section 7.

2. Related works

The first part of this section relates our work to current state
of the art in fault tolerance for message passing application
located at different system layers. The second part mentions other
studies which change the default socket behavior in order to
achieve resilience. The third part compares the semi-coordinated
checkpoint algorithm with other similar approaches.

2.1. Fault tolerance for message passing applications

A message passing parallel application is able to resume and
successfully end its execution in case of a node failure when it is
provided for fault tolerant functionality. According to Gropp and
Lusk [20], FT can be added at different layers with distinct degrees
of transparency for the application.

The first is the application layer 1(a), which is one of the most
developed approaches because FT is able to be executed efficiently.
The best points where state changes are saved and where pos-
sible failures are more easily identified at this layer. Examples
of projects in this category are, for instance, the methodology of
Gropp and Lusk [20], the compiler to generate parallel checkpoint
of Rodriguez et al. [36], or the techniques described by Florio [17].
Fault-Aware MPI, Hassani et al. research [23] and Scalable Multi-
level Checkpointing System of Mohror et al. [32] are more recent
research works also targeted for the application level. There are
proposals which facilitate the development through the provision
of libraries as well. However, they require a re-design of the appli-
cation taking into account the strategy of protecting, detecting and
recovery from node faults. It could be expensive in terms of time
and effort in developing and testing. In addition to that, users are
reluctant to add the FT in order to avoid errors caused by changes,
and, it might be not possible to do it if the source code is not avail-
able.

In the second level, we found a variety of approaches which lo-
cate the FT algorithms in the communication library to be trans-
parent for the application. Usually, FT is added as an extension of
well-known MPI implementors like MPICH-V Project [5] or Open
MPI [25]. RADIC was previously implemented using this kind of
strategy [16]. Although the application is not changed, the source
code is still needed to be compiled again with the modified com-
munication library. Moreover, a specific FT strategy has to be
adapted to different MPI implementations and releases. MPI stan-
dard still does not provide special functions to manage failures
transparently and automatically, although there are current pro-
posals to add new MPI primitives in order to handle node faults
such as User Level Fault Mitigation of Bland et al. [3]. This proposal
is currently being monitored by the MPI Forum [40].

Finally, solutions at system level are transparent for the appli-
cation and do not have to use a specific message passing library.
The application source is not required for adding FT. The message
passing library does not need to be updated to support node fail-
ures. Our work fits in this last category. Projects in this group might
be able to provide for the system administrator a way of defining a
unique protection and recovery policy for the whole system, inde-
pendently of which message passing library is in use for the hosted
applications. An example using this last category is DMTCP [1],
a checkpoint and restart tool for distributed applications which
can also be used for MPI. However, it does not provide detection

and automatic recovery without administration intervention as
our work. Furthermore, RADIC provides uncoordinated checkpoint
with message logging rollback recovery protocol but DMTCP, so far,
only implements coordinated checkpoint, which is not advisable to
scale the number of processes [6].

2.2. Fault tolerance at socket level

Our approach of FT is supported by the reliable socket manager
(RSM), which transparently transforms the TCP sockets used by
the application into reliable ones. The reliable sockets are able to
recover from TCP crashes and eventually, to change the destination
address without loss of data. Zandy et al. [41] developed a similar
approach to building reliable TCP connections to keep a distributed
application running despite network crashes. RSM goes further
by adding control channel to preserve the integrity of the data
interchanged by the application and it saves the data connection
for modifying it before reconnection.

Ivaki et al. [27] proposed building a fault tolerance session
above the socket layer which is able to recover the TCP session in
case of crashes and includes a checkpoint facility for server side.
RSM gives the same detection and reconnection service for both
client and server sockets, because it is intended to be used for
parallel applications instead of client and server ones.

2.3. Checkpoint schemes with less overhead

As a general rule, the more the messages are interchanged by
the application, the more overhead is introduced by the message
logging approach. In failure-free execution, such overhead is even
worse when receiver-based logging approach is used [33]. Semi-
coordinated checkpoint [10] relates the processes running in
a node and they are checkpointed coordinately. Therefore, the
messages interchanged between processes in a same node are not
required to be logged, thus reducing the total log overhead.

This paper proposes a semi-coordinated checkpoint protocol
which uses either blocking or non-blocking coordination proce-
dures. Previous research works have presented this kind of strat-
egy, but with three types of differences. Firstly, related to the cri-
teria to group the processes, secondly, the type of coordination
among processes or groups and, finally, the selected message log-
ging protocol.

Bouteiller et al. [4] defined a correlated set coordination among
processes executing on the same multicore node combined with
sender-based pessimistic message logging. Sender-based proto-
cols are faster than receiver-based ones during failure free oper-
ations but the latter is more efficient in recovery. When failure
occurs in sender-based cases, processes that were not involved in
the failure may need to re-send messages to restart processes or a
centralized controller has to be included to do that. Receiver-based
approaches are able to recover the state in an autonomous and
faster way. Another difference is that the experimental evaluation
is done using an adapted Open MPI transparent for the application
while we use RADIC at socket level [9,8].

Luo et al. [30] proposed a combination of coordinated and
uncoordinated checkpoint. It is targeted to grid environments.
Those processes, which frequently communicate, are grouped
together. For obtaining a consistent state, Communication Induced
Checkpoint (CIC) combined with a pessimistic message logging is
applied. CIC might not be scalable for highly coupled processes,
since the number of forced checkpoints grows uncontrollably.

Group-based coordinated checkpoint is stated by Gao et al. [18].
The coordinated checkpoint is performed in several groups of
processes with the aim of reducing the storage and network
bottleneck. The checkpoint groups are formed in a way that the
most frequent communication happens within groups. The rest of

M. Castro-Ledn et al. /J. Parallel Distrib. Comput. 86 (2015)98-111 101

App.
Messages

7

D Node .Process D ObserverA Protector

Stable 4 Ckpt&Log
Storage operation

Heartbeat
Watchdog mechanism

> App.
Messages

Fig. 2. RADIC diagram.

the processes wait for their checkpoint turn while they continue
the execution unless there is no message to or from a process
in checkpoint. This technique is suitable to reduce the failure-
free coordinated checkpoint congestion but the recovery should
include all checkpoint files. It is applied to MVAPICH2, then the
approach is associated with a specific message passing library.

A combination of coordinated checkpoint with message log is
proposed as well by Ho et al. [24], as a way to scale the most
extended strategy of coordination of the whole processes. The
criteria for grouping the processes is based on the communication
behavior instead of using the failure correlation in a node. This level
of knowledge implies an additional overhead for monitoring. The
messages interchanged among groups are logged by the sender.

In order to reduce the overhead of coordination task and to
allow to scale, Chandy et al. [11] proposed a method which is based
on sending marks to other processes to know the global state.
Several algorithms improve the mechanism by trying to reduce
the number of processes involved in the coordination [28]. Our
non-blocking coordination algorithm is similar to the mechanism
adopted by Ho et al. [24] since the consistency among groups
is guaranteed by the message log. However, in our system the
coordination is done in each node independently from the others
while in Ho’s approach, the checkpoint initiator is a global process
for all the groups.

3. RADIC architecture

RADIC [38,12] is a fault tolerance architecture which defines
the protection, detection, recovery and error masking models to
guarantee a successful message passing execution in case a system
node suffers a failure.

RADIC provides current appealing properties such as trans-
parency and decentralization. It is transparent in the sense that
the application does not have to be modified at all. The compo-
nents and functions used to tolerate failures are distributed and
the decisions are decentralized, based on local information. Conse-
quently, the fault tolerance functional phases, including recovery,
do not need either central elements or collective operations. These
properties allow the application to scale. Lastly, the failure detec-
tion and the recovery work automatically without needing admin-
istrator intervention.

