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Background: One interacting partner of the AMPA receptor (AMPAR) complex in the endoplasmic reticulum is carnitine
palmitoyltransferase 1C (CPT1C).
Results: CPT1C regulates synaptic AMPAR levels and synaptic transmission by post-transcriptional regulation of GluA1
protein synthesis.
Conclusion: CPT1C is a new regulator of AMPAR translation efficiency.
Significance: CPT1C modulation could be a new tool to prevent AMPAR decline and learning deficits.

The regulation of AMPA-type receptor (AMPAR) abundance
in the postsynaptic membrane is an important mechanism
involved in learning and memory formation. Recent data sug-
gest that one of the constituents of the AMPAR complex is car-
nitine palmitoyltransferase 1C (CPT1C), a brain-specific iso-
form located in the endoplasmic reticulum of neurons. Previous
results had demonstrated that CPT1C deficiency disrupted
spine maturation in hippocampal neurons and impaired spatial
learning, but the role of CPT1C in AMPAR physiology had
remained mostly unknown. In the present study, we show that
CPT1C binds GluA1 and GluA2 and that the three proteins have

the same expression profile during neuronal maturation. More-
over, in hippocampal neurons of CPT1C KO mice, AMPAR-
mediated miniature excitatory postsynaptic currents and synap-
tic levels of AMPAR subunits GluA1 and GluA2 are significantly
reduced. We show that AMPAR expression is dependent on
CPT1C levels because total protein levels of GluA1 and GluA2
are decreased in CPT1C KO neurons and are increased in
CPT1C-overexpressing neurons, whereas other synaptic pro-
teins remain unaltered. Notably, mRNA levels of AMPARs
remained unchanged in those cultures, indicating that CPT1C is
post-transcriptionally involved. We demonstrate that CPT1C is
directly involved in the de novo synthesis of GluA1 and not in
protein degradation. Moreover, in CPT1C KO cultured neu-
rons, GluA1 synthesis after chemical long term depression was
clearly diminished, and brain-derived neurotrophic factor
treatment was unable to phosphorylate the mammalian target of
rapamycin (mTOR) and stimulate GluA1 protein synthesis.
These data newly identify CPT1C as a regulator of AMPAR
translation efficiency and therefore also synaptic function in the
hippocampus.

Carnitine palmitoyltransferase 1 (CPT1)5 is an enzyme clas-
sically involved in long-chain fatty acid transport across the
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mitochondrial intermembranes. Whereas liver CPT1A and
muscle CPT1B isoforms catalyze the conversion of long-chain
acyl-CoA to acyl-carnitines in fatty acid �-oxidation, the brain-
specific isoform CPT1C exhibits low catalytic activity in vitro
(1) and is located in the endoplasmic reticulum of neurons,
largely in the hippocampus. Furthermore, it is exclusively pres-
ent in mammals (1, 2).

The biochemical function of CPT1C is poorly understood,
although it has been reported to modulate ceramide metabo-
lism in neurons (3). At the physiological level, it is well demon-
strated that hypothalamic CPT1C contributes to the control of
food intake and energy balance (4 – 6) and the role of CPT1C in
motor function (7, 8). Recently, the involvement of hippocam-
pal CPT1C in cognition and spinogenesis has been described
(3). CPT1C knock-out (KO) mice were shown to present
strongly compromised spatial learning and disrupted dendritic
spine morphology by increasing immature filopodia and
decreasing mature spines. Interestingly, high-resolution pro-
teomic analyses have revealed CPT1C as one of the constitu-
ents of the complex of �-amino-3-hydroxyl-5-methyl-4-isoxa-
zole-propionate-type glutamate receptors (AMPARs) (9 –11),
and a recent study has described the involvement of CPT1C in
GluA1 trafficking (12). However, given that CPT1C only inter-
acts with AMPARs in the ER, the role of CPT1C in AMPAR
synthesis has been scarcely examined.

In the present study, we show that CPT1C binds to endoge-
nous GluA1 and GluA2 subunits and regulates their expression
in mouse hippocampi and in cultured hippocampal neurons,
which is crucial for AMPARs to reach the synapsis and for syn-
aptic transmission. Furthermore, we reveal that this regulation
is exerted post-transcriptionally, at the level of the de novo pro-
tein synthesis, without affecting protein degradation. Conse-
quently, synaptic AMPARs are diminished in CPT1C KO
hippocampal cultures, correlating with a reduction in the
amplitude of AMPAR-mediated miniature excitatory postsyn-
aptic currents (mEPSCs). These data may explain the previ-
ously described involvement of CPT1C in dendritic spinogen-
esis and learning.

