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Abstract—The radiation properties of split ring resonators 

(SRRs) at their second resonance frequency are studied for the 
first time in this work. In particular, the electric and magnetic 
dipole moments of the edge-coupled SRR (EC-SRR) are 
calculated analytically under the assumption of strong coupling 
between the internal and external rings. Based on these results, 
the radiation resistance and the radiation efficiency are obtained 
theoretically. Electromagnetic simulations of the structure reveal 
that there is very good agreement with the theoretical predictions, 
pointing out the validity of the proposed analysis. As a proof of 
concept, an SRR antenna prototype is designed and fabricated. 
Experimental data are in good agreement with the theoretical and 
simulated results, and demonstrate the validity of the SRR 
working at its second resonance frequency as a radiating element. 
 

Index Terms— Split ring resonators (SRRs), planar antennas, 
radiation efficiency, metamaterials.  
 

I. INTRODUCTION 
PLIT ring resonators (SRRs), first proposed by Pendry et 
al. [1] as an evolution of the structures proposed by 
Schelkunoff [2] and Hardy [3], have been widely used for 

the implementation of metamaterial-based or inspired 
microwave devices in the last years [4]. Due to their small 
electrical size and negative (and very high) magnetic 
polarizability above the fundamental resonance, SRRs can be 
used for the implementation of one-dimensional effective 
media metamaterials [5], including metamaterial transmission 
lines. Negative permeability (or mu-negative −MNG) [6], left-
handed (LH) [7] and composite right-/left-handed (CRLH) [8] 
transmission lines have been implemented by loading a host 
line with SRRs (and with other additional elements for LH and 
CRLH lines). These artificial lines and other artificial lines 
based on modifications of the SRR topology (including the 
complementary counterpart, i.e., the CSRR [9]) have been 
applied to improve the performance and/or the size of 
microwave components and to implement new functionalities. 
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Compact wideband and ultra-wideband (UWB) filters [10], 
power dividers [11] and microwave sensors [12]-[13] among 
other devices, have been implemented by means of SRR- or 
CSRR-loaded lines. The control of the phase constant and 
characteristic impedance (a unique feature of metamaterial 
transmission lines) in SRR- and CSRR-loaded lines has also 
been successfully applied to the design of leaky-wave antennas 
with broadside and backward-to-forward radiation capabilities 
[14]-[16]. Moreover, metamaterial structures and 
metamaterial-inspired resonators have been widely applied to 
electrically small antenna design, in order to reduce 
dimensions [17]-[18], obtain multiband and multi-frequency 
operation [19]-[21], high radiation efficiency [22], and achieve 
tuning capability [23]. In many of the works mentioned above, 
SRRs were used in order to achieve the improvements in the 
antenna response. 

The resonance modes of SRRs have been extensively 
studied in [24], and the values of their resonance frequencies 
were analytically predicted in [25]. Nevertheless, since the 
particle is normally designed to work around its first 
(fundamental) resonance, all the theoretical studies have been 
focused on the properties of the SRR at that frequency. For 
instance, the first-order terms of the polarizability tensor of the 
particle have been quantified in [4],[26],[27],[28] by using the 
quasi-static analysis at the fundamental resonance. From such 
analysis, it follows that the SRR acts as a current loop at the 
fundamental resonance, thus suggesting the possibility of using 
it as a radiating element. However, since the particle size is in 
the order of 0.1 free-space wavelengths, and the radiation 
resistance of a current loop depends on the fourth power of the 
radius in terms of wavelengths, poor radiation efficiencies and 
narrow bandwidths are expected. For these reasons, the SRR 
has been rarely used as stand-alone radiating element at the 
fundamental resonance [29]. However, as it will be 
demonstrated in this work, the second resonance of the SRR 
exhibits interesting antenna properties in terms of radiation 
resistance and efficiency. 