Protectors and observers are the two distributed software
RADIC components which work together to carry out tasks
of protection of the execution state of the processes, failure
detection, processes recovering and lastly, masking the errors to
the application processes.

There is a protector running in each node and one observer at-
tached to every application process. A data structure named Ra-
dicTable is used to know the relation among nodes, observers and

protectors. This structure is managed distributively and decen-
tralized, updated on-demand by the RADIC components, using a
deterministic algorithm which guarantees consistency among the
nodes.

Fig. 2 represents an application running in fault-independent
nodes using RADIC. We use i to represent each node N; and
protector T;, and j for process P; and for it observer O;. The processes
running on a node are assigned to a protector in another node, to
save the state of the execution of their processes. For instance, the
nodes could be numerated sequentially and the previous one is
assigned in a circular way. Processes running on N; send logs and
checkpoint files to protector T;_1, In case of failure, the sequence
is broken but is reestablished by skipping that node. If there is
a spare node to replace it, it will take the place in the sequence.
The deterministic algorithm follows this procedure to update the
RadicTable in each node.

The RADIC functional phases are explained as follow.

o Protection model: The execution state of the processes is
saved during the failure-free execution. Observer O; is in charge
of protecting the state of the process P;. By default, RADIC
uses uncoordinated checkpoint combined with receiver-based
pessimistic message logging which has the advantage of being
decentralized in protection and recovery. The observer O; has
at least one protector assigned, which is located in a different
node. The log messages and periodic checkpoints are sent to
the protector. The number of assigned protectors is related to
the grade of protection, which is the number of simultaneous
supported failures. In this paper we assume that the grade is
one. The protector T;_; is in charge of saving the checkpoints
and log messages.

o Detection model: The fault detection is carried out during the
failure-free execution. A node faults when the processes run-
ning in other nodes are not able to communicate with the pro-
cesses in it. Each protector T; is in charge of detecting a possible
failure of the neighbor node Nj;. It uses heartbeat/ watchdog
protocol. To reduce the latency of detection, determined by the
configured interval of heartbeat, the observers warn to the cor-
responding protector when a communication error with one of
the processes assigned to it is detected. For instance, in Fig. 2,
if P3 receives an error while it communicates with Pg, O3 inter-
cepts the error and notifies it to protector T, which verifies if
there is a fault in the node N,.

o Recovery model: The protector T; restarts the processes which
were running in the failed node N; ; using the data saved during
protection time. The protector rolls back the failed processes
restarting them from the last checkpoint. During the re-
execution until the point of failure (roll-forward), the attached
observer is in charge of delivering the logged message to
restarted processes. The protector provides the saved message

102 M. Castro-Leén et al. / . Parallel Distrib. Comput. 86 (2015) 98-111

X Y Z X Z
(a) Initial execution. (b) Node Y faults.
Z X Y’ Z

N

(c) Basic recovery.

(d) Spare recovery.

Fig. 3. FT at system level overview.

log to the observers. If the system has a spare node, the
processes are restarted in it and the computational capacity is
maintained. Otherwise, the processes are restarted in the same
node N;, which is likely to suffer a possible loss of performance,
due to node N; being likely to be overloaded after failure.

o Error masking model: The observer O; masks the communi-
cation errors caused by a node failure by reconnecting P; with
the recovered processes in the new location. The protector is
in charge of communicate to the affected observers, the new
address where the processes have been recovered. The new
location is updated in the RadicTable, and the following com-
munications are done as usual. Another masking function is per-
formed by the observer when it detects and discards duplicated
messages coming from recovering processes.

4. Virtualization at the socket layer for fault tolerance

This section explains the fault tolerance model at socket level
through the next subsections. First of all, a general overview of the
proposal is described. Secondly, the socket API model is reviewed,
since the FT actions are triggered when the processes use this API.
Thirdly, the reliable manager, which is in charge of building the
reliable sockets, is explained indicating how it works and for what
it is useful. Finally, there is a subsection for describing each RADIC
FT functional phases of protection, detection, recovery and error
masking at socket level.

4.1. FT at system level overview

Fig. 3 provides an overview of how the processes and the com-
munications are recovered after a node fault. An example of a
parallel application, which follows a two-dimensional SPMD com-
munication pattern, is represented in Fig. 3(a). Each process com-
municates with its neighbors. Fig. 3(b) shows how the processes
5, 6, 7, 8 in the faulty node N, are fallen and therefore, the com-
munication with its neighbors cause an error in processes 2, 4, 9,
11. Fig. 3(c) illustrates how the processes and the communications
are recovered in the neighbor node. Finally, the last picture 3(d)
outlines how the processes are restarted in a spare node and the
connections are reestablished as well.

Socket()

CONNECTION

Listen() Socket()

Accept() I. connect()
recv() - send()

COMMUNICATION

close() close()

Fig. 4. Socket basic APl model for server and client processes. Functions for
connection establishment and communication.

4.2. Socket APl model

Portable Operating System Interface (POSIX), the most ex-
tended platform in commodity Linux clusters, defines Socket [31]
as de facto standard application program interface (API) to inter-
change data packages between two processes using transport level
protocols like TCP or UDP [19].

Fig. 4 represents the most used and basic functions for server
and client processes. There are some functions used to establish
the communications and some others to communicate data.

A communication is formed by a server socket opened with an
accept() and with a client socket which performs a connect(). A
socket identification is assigned, which is used to perform the data
communication using basically send() and recv() operations.

When a node of a Linux cluster has a fault while a message
passing application is running, the communications with the
processes located in the rest of the nodes fail as well and in-transit
data might be lost. A remote failure is treated by this API as a fatal
error. Therefore, the connection is dropped and an error is raised.

Controlling socket errors caused by a failure of a remote peer
prevents the propagation of them to the upper levels, which are the
message passing communication library and application. Instead
of using standard sockets, our solution proposes a mechanism to
provide reliable sockets which are able to fail over from fatal errors.

4.3. Reliable socket manager

Reliable sockets are based on the OS standard sockets. The
interception mechanism provided by POSIX systems is used in

M. Castro-Ledn et al. /J. Parallel Distrib. Comput. 86 (2015)98-111 103

Process

Process

Socket API Socket API

(a) Default socket connections.

(b) Reliable socket connections.

Fig. 5. Default and reliable socket connections.

order to add functionality but afterwards, the default socket API is
called. The reliable socket manager (RSM) is in charge of building
and maintaining the reliable sockets established by each process.
RSMis integrated with the RADIC’s observer as it is attached to each
process. As they have the same API interface as default sockets,
they are used transparently, namely, no change has to be made in
the application in order to use reliable sockets.

Fig. 5(a) represents the default socket connection made by a
process using the socket APL. On the right, Fig. 5(b) shows the
process with the RADIC observer attached to it using RSM to build
reliable sockets.

RSM assumes that another RSM is located on the remote peer.
One of them is the client, which performs a connect() API to
establish a session and the other performs a listen() and an accept()
for each connected client.

Once two RSM are connected, a socket control is created to
convey acknowledge data of received messages and to interchange
process identification, which is useful during the reconnection.
This out-of-band channel also gives support to the message logging
procedure which is further explained.

The socket control is created following the same sequence of the
intercepted functions from the processes. Therefore, a client socket
has a client control socket and the same for a server type. In such
cases, the listen port is calculated taking the port of the process as a
base plus a pre-configured displacement. There is a control socket
for each connected socket.