Experimental Procedures

Materials—Anti-CPT1C antibody was developed in our
laboratory (1). Anti-GluN2A, anti-biotin, anti-�-tubulin,
and anti-calreticulin were obtained from Sigma; anti-GluA1,
anti-GluA2, and anti-synapsin I were obtained from Merck
Millipore. Anti-postsynaptic density protein 95 (PSD95),
anti-stargazin, and anti-GFP were obtained from Abcam.
Anti-phospho-PERK Thr-980, anti-EIF2 Ser-51, anti-EIF2,
anti-ATF4, and anti-GADD34 were obtained from Santa
Cruz Biotechnology. Phospho-Akt Ser-473, phospho-
ERK1/2, phospho-mTOR Ser-3448, and phospho-5� AMP-
activated protein kinase � (phospho-AMPK�) Thr-172 were
sourced from Cell Signaling, and anti-GAPDH was obtained
from Ambion. L-Serine-D7 was obtained from CDN Iso-
types. All other reagents were purchased from Sigma or Life
Technologies, Inc., unless otherwise specified.

Animals—CPT1C knock-out mice were developed as
described previously (3). After 8 back-crosses with C57BL/6J
mice, littermate homozygous CPT1C KO and wild type (WT)

mice were crossed separately to obtain a line for each genotype,
which were used in the experiments. Hippocampi were
obtained from adult male mice. All animal procedures met the
guidelines in Spanish legislation (BOE 32/2007) and were
approved of by the local ethics committee.

Neuronal Cultures—Primary hippocampal mouse neurons
were prepared from embryonic day 16 WT or CPT1C KO
embryos and cultured as described previously (13).

Electrophysiology—For recordings of cultured hippocampal
neurons at 15–16 days in vitro (DIV), coverslips were mounted
and placed on the stage of an inverted microscope (Olympus
IX50). Whole-cell patch clamp currents were recorded with an
Axopatch 200B amplifier-Digidata1440A series interface board
using pClamp10 software (Molecular Devices). To isolate
AMPAR-mediated mEPSCs, the following blockers were added
to the extracellular solution: 1 �M tetrodotoxin, 50 �M D-AP5,
25 �M 7-CK, and 20 �M SR95531/gabazine (all from Abcam).
Series resistance (Rs) was typically 15–22 megaohms and was
monitored at the beginning and at the end of the experiment.
Cells that showed a change in Rs greater than 20% were rejected
(14). There was no significant difference in membrane capaci-
tance when comparing WT and CPT1C KO neurons. For elec-
trophysiology data analysis, mEPSCs were filtered at 5 kHz and
digitized at 10 kHz. Data were analyzed using IGOR Pro
(Wavemetrics) together with Neuromatic (Jason Rothman).
Events were detected using amplitude threshold crossing (15),
with the threshold (typically �7– 8 pA) set according to the
baseline current variance. For amplitude and kinetic analyses,
only events with monotonic fast rise (�1 ms) and uncontami-
nated decay were included.

Immunocytochemistry—For labeling surface AMPARs, neu-
rons at 17–18 DIV were fixed with 4% (w/v) paraformaldehyde,
blocked with 2% goat serum, and incubated with anti-AMPAR
N terminus antibodies. After washing, cells were incubated
with the appropriate Alexa Fluor-conjugated secondary anti-
bodies. Neurons were then permeabilized with 0.1% (v/v) Tri-
ton X-100 and then blocked once more. Buffer was substituted
with the appropriate anti-PSD95 antibody. After washing, cells
were incubated with secondary antibodies. Coverslips were
mounted using Fluoromount mounting medium. Imaging was
performed with the confocal laser-scanning microscope ZEISS
LSM 700 using a �63 1.4 numerical aperture oil objective. For
quantification, sets of cells were cultured and stained simulta-
neously and imaged using identical settings. The region of
interest was randomly selected. Measurements with the Fiji
image processing package were performed as described previ-
ously (16).

Immunoprecipitation—Neurons were collected using Triton
buffer (50 mM Tris-HCl, pH 8, 150 mM NaCl, and 1% Triton
X-100) supplemented with protease and phosphatase inhibitor
cocktails and solubilized for 30 min at 4 °C in an orbital shaker.
Samples were processed as described previously (17).

Western Blot—Dissected hippocampi and neuronal cultures
were collected in radioimmune precipitation assay buffer and
HEPES buffer (10 mM HEPES, 10 mM KCl, 1.5 mM MgCl2),
respectively, and supplemented with protease and phosphatase
inhibitor mixtures. Next, protein extracts were separated on
SDS-polyacrylamide gels and then transferred onto Immo-
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bilon-P PVDF membranes (Millipore). Blots were blocked
with 5% (w/v) dry milk in TBS-T and incubated at 4 °C over-
night with primary antibodies in TBS-T 0.2% (w/v) BSA.
After washing, blots were incubated with horseradish perox-
idase-conjugated secondary antibodies and developed using
the LuminataTM Forte Western HRP substrate (Millipore).
Semiquantitative analysis was performed using densitome-
try with Fiji software.

Lentiviral Infection—Two lentiviral vectors, pWPI-IRES-
GFP and pWPI-CPT1C-IRES-GFP, were constructed to drive
cell expression of GFP and CPT1C plus GFP, respectively. The
map and the sequences of these plasmids, kindly provided by
Dr. Trono (Laboratory of Virology and Genetics, Ecole Poly-
technique Fédérale de Lausanne, Switzerland), are available
from Addgene. Lentiviruses were propagated and titrated as
described previously (18). Infection was performed on the day
of seeding in complete DMEM medium at 1 virus/cell and left
to stand for 5 h. The medium was then replaced with supple-
mented neurobasal medium. Fourteen days later, cells were col-
lected for the analysis of GFP and CPT1C expression. The per-
centage of infected cells reached at least 75% in cultured
hippocampal neurons.