In this paper, an analytical study of the radiation resistance 
associated to the second resonance of the SRR is carried out, 
providing equations that can be used in the design process to 
obtain high radiation efficiency and good impedance matching. 
Given that the radius of the particle at the second resonance is 
typically in the order of 0.1 free-space wavelength (although it 
is electrically larger than the radius at the first resonance), the 
radiator can be treated as an electrically small antenna, 
according to commonly given definition (kr < 1 [30], where k 
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is the free-space wavenumber and r is the radius of the 
smallest sphere enclosing the antenna), thus simplifying the 
analysis of the problem. Due to its uniplanar geometry, the 
edge-coupled SRR (EC-SRR) is the topology considered 
throughout this work. 
 The paper is organized as follows. Section II is dedicated to 
the analysis of the particle. The electric and magnetic dipole 
moments and the radiation resistance of the SRR at the second 
resonance are predicted in Subsection II.A. The losses 
introduced by the conductors are then evaluated in Subsection 
II.B, and an expression for the radiation efficiency is presented 
in Subsection II.C, along with a discussion over the far-field 
properties of the particle. The theoretical expressions are 
compared to the electromagnetic simulations in Section III, 
where the radiation quality factor of the particle is also 
evaluated and compared to the theoretical limitations. In order 
to validate the theoretical and simulated results, an SRR 
antenna prototype working at the 900 MHz ISM band (902-
928 MHz) is designed, fabricated and subjected to 
experimental measurements, and the results are presented in 
Section IV. Finally, the main conclusions are highlighted in 
Section V. 

II. ANALYSIS 

A. Radiation resistance 
The topology of the EC-SRR is shown in Fig. 1. The mean 
radii of the external and internal rings are rA and rB, 
respectively. The ring trace width, c, is assumed to be the same 
for both rings, a condition which is usually complied in most 
of the designs involving the EC-SRR. The width of the cuts in 
each ring is not critical for the SRR response, since the 
capacitance associated to the cut can be neglected [4]. Its value 
is set greater than the distance between rings d and, obviously, 
much smaller than the mean ring radius r0 = (rA + rB)/2. 

Provided that the particle is electrically small, its radiation 
is mainly produced by the first order (dipolar) terms of the 
electric and magnetic moments generated by the electric 
currents in the rings. The electric current distribution at the 
second resonance approximately satisfies iA(φ) = −iB(φ ± π) 
[24], where iA and iB is the current in the external (A) and 
internal (B) ring, respectively, and φ is the angular position 
with respect to the x-axis. This relation is valid if the distance 
between rings, d, is small as compared to the mean ring radius 
r0 (strong coupling condition). 

Let us now focus on the radiation associated to the electric 
dipole moment, which can be calculated by evaluating the 
charge distribution along the rings. To this end, let us first 
describe the current profile along each ring. Since the length of 
each ring is approximately half-wavelength, the current along 
the ring circumference is assumed to be sinusoidal with a 
maximum value at the center (φ = 0 for ring A and φ = ±π for 
ring B), and null at the ring edges (approximated to φ = ±π for 
ring A and φ = 0 for ring B). However, as it is corroborated 
later (see Fig. 2b), the current in each ring  

 
Fig. 1. Topology and charge and current distributions in the EC-SRR at the 
second resonance. 

 
actually exhibits a slight discrepancy to this approximation, 
mainly because the length of each ring at the second SRR 
resonance is somewhat greater than the half-wavelength at the 
working frequency. Nevertheless, by means of this sinusoidal 
approximation to the rings currents, analytical expressions for 
the different variables of interest in this paper can be obtained, 
and the agreement between simulation/experiment and theory 
is good. The current in the external ring, of mean radius rA, can 
thus be written as: 

 0 0 ˆ( , ) cos cos( )
2A t i tϕϕ ω =  

 
i ϕ   (1) 

where ω0 is the angular frequency and i0 is the maximum 
current amplitude. By solving the well-known electric charge 
continuity equation, the linear charge density in the ring is 
found to be: 
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Since (2) is odd with respect to the position angle φ, the total 
electric dipole moment associated to one ring is the sum of the 
infinitesimal dipole moments directed along the ŷ  direction, 
namely: 