These are the three states of the reliable sockets:

e Creation: This is the initial state from the declaration of the
socket until it is connected using a connect or an accept
operation for client and server sockets respectively. During
this state, RSM creates the control socket and saves all the
connection parameters in a data structure named Socketable,
which is further detailed. As soon as the two peers are linked
up, a first message is interchanged with the data to identify
uniquely the remote RSM channel. This information is used
by the server socket during reconnection to distinguish among
several clients which could be running in the same node.

e Connected: This state is kept along the execution without
failures, while the process sends and receives data. RSM detects
socket errors by monitoring the returning result of the calling
socket APL The recovery state is reached when the OS returns a
fatal error indicating that the socket has become invalid.

e Recovery: When a socket fatal error is detected, RSM tries to
reconnect with the remote process. If it is successful, the loss of
connection would be likely to be caused by a remote checkpoint
or by a temporary loss of network connection. Otherwise, RSM
obtains the new IP address where the processes are recovered.
Then, the connection is reestablished using the parameters
saved during the creation state but changing the destination
address. The API connect or accept is performed again in order
to reconnect the processes. After that, the unacknowledged
messages are resend to remote process.

e Masking: This state is reached after a communication failure.
A new socket identification is assigned during reconnection.
As the application is not aware of the change, the next socket
operations called by the process after the failure are done using
the original socket. RSM identifies as virtual socket the initial id
known by the process and as real socket to the current id used to
reach destination. After failure, RSM replaces the virtual socket
with the real socket id before calling to the function socket to
mask the change.

The intercepted socket’s APl parameters are saved in a local data
structure named Socketable in order to repeat the same operation
during recovery. There is a row for each socket connection of the
process. The fields of the table are as follows:

Field Description

Virtual Socket id known by the process. It is

socket obtained with socket or accept API for client
or server socket respectively.

Real Initially, it is equal to the virtual socket. It

socket would change after a recovery (masking
state).

Control Id of the control socket.

socket

Parameters They are the ones used in the socket
function (family, type and protocol).

Address Remote IP and port assigned by the OS.
Obtained after bind, accept or connect APIs.

Socket Client or server depending on whether the

type connection is established with connect or
accept.

Socket User socket configurations such as buffer

sets size for instance, done with setsockopt API
which are used to recreate the socket with
the setting needed by the process.

Remote Remote process identification obtained

peer id during the first interchanged message. It is

formed by the node id, the process
identification (PID) and virtual socket. It is
used during reconnection of a server socket
to distinguish among several clients.

Special attention is required when a process loses several
connections. A deadlock can occur while RSM is trying to reconnect
a virtual socket. A possible scenario is graphed in Fig. 6 as an
example. The processes affected by the failure have more than
a connection to recover. A deadlock would appear if P5 tries to
reconnect with P7, P7 tries to reconnect with P8, P8 to P6 and so
on. Since all the processes are waiting for a process which is busy
in other task, a deadlock occurs.

A deadlock would be avoided if the reconnection is carried out
following a global order, being aware of which connections have
fallen in each process. However, in our model, the observer pre-
vents deadlocks without managing centralized information about

104 M. Castro-Leén et al. / . Parallel Distrib. Comput. 86 (2015) 98-111

X Y Z

X Y’ Z

(a) Broken connections in a node fault.

(b) Possible deadlock in socket reconnection.

Fig. 6. Deadlock risk during reconnection.

Sender
. RSM_J RSM _
Se hd()

Sender Receiver

send(
'h:g
recv()

=3 Real socket

(a) Default socket
message.

Control socket

Receiver

End Interposition

(b) Reliable socket message.

Sender Receiver
RSM

————— 2> Log operation

(c) Rec.based pessimistic log.

Fig.7. Message interchange instrumentation for error detection and message logging. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

the connections of the rest of the processes. The aim is to use the
available local data managed by each process to keep a decentral-
ized behavior. In order to do that, RSM assumes, after detecting a
fatal error in a socket, that the rest of the connections with the same
destination address are also affected by the failure. Then, each pro-
cess would reconnect all the connections with the same target con-
currently. With this assumption, following the previous example,
P2 to P11 assign a slot of time to recover iteratively their failed con-
nections, thus avoiding having a deadlock.

4.4. RADIC protection at socket level

The protection phase is referring to the tasks done for saving
the state of the processes. According to RADIC model, the observers
perform uncoordinated checkpoint combined with receiver-based
pessimistic message logging.

Fig. 7 represents the message interchanged between two peers.
Fig. 7(a) depicts a default message transmission using send and
receive functions. The solid line represents the real socket between
two processes used to transport the message. Fig. 7(b) shows how
RSM interposes the send() function calling. The clear blue dotted
lines depict the control socket. An acknowledge requirement and
the message are sent through the control socket and real socket
respectively. After that, it keeps waiting for an ack to assure the
delivery of the message and to detect a possible fall. In the other
peer, the recv(X) function is interposed and the ack-req and the
message are read. The message is read completely as the length
is indicated in the requirement. An acknowledgment is returned.
The receiver would perform more than one read to finish the
buffer. Lastly, Fig. 7(c) represents the procedure followed by two
peer observers, which include RSM, to perform the receiver-based
message log. In this case, the observer receiver O, sends the
message to its neighbor node, which acts as stable storage. The
dashed orange lines show the connection with the protector node.

The checkpoint to save the state of each process is performed
by the observer using BLCR library [22]. The result is saved in a
file which is sent to the protector. No coordination with other
processes is needed since the message logging prevents the loss of
in-transit and the generation of orphan messages. The checkpoint

frequency is a configuration parameter provided by the user. There
are several models to determine a suitable checkpoint interval [15].

The protector needs to keep the last checkpoint and the
following received messages of each process running in the next
node. This is the critical data needed to recover the processes until
the point of failure, when a receiver-based pessimistic message
log is used. As the nodes fault independently, the information is
considered in a stable storage once it arrives safely to a different
node. As long as there is enough memory, it is recommended that
the protectors keep such critical data in memory in order to have
a quick response during failure free execution and during recovery
too.

4.5. RADIC detection at socket level

When a node faults, the current connections with the processes
running in it are broken. Therefore, the first detection could be
done by any of the affected processes. Fig. 8 depicts the broken
connections.

A socket error could be detected while the observer is sending
a message or while it is sending the log or the checkpoint to its
neighbor. In such cases, the observer raises an error and asks for
the state of the remote peer to its protector. The location of such
process is obtained from the RadicTable. In the depicted example,
observer 9 asks to T, about the state of Node, after receiving a
socket error.

Protector T, is responsible for diagnosing the state of its
protected Node,, from which it has been receiving the critical data.
It periodically receives a heartbeat message coming from T, to
be sure it is still working. Following Fig. 8 where Node,, faults, T
reaches the diagnostic procedure after detecting the fault by itself
(heartbeat) or after receiving a question about the state of node
Node, coming from any of the rest of the Observers or Protectors.

The diagnosis procedure is followed in order to know whether
the node Ty, has really failed or if the received error has been caused
by a network outage or by a process checkpoint. Such a situation
is treated as a Byzantine problem [29] and it is assumed that only
one node could be faulty during the diagnosis.

M. Castro-Ledn et al. /J. Parallel Distrib. Comput. 86 (2015)98-111 105

A

—
D Node .Process D ObserverA Protector

Stable
Storage

Heartbeat
Watchdog mechanism

Ckpt & Log
operation

> App.
Messages

Fig. 8. RADIC detection model for Node, - T, diagnoses - T, confirms.

Ty

Protector Storage
Heartbeat <> App.

Watchdog mechanism Messages

(a) RADIC recovery model.

Stable & Ckpt& Log
operation

Restarted Processes
5-6-7-8

Roll-forward | Qmsq ?
Initialization

Sen N
Roll-forward 40

(re-execution)
Re-connection
virtual sockets{

vs(i) i(2..n)

Recy() s

Rest of the
processes

Resume

execution
== *% Qmsg Quantity of log messages send(): skipped operations
—> Recv(): operations retrieved from saved log =2 re-connection vs(i).

(b) Roll-forward procedure.

Fig. 9. Recovery and re-execution model.

As each node has two related neighbors, the protector contacts
with the successor node T, in order to determine the kind of failure
and takes one the following actions:

e If there is no answer, it means that T, cannot communicate
with more than one node simultaneously. Since only one node
could be faulty, the error is due to network problems. Therefore,
T, terminates with the processes running in its node and with
itself, and the state will be recovered by protector Ty_.

o If the successor T, answers that the suspect Ty is fine, the
protector assumes that it has a communication problem with
its successor and does the same as described above.

e If the successor T, confirms that the suspect T, failed, the
protector T, assigns it as the new successor and the recovery
state is reached.

There are three possible outcomes from the diagnostic proce-
dure, which are used to answer to the observers stopped by the
communication error.

1. Node N, is working correctly, the protector is still receiving
heartbeat from it. Therefore, the failure was caused by a
temporary network delay and the lost communications will be
recovered after some retries.

2. Node Ny, is working correctly but at least one of its processes
is performing a checkpoint. During checkpoint, the communi-
cations are released. Before beginning a checkpoint, the ob-
server sends a message to its protector. The observers having a
problem to communicate with it will recover the lost commu-
nications after the process finishes the checkpoint, since RSM
manage such re-connections.

3. Node N, has fallen down and the processes are being restarted
using the last received checkpoint in another node. The new
node’s IP direction is sent to the affected observers. After
receiving the new address, the observers use the RSM facility to
change the destination address of the affected reliable sockets
and they are connected again.

After receiving the diagnostic result, the observers continue on
retrying to recover the lost connection using the same destination
address (for answers 1-2) or changing it by the new one (answer
3).

4.6. RADIC recovery at socket level

Fig. 9(a) depicts how the system is reconfigured after a failure
on the Node, when no spare node is available. The recovery is
started by protector T, after executing the diagnose procedure
which confirms the fault of Node,,.

Observers hosted by Node, redirect their logs and checkpoints
to protector T, and T, sends heartbeat to Ty as well. T, restarts the
failed processes in Node, using the last checkpoint.

The observer of the restarted process follows the roll-forward
procedure graphed in Fig. 9(b) and explained as follows. It is
assumed that the process has n active connections which were
saved by the RSM in the Socketable.

1. The quantity of messages logged (Qmsg) from the last check-
point until the point of failure is queried to local protector.

2. During rolling forward, the sends are intercepted and skipped
to avoid repetitions. Instead, the Qmsg received messages are
intercepted and the content is retrieved from the local protec-
tor’s stable storage.

3. Once the messages (Qmsg) are totally consumed, the n virtual
sockets are reconnected.

4. The execution is resumed from the previous failed point.

4.7. Error masking model

These are the situations in which the observer masks the error
caused by node faults to the processes:

e When a fatal socket error is detected, instead of raising an
error, RSM reconnects to the same IP address or to a new one
depending on the diagnose answer received from the remote
peer’s protector.

106

M. Castro-Leén et al. / . Parallel Distrib. Comput. 86 (2015) 98-111

Y

GY
(5] (6]

[oD a2

it

Log

' ProcessC] Observer A
D Group <«

(a) Group of processes.

Protector 4= == operation ¢== HB/WD

Chk Group Coord. €= Send Group Chk to SS

| Group X | | GroupY |
N [CHK]|[CHK]
&0 |, | [i
-lcmlﬁi[“‘ .
e

Incoming msg with
log in stable storage
Recovery line

Internal msg

B

(b) Semi-coordinated execution.

Group coordinated chk —#-

Fig. 10. Semi-coordinated checkpoint protocol. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

e When a process is restarted, the sockets are recreated again and
the connections are reestablished in a transparent way for the
upper level. The clients are able to locate the new address after
receiving the diagnostic result from the protector and the client
connections are replayed using the data saved in Socketable.

e When a process is restarted, after reconnection, it is possible
to re-send a message. This situation happens when a failure
occurs after sending a message and not after receiving one.
As the RSM numerates the messages in the acknowledgment
requirement, the receiver RSM is able to detect and discard
repeated messages.

5. Semi-coordinated protocol for multicore systems

The rollback recovery protocol adopted by RADIC based on
receiver-based pessimistic message logging has the advantage
of being decentralized in protection and recovery, but it in-
troduces more overhead than other algorithms during failure-
free execution. An alternative rollback recovery algorithm called
semi-coordinated checkpoint is proposed to reduce the over-
head of message logging. Both blocking and non-blocking semi-
coordination, which are named BSCO and SCO respectively, are
presented and discussed in this section. The previous explained
protocol based on non-coordinated checkpoint and receiver-based
message log is named NCO.

The overhead is mainly caused by the sender, which has to
wait for the ack to be assured that the message has been received
and logged before continuing the execution, as it is shown in
Fig. 7(c). The drawback of this protocol can become even worse
when the application is running in a multicore system in which
several processes are running in a node usually mapped one-by-
core. Consequently, a sender and receiver might be in the same
node. In such cases, the receiver-based protocol could introduce
disproportional latencies. Moreover, processes are usually located
together when they are tightly coupled by messages, therefore,
they are even more penalized.

However, in case of a node failure, the processes running in
it should rollback until a consistent point in a past before rolling
forward until the point of failure. Therefore, there is natural
coordination among processes running in a same node in case of
failures.

Coordinated checkpoint among several processes is done to
reach a consistent global state in order to have a recovery line.
A process can be carrying out computation or communication
(sending or receiving data). The coordination aims to avoid in
transit messages which lead to an inconsistent recovery state.
The processes must be computing or waiting for communication
during checkpoint. Message logging protocols allow us to avoid
coordination and to restart only the failed processes. By logging
the messages during execution and replaying when they are rolling
forward, the local state is recovered. [14].

Semi-coordinated checkpoint combines the two techniques. On
the one hand, the processes running in the same node form a
group and the state is saved coordinately, being assured that they
are not carrying out communications. On the other hand, as the
processes in a group can communicate with a process in other
group, a message logging is done in order to guarantee building
a consistent recovery line among groups.

Fig. 10(a) depicts the group of processes in each node. The pro-
tector running in the same node (local) is in charge of coordinating
the checkpoint.

The semi-coordinated protocol BSCO changes the protection
model as follows:

e The local protector coordinates the checkpoint among pro-
cesses in a group. Periodically, a message is sent to them indi-
cating that a checkpoint should be initiated. After receiving such
message, the observer stops the communications and replies to
the protector, indicating that it is ready. Then, the checkpoints
are performed by the local protector and they are sent them to
the protector located in other node. In Fig. 10(b), the light green
rectangles represent the coordinated checkpoint performed on
the groups G, and G,.

e The messages interchanged between processes in the same
group, which are named internal, do not have to be logged since
they would be replayed again if the node fails. Examples of such
messages are m1, m3, m4 m5 shown in Fig. 10(b). However, the
order of events is logged to avoid generating orphan messages.

e The messages interchanged between processes in different
groups such as m2 and m6 are named incoming or outgoing
depending on whether they are arriving or going outside the
group. The log of incoming messages is carried out by the
receiver, following the same procedure explained previously in
Section 4.4 and represented in Fig. 7(c).

In Fig. 10(b), the red line represents the points of recovery when
the group G, is affected by a node fault. Even though G, is not
failed, the processes, having active connections with failed process
of G, resume their execution after reconnecting with restarting
processes. On the contrary, processes with no connections with
failed groups, are able to continue the execution and are not
affected by the failure. The recovery model of BSCO is altered by
this new protocol as well as the following.

e The protector restarts the failed processes using the last
checkpoint files.

e The failed processes roll-forward together until the point of
failure. As the incoming messages are not received again, the log
is used (m2 in our example). On the contrary, internal messages
are replayed.