 2

0
ˆ( , )2 sin .A A At r d

π
λ ϕ ϕ ϕ= ∫p y   (3) 

Integration of (3) gives:  
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Since the internal ring B, of mean radius rB, exhibits an electric 
dipole moment with the same orientation and phase, the total 
dipole moment is the sum of the internal and external dipole 
moments, i.e., 

 0
0 0

0

8 ˆsin( )
3

r
i tω

ω
=p y   (5) 

where it has been assumed that the current distributions in 
rings A and B satisfy iA(φ) = −iB(φ ± π), as mentioned before. 
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Since the radiating particle is electrically small, it is possible 
to consider the total moment given by (5) as an infinitesimal 
electric dipole moment located in the y-axis. Thus, by using 
the Larmor equation [31] for the radiated power by a given 
electric dipole moment of amplitude p0, that is 

 
4 2

E 2 0 0
rad 0 12

Z k p
P c

p
=  (6) 

the total radiation resistance referred to the maximum current 
i0 can be expressed as follows: 

 
2 2
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rad 0
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.  (7) 

In (6) and (7), c0 is the speed of light in free-space, Z0 is the 
impedance of free-space, and λ0 is the free-space wavelength at 
the second resonance frequency, f0. 

It is now interesting to compare the value found in (7) with 
the radiation resistance of a small dipole, which can be 
expressed by means of the well-known expression: 

 
2 2

2
rad 0
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20 790l rR π
ll

   
= ≈ Ω   

   
  (8) 

where r is the length of each dipole arm. As can be seen by 
comparing (7) and (8), for a given radiator size (r0 for the SRR 
or r for the dipole), the SRR working at the second resonance 
exhibits a much higher radiation resistance as compared to the 
one of a small electric dipole. This can be explained arguing 
that the SRR takes advantage of most of the area enclosed by 
its lateral dimensions, while the dipole only distributes its 
charges along a line. 

The magnetic dipole moment associated to the external ring 
can be calculated as 

 21 ˆ ( , )
2A A At r d

π

π

ϕ ϕ
−

= ×∫m r i   (9) 

providing the following expression: 

 2
0 0 ˆ2 cos( ) .A Ar i tω=m z   (10) 

As explained above, the current in the internal ring flows in the 
opposite direction, and generates an opposite axial magnetic 
dipole moment. Therefore, the total magnetic dipole moment 
can be written as: 

 ( )0 0 0 ˆ4 cos( ) .A Br r r i tω= −m z   (11) 
The radiation resistance associated to an electrically small 
magnetic dipole moment of amplitude m0 can be found from 
the radiated power, given by [32] 
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Since m0 is, in our case, equal to 4r0(rA − rB)i0, the radiation 
resistance is:  
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It can be easily verified that, due to a nearly complete 
cancellation of the axial magnetic moments of the internal and 

external rings, the power radiated by the magnetic dipole is 
much smaller (two orders of magnitude) than the power 
associated to the electric dipole. Therefore, to a good 
approximation, the radiation resistance of the particle at 
second resonance is dominated by the one associated to its 
electric dipole moment, that is, 

 E
rad rad .R R≈   (14) 

The potential of SRRs as radiating elements operating at their 
second resonance is demonstrated by evaluating (14) for 
typical values of r0/λ0, which are in the order of 0.1 (when no 
substrate is used, see Section III). The resulting radiation 
resistance values are very close to the radiation resistance of 
the commonly used, and very well-known, half-wave dipole 
antenna (73 Ω). This fact suggests that half-wave dipole 
antennas can be replaced with SRRs (operating at the second 
resonance) without the need of a matching network, thereby 
reducing the maximum dimension of the antenna (defined as 
the radius of the minimum sphere enclosing the antenna) by a 
factor 2.5, approximately. 
 