Although the semi-coordinated protocol avoids logging internal
messages, it introduces a coordination task which could make the

M. Castro-Ledn et al. /J. Parallel Distrib. Comput. 86 (2015)98-111 107

total execution time longer than the previous one, using uncoordi-
nated checkpoint combined with receiver-based pessimistic mes-
sage log (NCO). When only a few or none of the internal messages
are interchanged, it is possible that semi-coordinated checkpoint
does not manage to reduce the execution time. Moreover, when the
coordination task is in the critical path, which means that it does
not overlap with other computational tasks, our proposal might be
longer.

5.1. Reducing the coordination time overhead

The blocking checkpoint coordination performed by the local
protector in BSCO has the following steps.

1. When it is time to checkpoint, according to the configured
interval, a checkpoint indicator message is sent to all the
observers in the group.

2. Each observer stops at the end or at the beginning of the next
communication operation to guarantee that there is no in-
transit message.

3. The protector launches the checkpoint to all the processes in the
node.

4. The protector indicates to the observers that they can continue
the normal operation and the checkpoint files are sent to the
protector located in the other node (stable storage).

The overhead is mainly caused by the barrier placed in the third
step of the procedure. The processes are forced to wait until all of
them are ready to be checkpointed.

There are several proposals in the literature to reduce the
coordination overhead which were discussed previously in related
works. In this work, we propose a non-blocking mode named
SCO that reduces the coordination time by using a receiver-based
logging for internal message only during the checkpoint time,
in which the processes in a group are performing checkpoint.
Therefore, in-transit messages are logged.

In more detail, the protector, performs a checkpoint of each
process immediately after it says it is ready without waiting for the
rest of the group processes to finish their tasks. After checkpoint,
each process is able to continue but all the received messages are
logged, even the internal ones, until receiving a message from the
local protector indicating that all the processes have finished their
checkpoints. In that way, no in-transit messages are lost and the
wait time is reduced.

The recovery procedure in SCO also has to be adapted to this
change too by adding a slight complexity and overhead. During
restarting, the internal required messages look firstly in the log.
If they are not there, it means that they are going to be replayed by
other restarting processes.

In both protocols BSCO and SCO, the protector located in
another node considers that a semi-coordinated checkpoint is
successfully ended when all the checkpoint files corresponding
with group members are received. Meanwhile, the files are saved in
a temporary state. If the node fails before having all the checkpoint
files, the previous complete checkpoint would be used to recover
the group state.

6. Experimental evaluation

We have developed a prototype of RADIC at socket level. The
observer is a dynamic library which builds reliable connections
by intercepting socket functions and it performs the procedures
of uncoordinated and semi-coordinated checkpoint using BLCR
library [22]. The protector is a resident permanent service which
interchanges heartbeats with its neighbors, as well as receiving and
storing checkpoints and message log coming from the next node.

It diagnoses communication errors, it restarts failed processes and
re-establishes the detection order in case the next node fails.

There are three objectives in the experimental evaluation.
Firstly, to accomplish the functional evaluation of the RADIC model
at socket level using the default rollback recovery protocol (NCO).
Secondly, we want to measure and compare the overhead of the
FT system using the alternative protocols of fully uncoordinated
checkpoint (NCO), Blocking Semi-coordinated checkpoint (BSCO)
and Semi-coordinated checkpoint (SCO). Lastly, we execute the
selected applications using an ascending number of processes from
24 to 64 using the same workload to check if the FT protection
model leaves the application to scale.

Linux clusters. The experiments have been executed in these
environments:

e Cluster A: 1t is formed by 4 dual-core nodes Intel® Core™ i5-
650 Processor 6 GB RAM and Network Gigabit Ethernet. The OS
is Ubuntu 10.04 Kernel 2.6.32-43-server. The nodes are named
from Ny to Ns.

e Cluster B: It is a Dell PowerEdge M600 with 8 nodes, each one
with 2 quad-core Intel® Xeon® E5430 running at 2.66 GHz,
provided with 16 GB of main memory and a dual embedded
Broadcom® NetXtreme IITM 5708 Gigabit Ethernet. The oper-
ating system is Red Hat 4.1.1-52.

Applications patterns. We use two socket-based message passing
parallel applications, which are the two most used patterns in
HPC. First, a sum of float matrices with a Master/Worker (M/W)
communication pattern, and secondly, a heat-transfer simulation
which has SPMD behavior. Both patterns allow us to test the
recovery and error masking model using a variable number
of clients and server sockets per process. Moreover, a suitable
comparison among proposed rollback recovery protocol is possible
as well. On the one hand, M/W model does not have internal
communications and it is expected to be affected by the overhead
introduced by the coordination task. On the other hand, SPMD
processes communicate among them and they have more sockets
opened to test the deadlock avoidance in reconnection.

Sum of Matrices (M/W) was executed using a master and eight
workers, named from Wy to W5, two by node. The master, located
in Np, generates a square float matrix of 10000 x 10000 and
iteratively sends the rows to sum (110 kb) to the workers and it
receives and accumulates the result (11 bytes).

Heat Transfer application (SPMD), represents a cell-to-cell com-
munication achieved via exchange of temperature and thermal
fluxes between neighboring cells. It was executed with eight pro-
cesses, two by node. A square float matrix of 1000 x 1000 is uni-
formly divided among the processes. Each one makes a calculation
during 100 000 iterations. For every 20 iterations, the processes in-
terchange the edge rows with its neighbors processes. The package
size is 4k.

Type of executions. There are three types of executions used to
evaluate, measure and compare the overhead of the FT system.

1. No FT: The applications are executed without FT. It is used as
areference to analyze the behavior changes and the overheads
introduced by RADIC at system level.

2. Protection: RADIC is used for a failure-free execution. The
protection phase is tested using the protocols NCO, BSCO and
SCO. As the checkpoints close the sockets connection causing
socket failures to the other processes, the checkpoints are only
performed in the processes in one node to avoid overheads
in diagnostics and reconnection to facilitate the overhead
protection comparatives. The selected node for checkpoint is
N, with an interval of 180 s. A initial checkpoint is triggered in
the 20th second, considering that the application initialization
is over after that.

108

300
250 P S N N e) tulini i S fies Stn

§ -“m.l._._"..—“ P e ot T N ...r.N.,l.T..I
8 200 \ \
£ 150
2 |
2 100 .
5
50 |7 W
VR &=siiniuiuinisiaiuiaiuiuinhinint shvinisinishishiiuiniiinist - S
O DB D% Y %% R

Intervals (10 Seconds)
[--Master +~Wo—+~Wa W2 > W3 -o- W4 W5 — W6 — Wy -4 CHK -a-Master NoFT — Wo-NoFT]

M. Castro-Leén et al. / . Parallel Distrib. Comput. 86 (2015) 98-111

300
5 B T e
2 AR Y
2 100 | \ \
& ok \ \

O QY G D 70 789 O Y QY QO O Dy DL %
0 0 0V G % % R Y RS R

Intervals (10 Seconds)
‘ ~m-Master W0 W1 W2 W3 ‘W4 ~+—WS5 —W6 ‘W7 A CHK -%-Failure -#-Master NoFT -WD-NOFT‘

(a) Protection execution.

(b) Recovery execution.

Fig. 11. Master/Worker executions using fully uncoordinated checkpoint (NCO). (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

450
400
350
300
250
200
150
100
50
0+ T = e L e

O @ & Q@ 75 78 79 O 2 D@ Q@ Oy Gy T
0 0 0 QYIS QYR G % Y Y

Iterations/Interval

Intervals (10 seconds)

‘ PO &Pl 5<P2 —<P3 -oP4

P5 —P6 — P7 -4 CHK -8-PO-Noft |

(a) Protection execution.

450

T 400 pum

s [}

g 30X 1

£ 550 | pu bemnatunas :""'P,“ ’”\' "\

) . S ettt Gkl rEdgS Ty agnaawER

s %50 - o Y

€ 100 | Y \

L 58 [} \ \le/j \l \i
R A . T T IR R R IR

Intervals (10 seconds)

‘ PO P1 —<P2 —P3 P4 —+—P5 P6 P7 CHK - Failure fPD-NOft‘

(b) Recovery execution.

Fig. 12. Heat transfer executions using fully uncoordinated checkpoint (NCO). (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

3. Recovery: RADIC is used and a failure is injected in N, 40 s after
the second checkpoint. As no spare node is available, the failed
processes are recovered in node Ny. Consequently, after failure,
this node supports four processes. As we are using dual-core
nodes, we can observe the loss of performance.

The experiments are represented with a throughput diagram
graph which shows the number of finished tasks by intervals of
10 s. The tasks are measured by rows processed in M/W and by
iterations in SPMD.

Experiments using fully uncoordinated checkpoint (NCO). Fig. 11
represents a selected execution of M/W in protection and recovery
using NCO. The red line represents the rows processed by 10 s
without fault tolerance (No FT). In both figures are slightly superior
because a higher throughput is achieved. Checkpoints and message
logging slow down the performance and the execution time is
longer, as can be observed on axis X.

In Fig. 11(b) it is observed how the throughput falls to 0 from
the last checkpoint up to the failure as a consequence of the loss
of tasks during rollback of failed processes. However, the tasks
by seconds climb during the period of re-execution because the
needed messages are already available in the log. The executions
have less throughput after failure because the node is overloaded
with 4 processes. The recovery execution time is prolonged in 58 s
in respect of the failure free execution. This time is determined
mostly by the lost time between the last checkpoint and the failure
(40 s) and the rest, by the re-execution time. The performance
slows down after the failure.

Fig. 12 represents the SPMD processes of the heat transfer
application. The red line depicts the No FT execution, which acts as
a baseline to observe how the throughput of the rest of executions
slows down because of the checkpoint and logging. The added
execution time is observed on axis X. In these experiments, the
impact is mainly due to the log because the checkpoints are short
as the processes do not use too much memory. They last 1 s and
their size is less than 1.5 MB.

The added execution time in recovery of SPMD represented
in Fig. 12(b), of almost 100 s, is determined by the time 40 s

between the last checkpoint and the failure, by the re-execution
time (70 s) and, finally, although the host node N; is overloaded
with 4 processes, instead of resulting in delaying the execution
even more, it is accelerated by the internal communications of 4
processes running in the same node.

Measuring and comparing rollback recovery protocols. We execute
both applications in protection and recovery using the same
checkpoint interval and failure injection to measure and compare
different rollback recovery protocols such as NCO, BSCO and SCO.

Fig. 13 represents the throughput of one of the two processes
running on node N, in the distinct executions of No FT, NCO, BSCO
and SCO. M/W is shown in Fig. 13(a) and SPMD in Fig. 13(b).

The higher the line is, the more throughput is achieved and
the shorter the execution time is. As expected, Non-blocking
semi-coordination (SCO) in protection has a better behavior both
in M/W and SPMD, adding 9.26% and 7.65% of overhead to
NOFT respectively. In SPMD, semi-coordinated proposals are much
better than NCO due to the internal messages not being logged. In
M/W, the differences are not pronounced to the fact that only the
node hosting the master is shared with two workers. Consequently,
the time saved for avoiding log in this node is compensated with
the coordination time in all nodes when semi-coordinated is used.

NCO offers the worst time in protection and recovery adding
11.64% 23.81% in M/W and 18.33% and 44.81% in SPMD. As the
amount of messages increases, so does the overhead. Moreover,
NCO needs much more memory space to save the logs than semi-
coordinated protocols BSCO and SCO, which are latter analyzed.

In SPMD program, BSCO is able to finish earlier than SCO.
The coordination of the checkpoint might help to synchronize
processes avoiding congestions, resulting in it being better for
these kinds of patterns.

In order to analyze how the overhead is affected by the size of
the input, we compare the average of at least ten execution times
of M/W using sizes of square float matrices of 10000, 15000 and
20000 and SPMD with float matrices of 1000, 1500 and 2000. The
standard deviation for all the cases is less than 6%. As the input
size increases, the communication to computation ratio varies and
so does the impact of each protocol on the final time execution.

M. Castro-Ledn et al. /J. Parallel Distrib. Comput. 86 (2015)98-111

Rows/Interval

Intervals (10 Seconds)

Iterations/Interval

109

600
500
400
300
200 /7
100

Intervals (10 Seconds)

HK -Failure

-#-noft - FT-Pr

NCO-FT-P BSCO-o-FT-P SCO-—+ FT-R yNCO -+ FT-R

(a) Master/Worker.

(b) SPMD.

Fig. 13. Comparative analysis of NCO, BSCO and SCO in recovery.

1.40
1.20
1.00
0.80
0.60 -
0.40
0.20
0.00 -

1.15|
.13
.13
111

1.00
1,09
1.09

1.00

1.03
1.04
1.00

B No Fault Tolerance NOFT

B Uncoordinated NCO

1 Semi-Coord. Blog BSCO

[l Semi-Coord. Non-Blog SCO

10000x10000

Execution time normalized to NoFT

15000x15000
Input Size

20000x20000
(a) Master/Worker.

Fig. 14. Time execution overhead of NCO, BSCO

® No Fault Tolerance NOFT

B Uncoordinated NCO

m Semi-Coord. Blog BSCO

B Semi-Coord. Non-Blog SCO

Execution time normalized to NoFT

10000x10000

15000x15000
Input Size

20000x20000

(a) Master/Worker.

-
[

2 140

2 120

®

% 1.00 B No Fault Tolerance NOFT
g 080 B Uncoordinated NCO

c 0.60

[} B Semi-Coord. Blog BSCO

£ 0.40

= | i- . -|

-5 0.20 Semi-Coord. Non-Blog SCO
3 0.00

] 1000x1000 1500x1500 2000x2000

w Input Size

s
(%)
=
=
o

and SCO in protection varying the input size.

1.60
1.40
1.20 -+
1.00 -+
0.80 -
0.60 -
0.40 -
0.20
0.00 -

M No Fault Tolerance NOFT

B Uncoordinated NCO

W Semi-Coord. Blog BSCO

l Semi-Coord. Non-Blog SCO

Execution time normalized to NoFT

1000x1000

1500x1500
Input Size

2000x2000

(b) SPMD.

Fig. 15. Time execution overhead of NCO, BSCO and SCO in recovery varying the input size.

In Fig. 14 shows how in failure-free operations, the NCO
overhead in both patterns is higher or equal than other proposals
for any workload. In MW, Fig. 14(a), NCO improves slightly as
the size enlarges. BSCO and SCO makes the execution faster than
NCO because in the first node the communications between the
master and workers is avoided. When 15 000 square matrix is used,
the communication and the communication is better overlapped,
reaching the best performance.

In SPMD, Fig. 14(b), NCO takes less time when 1500 square ma-
trix size is used. The communication to computation ratio is more
equilibrated in this case, achieving a better overlapping. However,
in the semi-coordinated options, the longer the messages are, the
less the overhead is as a consequence of the decreasing of the logs.
BSCO and SCO reduce the overhead even more in heat transfer, as
it takes more profit from reducing the task log than M/W, which
only reduces the log of the master node.

Fig. 15 represents the overhead relation in execution time in
recovery. The analysis is carried out taking into account that in
all the cases, the rolling back is of 40 s. Instead, the recovery
time depends on the amount and size of the lost messages for re-
processing and their availability.