B. Loss resistance 
Let us now focus on the ohmic losses introduced by the 
metallic layer of the SRR, which are normally the main loss 
mechanism at microwave frequencies [33]. As for the electric 
dipole moment calculation, the current distribution along the 
ring perimeter is taken sinusoidal, with a null at the edges. The 
current density distribution J within the ring cross section 
decays exponentially from the surface, with a penetration 
depth (skin depth) depending on the working frequency f0. 
Since the conductor thickness h is usually much smaller than 
its width c, only the top and bottom faces are considered to 
carry current, neglecting the small contribution from the lateral 
faces.  

The assumptions above lead to the following expression for 
JA (the current density in the outer ring) in phasorial form: 
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 (15) 

where γ = (1+j)/δ is the complex propagation constant inside 
the conductor and δ is the skin depth, given by δ = (2/ωµs)1/2 

[33], where µ and s are the permeability and conductivity of 
the conductor material, respectively. The above expressions 
(for γ and δ) are valid for low-loss conductors, i.e., for those 
satisfying σ >> ωε (ε being the permittivity). The radial 
dependence of JA [i.e., J0(r)] is cumbersome to be expressed 
analytically. Indeed, due to the proximity effect [34] between 
the internal and external rings of the SRR, the current tends to 
accumulate in the regions of the upper and lower sides of the 
rings closer to the slot (of width d) between them. Given the 
position of the current zeroes and maxima in the rings, one can 
deduce that the proximity effect varies with the angle ϕ, being 
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maximum for φ = π and minimum for φ = 0 for the external 
ring (and vice versa for the internal ring). We have modeled 
the overall influence of the proximity effect on the ohmic 
losses by means of an effective width ceff, approximated by 
c/2, where the current density is assumed to be constant with r. 
This approximation is based on the assumption that the current 
for the external ring is uniformly distributed in the radial 
direction when φ = 0, and concentrated in the extreme adjacent 
to the slot when φ → ±π, and that a linear variation with the 
angle between these two extreme situations arises (note that for 
the internal ring the current is uniformly distributed in the 
radial direction when φ = ±π , and concentrated in the extreme 
adjacent to the slot when φ → 0). Therefore, J0(r) is assumed 
to be constant with r [J0(r) = J0] for radial values between 
rA−ceff/2 and rA+ceff/2, and null elsewhere. 

The power loss in the outer ring, inferred from Ohm’s law, 
is 
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By solving (16), the power loss is found to be 
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The power loss in the inner ring can be obtained by using the 
same procedure. Thus, the total power loss can be written as: 
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Let us now compute the total current i0 flowing at the input 
section (φ = 0), in order to calculate the loss resistance. By 
integrating the current density over the effective cross-
sectional area, namely 
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it can be found that the squared RMS (root mean square) 
current can be expressed as: 
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Finally, the loss resistance is obtained by dividing the power 
loss (18) by the squared RMS current (20), obtaining 
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The hyperbolic function on the right side of (21) can be 
approximated by the hyperbolic cotangent with the same 
argument, that is 
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 (22) 

with a maximum error of 20% for h = 3.7 δ. We will later 
discuss the error introduced by (22) on the radiation efficiency, 
which is the parameter of interest in the present analysis. 

By combining (21) and (22), the loss resistance can be 
expressed in a very simple form, that is:  

 0
loss

2
R coth

2
r h

c
π

s δ δ
 ≈  
 

  (23) 

where the effective width has been approximated by ceff ≈ c/2, 
as mentioned above. 
 

C. Antenna properties 
Let us now discuss the far-field properties of the particle. The 
radiation efficiency of any antenna is defined as the ratio 
between the radiated power and the accepted power. This 
magnitude can be expressed as a function of the ratio between 
the loss resistance (23) and the radiation resistance (14), that is 
ηrad = (1 + Rloss/Rrad)-1, obtaining: 

 ( )
1

1
3

0 0 0
0

271 coth
64 2rad

hc cr fπh σ
µ d

−
−  ≈ +  

   
  (24) 

where μ0 is the permeability of free space. It is worth 
mentioning that, for reasonable combinations of thickness, 
width and conductivity, the maximum error (20% for 
h = 3.7 δ) introduced in (22) is greatly reduced in the final 
expression (24) of the radiation efficiency [e.g., 4% for 
h = 35 μm, c = 0.2 mm and s = 5·106 S/m, which is the worst 
case in our analysis (see Section III)].  