In M/W 15(a), there are slight differences. BSCO shows the
higher times when the messages take longer because it is much
quicker to look for messages in log than wait for them, and
moreover, a blocking coordination time is added. BSCO and SCO

are better than NCO in SPMD 15(b). Again, it is shown how the
coordination of BSCO can help SPMD to synchronize the processes
before than non-blocking SCO and it manages to be faster in some
executions. However, there are no higher differences since the
overhead is highly determined by the rollback and by the re-
execution time.

Furthermore, we compare the stable storage space used by
the protocols for both patterns during execution using different
input sizes. As we are using pessimistic protocols, only the last
checkpoint plus the messages received after it are required for
keeping in stable storage. In Fig. 16, the average stable storage size
registered in node N is represented. As was expected, there is no
difference for M/W in Fig. 16(a) since all the messages are saved.
Instead, in SPMD depicted in Fig. 16(b), the space needed in semi-
coordinated protocol is highly reduced.

Lastly, we conduct an experiment in order to assess the
scalability of the FT Protection model. We execute in cluster B, M/W
and SPMD applications using square matrices of 20 000 x 20 000
and 2000 respectively. The number of processes vary from 24 to
64 using the same workload to check the weak scalability. The
mapping of the processes to the cores follows a fill-up policy in all
the executions. As each node has 8 cores, we start using 3 nodes as
it is the minimum number of nodes to use RADIC. The protector is
not assigned to any core in all the experiments. It is expected that
the decentralized model allows the application to scale.

110 M. Castro-Leén et al. / . Parallel Distrib. Comput. 86 (2015) 98-111
= 130 - 30
E 125 E
g o
g 120 g 20
% 115 B CHK z‘% B CHK
2 HLOG g 10 =
:@ 110 - LOG
& o
105 O o ® PP ® PP ’
OA“°3\°°3\°°2A‘°°3,\ng,\@gﬂ,@g»@%»@g 0,\0%,@08,\@2,\‘302,\‘303,\608, 0%579%:1900
ROEPOSRCRGHAGICRGM oM REPOHCRGHAGICRGMI I
< < 2 < 32 2
(a) Master/Worker. (b) SPMD.
Fig. 16. Stable storage usage of NCO, BSCO and SCO varying the input size.
Master/Worker SPMD
g 1000 g 700
S 800 S 600 I
o S 500 L B No FT
[@
& 600 W No FT 2 400 B NCO
g 400 = NCO 2 300 BSCO
z BSCO £ 200 | SCO
2 L Nee} 2 100
] R w .
24 32 40 48 56 64 24 32 40 48 56 64
Processes Processes
(a) Master/Worker. (b) SPMD.

Fig. 17. Time execution comparison scaling the number of processes.

As is shown in Fig. 17(a), the performance of adding FT in
Master/Worker is proportionally, excepting the No FT execution,
with 64 processes in use decreases. It is caused by some
inefficiencies in out implementation related to the use of normal
vectors instead of hashed. However, in Fig. 17(b), the tendency of
scaling follows the same as the No FT execution. SCO shows slightly
better results than BSCO in SPMD, but up to 48 processes. As was
explained before, the coordination of BSCO can help the SPMD
application to synchronize the processes before the non-blocking
SCO, then achieving faster executions.

7. Conclusions and future work

In this paper, we have presented a fault tolerance model which
allows a message passing application to end successfully even
when node failures occur. It is transparent for the application
and it is able to detect node faults and recovering the processes
automatically. As it is based on RADIC, it is distributed and has a
decentralized behavior.

The model is located at system level, specifically at socket
level. The application source is not required for adding FT. The
message passing library does not need to be updated to support
node failures, nor reconfigured or compiled again. The data and the
procedures required to achieve a transparent and automatic fail-
over mechanism at system level without losing in-transit packages
are exposed through the reliable socket manager.

A blocking (BSCO) and non-blocking (SCO) semi-coordinated
checkpoint protocols have been exposed as alternatives of the fully
uncoordinated checkpoint (NCO) proposed by RADIC.

The experimental evaluation is carried out using socket mes-
sage applications, which follow very well-known patterns in the
scientific field, such as M/W and SPMD. It has been shown that the
FT model is successfully applicable to both cases.

This paper demonstrates the feasibility of supplying FT func-
tionality to message passing applications independently of the
message passing library chosen, provided that it uses socket API to
establish inter-processes communications. This feature would al-
low to avoid having to upgrade applications or message passing li-
brary without FT mechanisms, thus reducing the development and
testing cost.

The results obtained from comparisons using different work-
loads, number of processes and clusters show that both SCO and

BSCO are good alternatives for reducing time execution overhead
when multiple processes with internal communications are exe-
cuted in multicore clusters.

We are working on a set of experiments to demonstrate
that we can use this middleware to fault tolerance applications,
using either MPICH or Open MPI, the most popular MPI libraries.
Additional socket functions have to be considered.

The model could be extended to other networks like In-
fiband [26] which provides application program interfaces that can
be treated using socket API.

Acknowledgments

This research has been supported by the MINECO (MICINN)
Spain under contract TIN2011-24384, the European ITEA2 project
H4H, No 09011 and the Avanza Competitividad I + D + [program
under contract TSI-020400-2010-120.

References

[1] J. Ansel, K. Aryay, G. Coopermany, Dmtcp: Transparent checkpointing for
cluster computations and the desktop, in: Proceedings of the 2009 IEEE
International Symposium on Parallel & Distributed Processing, IEEE Computer
Society, Washington, DC, USA, 2009, pp. 1-12.

[2] S. Atchley, D. Dillow, G. Shipman, P. Geoffray, J.M. Squyresz, G. Bosilcax,
R. Minnich, The common communication interface (CCI), in: Proceedings—
Symposium on the High Performance Interconnects, Hot Interconnects, Cci,
2011 pp. 51-60.

[3] W.Bland, A. Bouteiller, T. Herault, G. Bosilca, J. Dongarra, Post-failure recovery
of MPI communication capability: Design and rationale, Int.]. High Perform.
Comput. Appl. 27 (3) (2013) 244-254.

[4] A. Bouteiller, T. Herault, G. Bosilca, J.J. Dongarra, Correlated set coordination
in fault tolerant message logging protocols for many-core clusters, Concurr.
Comput.: Pract. Exper. 25 (4) (2013) 572-585.

[5] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, F. Cappello, Mpich-v
project: A multiprotocol automatic fault-tolerant mpi, Int. J. High Perform.
Comput. Appl. 20 (3) (2006) 319-333.

[6] F.Cappello, Fault tolerance in petascale/exascale systems: Current knowledge,
challenges and research opportunities, Int. J. High Perform. Comput. Appl. 23
(3) (2009) 212-226.

[7] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, Toward exascale resilience:
2014 Update 2. The exascale resilience problem, 1 (1) (2014) 5-28.

[8] M. Castro, D. Rexachs, E. Luque, Radic-based message passing fault tolerance
system, in: ADVCOMP, The Sixth International Conference on Advanced
Engineering Computing and Applications in Sciences, 2012, pp. 59-64.

[9] M. Castro, D. Rexachs, E. Luque, Transparent fault tolerance middleware at user
level, in: HPCS'12, 2012, pp. 566-572.

M. Castro-Ledn et al. /J. Parallel Distrib. Comput. 86 (2015)98-111 111

[10] M. Castro, D. Rexachs, E. Luque, Adding semi-coordinated checkpoint to radic
in multicore clusters, in: PDPTA, 2013, pp. 545-551.

[11] K.M. Chandy, L. Lamport, Distributed snapshots: Determining global states of
distributed systems, ACM Trans. Comput. Syst. 3 (1) (1985) 63-75.

[12] A. Duarte, D. Rexachs, E. Luque, Increasing the cluster availability using radic,
in: Cluster Computing, [EEE International Conference, 2006, pp. 1-8.