The directivity of the radiated fields, according to the 
assumptions made above, should be the same as the one of an 
elemental electric dipole (1.76 dB). However, due to the non-
zero length of the particle in the x direction, a slightly bi-
directional pattern is expected over the H-plane (φ = 0º), thus 
resulting in a higher value of the directivity. 

The cross-polar component of the radiated fields is mainly 
associated to the radiation produced by the magnetic dipole 
moment, which was evaluated in section IIA. In fact, as can be 
deduced by comparing (5) and (11), a 90º phase-shift exists 
between the electric and magnetic dipole moments. Hence, in 
the directions which provide orthogonality between the fields 
radiated by the magnetic and the electric moments, i.e. the E-
plane, the radiation of the magnetic moment is purely cross-
polar. Since the magnetic dipole moment is oriented along the 
z-axis, its far-field contribution is maximized for θ = 90º. 
Hence, in this direction the value of the cross-polarization 
level is maximized, and can be evaluated dividing (13) by (7), 
obtaining: 

 
2

2
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  (25) 
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Fig. 2. (a) Input impedance and (b) electric current distribution at the second 
resonant frequency (1 GHz) of the simulated lossless SRR (no dielectric 
substrate is considered). 

III. SIMULATION RESULTS 
In order to validate the analytical results presented above, an 
EC-SRR has been simulated by means of the commercial 
software Agilent Advanced Design System (ADS). The 
geometry of the particle has been adjusted to locate the second 
resonance at the frequency f0 = 1 GHz (λ0 = 300 mm) when no 
substrate is used. The values for the geometric parameters are 
rA = 36.5 mm, rB = 34 mm c = 2 mm, d = 0.5 mm, 
r0 = 35.25 mm (0.118 λ0), and the cut width is set to 5 mm. 

The discrete port is placed across a 0.4 mm gap opened at 
the center of the external ring (φ = 0º), where a current 
maximum i0 is expected to occur. Therefore, in a lossless case, 
the input resistance Rin of the system corresponds to the 
radiation resistance Rrad of the particle. Hence, in the first set 
of simulations the metal is treated as a perfect conductor, in 
order to isolate the radiation resistance of the SRR and to 
verify (14). 

The simulated input impedance of the SRR (without 
dielectric substrate), depicted in Fig. 2(a), clearly reveals the 
first (0.4 GHz) and second (1 GHz) resonant frequencies of the 
SRR, and the first anti-resonant frequency (0.66 GHz), which 
corresponds to the intrinsic resonance of the inner ring. Note 
also that the radiation resistance at the second resonance 
(73 Ω) is nearly two orders of magnitude greater than the 
radiation resistance at the first resonance (1 Ω), and is exactly 
equal to the radiation resistance of a canonical half-wave 
dipole. The simulated electric current density distribution at  

 

 
Fig. 3. Radiation resistance at second resonance as a function of the SRR 
mean radius relative to the wavelength. Note that the radiation resistance is 
roughly 73 Ω (i.e., the radiation resistance value of a half-wave dipole) for 
r0/λ0 = 0.118. 
 
the second resonance (Fig. 2(b)) is in good agreement with the 
approximated theoretical distribution described in Section 
II.A, i.e., the current in the internal and external rings flow in 
opposite directions, and their amplitudes are similar. However, 
since the length of each ring is slightly greater than half-
wavelength, the maximum at the center of the rings splits into 
two maxima symmetrically positioned around the center. 
Nevertheless, expression (1) is a useful approximation, as it 
allows simplifying the analytical treatment maintaining high 
accuracy in the results. 