[13] LP. Egwutuoha, D. Levy, B. Selic, S. Chen, A survey of fault tolerance
mechanisms and checkpoint/restart implementations for high performance
computing systems, J. Supercomput. 65 (3) (2013) 1302-1326.

[14] E.N.Elnozahy, L. Alvisi, Y.-M. Wang, D.B. Johnson, A survey of rollback-recovery
protocols in message-passing systems, ACM Comput. Surv. 34 (3) (2002)

375-408.

[15] L. Fialho, D. Rexachs, E. Luque, What is missing in current checkpoint interval
models?, 2012 IEEE 32nd International Conference on Distributed Computing
Systems, 2011, pp. 322-332.

[16] L. Fialho, G. Santos, A. Duarte, D. Rexachs, E. Luque, Challenges and issues of
the integration of RADIC into open MP], in: European PVM/MPI Users’ Group
Meeting, 2009, pp. 73-83.

[17] V.D. Florio, Application-Layer Fault-Tolerance Protocols, IGI Global, 2009.

[18] Q.Gao, W.Huang, M.]. Koop, D.K. Panda, Group-based coordinated checkpoint-
ing for MPI: A case study on infiniband, in: International Conference on Parallel
Processing, 2007, ICPP 2007, 2007, pp. 47-47.

[19] R. Gordon, The TCP/IP guide: A comprehensive, illustrated Internet protocols
reference, Lib. J. 131 (1) (2006) 146-146.

[20] W. Gropp, E. Lusk, Fault tolerance in MPI programs, Int. J. High Perform.
Comput. Appl. 18 (3) (2004) 363-372.

[21] A. Guermouche, T. Ropars, E. Brunet, M. Snir, F. Cappello, Uncoordinated
checkpointing without domino effect for send-deterministic MPI applications,
in: Parallel Distributed Processing Symposium, IPDPS, 2011 IEEE International,
2011, pp. 989-1000.

[22] P.H. Hargrove, J.C. Duell, Berkeley lab checkpoint/restart (BLCR) for Linux
clusters, J. Phys. Conf. Ser. 46 (2006) 494-499.

[23] A. Hassani, A. Skjellum, R. Brightwell, Design and evaluation of FA-MPI, a
transactional resilience scheme for non-blocking MPI, in: 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks,
2014, pp. 750-755.

[24]].C.Y. Ho, C.-L. Wang, F.C.M. Lau, Scalable group-based checkpoint/restart for
large-scale message-passing systems, in: International Symposium on Parallel
and Distributed Processing, 2008, IPDPS 2008, IEEE 2008, pp. 1-12.

[25] J. Hursey, J. Squyres, T. Mattox, A. Lumsdaine, The design and implementation
of checkpoint/restart process fault tolerance for open MPI, in: Parallel and
Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International,
2007, pp. 1-8.

[26] InfiniBand®Trade Association: Home. URL: http://infinibandta.org].

[27] N. Ivaki, S. Boychenko, F. Araujo, A fault-tolerant session layer with
reliable one-way messaging and server migration facility, in: 2014 IEEE 3rd
Symposium on Network Cloud Computing and Applications, NCCA, 2014,
pp. 75-82.

[28] R.Koo, S. Toueg, Checkpointing and rollback-recovery for distributed systems,
IEEE Trans. Softw. Eng. 13 (1) (1987) 23-31.

[29] L. Lamport, R. Shostak, M. Pease, The byzantine generals problem, ACM Trans.
Program. Lang. Syst. 4 (3) (1982) 382-401.

[30] Y. Luo, D. Manivannan, Hope: A hybrid optimistic checkpointing and selective
pessimistic message logging protocol for large scale distributed systems,
Future Gener. Comput. Syst. 28 (8) (2012) 1217-1235.

[31] M.K. McKusick, K. Bostic, M.J. Karels,].S. Quarterman, The Design and
Implementation of the 4.4BSD Operating System, Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 1996.

[32] K. Mohror, A. Moody, G. Bronevetsky, B.R. De Supinski, Detailed modeling and
evaluation of a scalable multilevel checkpointing system, IEEE Trans. Parallel
Distrib. Syst. 25 (9) (2014) 2255-2263.

[33] S.Rao, L. Alvisi, H. Vin, The cost of recovery in message logging protocols, IEEE
Trans. Knowl. Data Eng. 12 (2) (2000) 160-173.

[34] D.A.Reed, C. da Lu, C.L. Mendes, Reliability challenges in large systems, Future
Gener. Comput. Syst. 22 (3) (2006) 293-302.

[35] R. Riesen, K. Ferreira, D. Da Silva, P. Lemarinier, D. Arnold, P.G. Bridges,
Alleviating scalability issues of checkpointing protocols, in: 2012 International
Conference for High Performance Computing, Networking, Storage and
Analysis, IEEE, 2012, pp. 1-11.

[36] G.Rodriguez, M.]. Martin, P. Gonzalez, J. Tourifio, R. Doallo, Cppc: a compiler-
assisted tool for portable checkpointing of message-passing applications,
Concurr. Comput.: Pract. Exper. 22 (6) (2010) 749-766.

[37] T. Rosing, K. Mihic, G. De Micheli, Power and reliability management of SoCs,
IEEE Trans. Very large Scale Integr. (VLSI) Syst. 15 (4) (2007) 391-403.

[38] G. Santos, A. Duarte, D. Rexachs, E. Luque, Providing non-stop service for
message-passing based parallel applications with radic, in: Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), in: LNCS, vol. 5168, 2008, pp. 58-67.

[39] B. Schroeder, G.A. Gibson, A large-scale study of failures in high-performance
computing systems, IEEE Trans. Dependable Secure Comput. 7 (4) (2010)

337-350.

[40] User level failure mitigation — fault tolerance research hub, URL http://fault-
tolerance.org/ulfm/.

[41] V.C. Zandy, B.P. Miller, Reliable network connections, in: Proceedings of the
8th Annual International Conference on Mobile Computing and Networking,
MobiCom’02, ACM, New York, NY, USA, 2002, pp. 95-106.

_ | Marcela Castro-Leén is an Associate Researcher of the
| group of High Performance Computing for Efficient
- Application and Simulations (HPC4EAS) at University
Autonoma. She is an Associate Professor at the Tomads
Cerda Computer Science School. The research interests
include fault tolerance in parallel computers, service
oriented Architecture, service security, modeling and
simulation.

Hugo Meyer earned his Ph.D. degree in High Performance
Computing from the University Autonoma of Barcelona
(Spain), where he worked on Fault Tolerance and Per-
| formance Analysis in parallel and distributed systems.
Currently, he is working as a researcher in the Barcelona
Supercomputing Center researching on Performance Eval-
uation and Simulation of optical devices in HPC and Data
| Center applications.

| Dolores Rexachs is an Associate Professor at the Com-

puter Architecture and Operating System Department at
" University Autonoma of Barcelona (UAB), Spain. She has
been the supervisor of 7 Ph.D. thesis and has been in-
vited lecturer in Universities of Argentina, Brazil, Chile and
Paraguay. The research interests include parallel computer
architecture, parallel I/O subsystem, fault tolerance in par-
" allel computers, tools to evaluate, predict, and improve the
performance in parallel computers. She has coauthored
more than 50 full-reviewed technical papers in journals
and conference proceedings.

- Emilio Luque is a Professor at the Computer Architec-
ture and Operating System Department at University
| Autonoma of Barcelona, Spain. Invited lecturer at univer-
sities in the USA, South America, Europe and Asia, key
note speaker in several conferences and leader in several
research projects funded by the European Union (EU),
Spanish government and different industries. His major
research areas are: parallel and distributed simulation,
performance prediction and efficient management of mul-
ticluster-multicore systems and fault tolerance in par-

: allel computers. He has supervised 19 Ph.D. thesis and
co-authored more than 230 technical papers in journals and conference proceed-
ings.