In order to validate (14), a lossless dielectric of thickness 
hs = 2.54 mm is then added as substrate, allowing to control 
the value of the second resonance frequency f0, and 
consequently the value of λ0. By increasing the dielectric 
permittivity εr of the substrate, the value of r0/λ0 is gradually 
decreased, and the simulated input resistance of the particle is 
compared in each case to the radiation resistance calculated by 
(14). The results, depicted in Fig. 3, reveal that there is very 
good agreement between theory and simulation.  

It is worth to mention that, in order to modulate the 
electrical size of the particle without changing the substrate 
dielectric constant, it is also possible to vary the coupling 
between rings, mainly controlled by the slot width d. In fact, 
according to the theory of coupled resonators, decreasing the 
coupling (while fixing r0) reduces the frequency split between 
first and second resonance. Therefore, the second resonance is 
lowered and the particle becomes electrically smaller, 
providing an additional degree of freedom at the design stage. 
However, only relatively small changes of r0/λ0 are possible by 
using this technique. Moreover, if the coupling between rings 
is very small, the assumptions for the derivation of equations 
(5) and (11) no longer hold. The reason is that the difference 
between the internal and external rings radii increases with the 
distance d, and the internal and external current amplitudes 
diverge as well. 

A second set of simulations, without substrate, takes into 
account the ohmic losses in the metallic conductor, in order to 
validate (24). The simulated radiation efficiency as a function  

(b) 

(a) 
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Fig. 4. Simulated and theoretical radiation efficiency (a) versus conductivity 
for h = 35 um and (b) versus conductor thickness for c = 2 mm. The 
considered conductive paint has a conductivity σ = 106 S/m [35]-[36]. 
 

of the metal conductivity for different values of the strip width 
c, setting the value of the metal thickness to h = 35 µm, is 
shown in Fig. 4(a). The thickness dependence of the radiation 
efficiency for a strip width of c = 2 mm is simulated and 
depicted in Fig. 4(b) for different materials. Very good 
agreement between electromagnetic simulations and 
theoretical predictions is observed for efficiency values greater 
than 15%, which is the region of interest in practical antennas. 

Let us now describe the simulated radiation pattern at the 
frequency of 1 GHz (no substrate used), depicted in Fig. 5, 
which was obtained by means of the ADS Momentum 2-D 
radiation pattern. As can be seen, the radiation pattern on the 
E-plane (φ = 90º) corresponds, as expected, to the radiation 
from an electric dipole oriented towards the y-axis. However, 
the value of the directivity is D0 = 2.7 dBi, which is 1 dB 
higher than the elemental dipole due to the array effect 
associated to the finite dimension of the SRR in the x 
direction, as mentioned in section II.C. As expected, the cross-
polarization levels are low (XPOL < −21 dB) and in very good 
agreement with (25), which provides XPOLmax = −22 dB. 
Therefore, the radiated fields can be considered linear on most 
of the radiating sphere. 
 
 

 
Fig. 5. Simulated normalized radiation pattern of the SRR at f0 = 1 GHz in the 
E-plane (φ = 90º) and H-plane (φ = 0º). 

 

As a final consideration, let us estimate the radiation quality 
factor Qrad of the antenna at the second resonance, based on the 
simulated input impedance in the lossless case. To do this, we 
use the approximated expression derived in [37]: 

 0 0
rad

0

'( )
2 ( )

Z
Q

R
ω ω

ω
≈  (26) 

where Z'(ω0) is the first derivative of the input impedance with 
the angular frequency and R(ω0) is the input resistance of the 
antenna, both evaluated at ω0 = 2πf0. By using (26), the value 
of the quality factor was found to be Qrad ≈ 17, leading to a 
half-power fractional bandwidth FBW ≈ 2/Qrad ≈ 0.12 [37] 
(considering conjugate matching). As expected, due to the 
planar geometry of the particle, the quality factor is larger than 
the minimum value for the quality factor of an electrically 
small antenna, as predicted by Chu in [38]-[39]. In fact, 
according to such a limitation, the minimum Qrad for an 
antenna enclosed in a sphere of radius r ≈ 0.12 λ0 is 
(kr)−3 = 2.3. Nevertheless, it was shown in [40] that, according 
to the Gustafsson limit for small planar antennas enclosed in a 
circle of radius r, the lower Qrad bound increases by a factor 
9π/8 ≈ 3.5 (considering directivity 1.5) with respect to the 
general case of a non-planar antenna (where the lower bound 
for the radiation quality factor is calculated by using the Chu 
formula). This provides a lower bound of Qrad = 8, which is 
still smaller than the value found in our case. However, the 
radiation quality factor of the SRR antenna is similar to that of 
a small planar rectangular dipole antenna (with a length-to-
width ratio around unity), and much better as compared to 
small thin dipole antennas [40]-[41]. 
 

IV. PROTOTYPE DESIGN AND MEASUREMENTS 
In this section, the theoretical analysis presented in Section II 
is applied to the design of an SRR antenna prototype, in order 
to validate its usefulness in the design stage, and to confirm the 
radiation properties of the SRR antenna introduced in this 
work. As a practical application example, the prototype was  

(b) 

(a) 
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Fig. 6. Simulated and measured power reflection coefficient of the SRR 
antenna prototype. The 900 MHz ISM band is depicted in gray. 
 
designed to operate at the center of the 900 MHz ISM band 
(902-928 MHz), i.e., at the frequency f0 = 915 MHz, matched 
to a 50 Ω port. 
 
A. Design process and simulation results 
The first step in the design process is to determine the SRR 
mean radius r0, in order to adjust the antenna input resistance 
to the required value of R0 = 50 Ω. In a general case, since the 
antenna input resistance at resonance is Rin = Rrad + Rloss, i.e. it 
is obtained by summing (7) and (23), its radius dependence is 
a second order polynomial of the form 2

in 0 0R ar br= + , where a 
and b depend on the frequency f0, the metal conductivity σ and 
the geometrical parameters c and h. As a result, the required 
mean radius r0 is obtained by solving a second order equation 
(which provides a unique positive solution) after the 
parameters mentioned above (f0, σ, c, h) have been set to a 
given value. However, in case the radiation efficiency is 
expected to be sufficiently high (see Fig. 4), the loss resistance 
can be neglected, and by using (7) the required mean radius 
can be approximated to 

 6 1
0 0 04 10 −≈ ⋅r f R   (27) 

where all the quantities are expressed in SI units. Since the 
metal used for the prototype is copper with a thickness of 
h = 35 μm, setting the strip width to c = 2 mm allows using 
(27), because the expected efficiency is 98% (neglecting the 
substrate). The result is r0 = 31 mm. 

The second and final step in the design stage is to adjust the 
second resonance of the SRR (with radius r0) at the desired 
frequency f0. Firstly, a dielectric substrate with the proper 
combination of relative permittivity εr and thickness hs is 
chosen, obtaining a resonant frequency near to the desired 
value. Finally, by tailoring the distance d between rings, a fine 
adjustment of the frequency of resonance is done. In our case, 
we used a Rogers R04003 substrate (εr = 3.55, hs = 0.81 mm, 
tanδ = 0.0027) and the ring distance was found to be 
d = 1.6 mm. The ring cut width and the port gap, which values 
are not relevant to the SRR response, were set to 5 mm and 
0.8 mm, respectively. 

The simulated power reflection coefficient of the SRR 
antenna prototype is depicted in Fig. 6. As expected, good 
impedance matching is achieved at the working frequency 

 
Fig. 7. Fabricated SRR antenna prototype. The SMD-packaged balun can be 
seen at the center of the close-up. 
 
f0 = 915 MHz. The simulated radiation efficiency and antenna 
gain are ηrad = 92% (lower to the predicted 98% due to the 
presence of the dielectric losses) and G0 = 2.2 dB. 
 
B. Fabrication and experimental results 
To validate the simulated results, the layout described in 
Section IV-A was fabricated (Fig. 7) by means of a PCB 
drilling machine (LPKF-H100). The layout was provided with 
soldering pads, in order to mount a SMD-packaged high 
frequency ceramic balun (Johanson Technology 
0900BL15C050 [42]) across the SRR port gap, and a SMA 
connector to feed the balun and the antenna. The substrate was 
cut square-shaped with a side length of 80 mm. 

The power reflection coefficient of the system was 
measured by means of an Agilent N5221A network analyzer, 
and the results (Fig. 6) are in good agreement with simulations, 
showing a small frequency shift (10 MHz) and a good 
impedance matching level (−18.5 dB). However, since the 
presence of the balun was not taken into account in the 
simulations, some differences between simulation and 
measurement arise. In particular, the measured notch depth 
and out-of-band response are limited by the return and 
insertion losses of the balun, respectively. 
The antenna gain was evaluated by using the following method 
(the measurement setup is outlined in Fig. 8a). The prototype 
was placed inside a Wavecontrol WaveCell TEM cell, and 
oriented towards the direction of the maximum radiation 
(θ = 0º, φ = 90º). The cell was excited with a pure tone at the 
frequency of 925 MHz, generated by means of an Agilent 
N5182A vector signal generator and amplified through a RFPA 
RF101000–10 solid state RF amplifier. The signal received by 
the antenna was delivered, by means of a coaxial cable, to the 
input port of an Agilent N9020A signal analyzer, where the 
input power Pr was measured. Finally, the antenna was 
removed from the chamber, and replaced by an electric field 
probe (Wavecontrol EFCube) placed at the same position. The 
electric field strength ERMS measured by the probe was used to 
evaluate the antenna gain G0 as follows: 
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Fig. 8. (a) Scheme and (b) photograph of the antenna gain measurement 
setup. 
 

 0
0 2 2

0 RMS

4π α
λ
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= rZ PG
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  (28) 

where the dimensionless parameter α (2.1 dB) accounts for the 
losses introduced by the cable (0.9 dB) and the balun (1.2 dB 
[42]). Equation (28) is based on the common definition of 
antenna effective area as the relation between the received 
power and the incident power density, and assumes a pure 
TEM propagation inside the cell. By using (28), the 
experimental antenna gain was evaluated to be G0 = 2.05 dB, 
which is very close to the predicted value (2.2 dB, Sec. IV-A). 

V. CONCLUSION 
The radiation properties of the EC-SRR at the second 
resonance, in terms of radiation resistance, efficiency, 
directivity and polarization, have been studied in this work. 
Starting from the calculation of the electric and magnetic 
dipole moments of the particle, it has been found that the main 
radiation mechanism is associated to the electric dipole 
moment generated along the plane of the particle, which 
results from the constructive contributions of the internal and 
external rings. Based on this analysis, an expression for both 
the radiation resistance and the radiation efficiency under the 
hypothesis of strong coupling between the rings has been 
presented. To validate the analysis, full-wave simulations of 
the radiation resistance and efficiency have been carried out, 
and very good agreement with the predicted theoretical values 
for different SRR parameters (i.e., conductivity, thickness and 
width of the metallic strips) has been found. As a proof of 
concept, a prototype of the SRR antenna has been designed 

and fabricated to work at the 900 MHz ISM band, and the 
experimental data validated both the theoretical and simulated 
results in terms of impedance matching and antenna gain. 

According to the study presented in this work, the SRR 
proves to be a valuable alternative to the commonly used half-
wave dipole, especially when a reduction of the maximum 
antenna dimension is needed while maintaining a similar value 
of the radiation resistance. As a result, a SRR antenna 
operating at the second resonance can replace a half-wave 
dipole antenna without the need of any additional matching 
network. Moreover, its radiation pattern, which can provide a 
gain of 2.7 dB, i.e., 0.5 dB higher than the one of the half-
wave dipole, can be preferred in some applications where a 
more directional pattern is needed. 
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