Real-time PCR—For expression analysis, template cDNA was
prepared from 1 �g of total RNA by reverse transcription
(Moloney murine leukemia virus). Gene expression was quan-
tified using real-time PCR with SsoFast Probes Supermix (Bio-
Rad) and gene-specific primer VIC, FAN, or HEX dye-labeled
as follows: Gapdh forward, reverse, and probe (4352339F;
Applied Biosystems); Gria1 (64845347; IDT); and Gria2
(64845351; IDT) on a CFX96 real-time system (Bio-Rad). All
biological samples were amplified in the same run for each
experiment. Relative gene expression between paired samples
was estimated using the 2���Ct method.

Bio-orthogonal Noncanonical Amino Acid Tagging Analy-
sis—The de novo protein synthesis rate was determined by a
bio-orthogonal noncanonical amino acid tagging assay in WT
or CPT1C KO hippocampal neurons as described previously
(19), using copper sulfate and tris(2-carboxyethyl) phosphine to
generate the Cu(I) catalyst for the copper-catalyzed azide-
alkyne cycloaddition reaction (20). Briefly, cells were depleted
of methionine for 30 min before treatment with azidohomoala-
nine at 1 mM (an effective surrogate for methionine; Jena Bio-
science) for 4 h. After cell lysis with 0.05% SDS in PBS, pH 7.6,
and protease and phosphatase inhibitors, the copper-catalyzed

azide-alkyne cycloaddition reaction was prepared as follows:
200 �M triazole ligand, 50 �M biotin-alkyne, 400 �M tris(2-
carboxyethyl) phosphine, and 200 �M copper sulfate, incubated
at 4 °C overnight under agitation. The excess reagents were
removed by gel filtration using PD-10 columns and eluted in
0.05% SDS in PBS, pH 7.6. A dot-blot analysis was performed to
determine the newly synthesized protein concentration tagged
with biotin. Desalted samples were precipitated with NeutrAvidin
resin (Pierce) overnight at 4 °C. NeutrAvidin beads were then
washed three times with 1% Nonidet P-40 in PBS, pH 7.6, and
samples were eluted with SDS sample buffer. Proteins were
detected using immunoblotting.

Statistics—Statistical analysis was performed using PRISM
(GraphPad Software). Significance between two groups was
determined according to data normality according to the Sha-
piro-Wilk test, using either Student’s t test or a Mann-Whitney
U test (parametric and non-parametric, respectively). For com-
parisons among 3– 4 groups, ANOVA was performed, followed
by the Bonferroni post-test.

Results

CPT1C-AMPAR Interaction in Hippocampal Neurons—It
has been demonstrated that CPT1C binds AMPARs in solubi-
lized membrane fractions from the hippocampus in rodents
(9 –11). We therefore first analyzed whether CPT1C was able to
interact with AMPARs in cultured hippocampal neurons. We
performed immunoprecipitation studies using specific anti-
CPT1C antibodies developed in our laboratory (1). Fig. 1A
shows how CPT1C interacts with GluA1 and GluA2 but not
with other synaptic glutamatergic proteins, such as NMDA-
type glutamate receptor subunit GluN2A or the AMPAR aux-
iliary subunit stargazin (also called TARP�2; transmembrane
AMPA regulatory protein). We also performed reverse immu-
noprecipitation using a GluA1 antibody and confirmed that
interaction (Fig. 1B). It is worth noting that GluA1-GluA2 and
GluA1-stargazin bindings were not found to be disrupted in the
absence of CPT1C (Fig. 1C). To prove antibody specificity,
CPT1C immunoprecipitation was performed in the hip-
pocampi of CPT1C KO animals; in those samples, we did not
detect CPT1C or GluA1 in immunoblotting (data not shown).
These data demonstrate that CPT1C binds AMPARs in cul-
tured hippocampal neurons.

CPT1C
GluA1

GluA2

calreticulin
β-tubulin

input   IP: out

Wild typeA

GluN2A

-Ab
CPT1C

CPT1C

GluA1
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GluA2
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stargazin

PSD95
calreticulin
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-Ab
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FIGURE 1. CPT1C-GluA1-GluA2 endogenous interaction in hippocampal neurons. CPT1C (A) or GluA1 (WT (B) or KO (C) neurons) was immunoprecipitated
at 14 DIV, and proteins were detected by immunoblot in whole lysate (input), immunoprecipitated samples (IP), unbound samples (out), and samples cleaned
with Protein G without an antibody (�Ab). Stargazin, GluN2A, PSD95, calreticulin, and tubulin were used as negative controls.
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Synaptic Transmission Is Reduced in CPT1C KO Animals—
Because CPT1C binds to GluA1/GluA2 and previous results
from our laboratory clearly showed that spatial learning and
dendritic spine maturation are impaired in CPT1C KO mice
(3), we wondered whether excitatory synaptic transmission was
altered in those animals. To address this issue, we performed
whole-cell voltage clamp recordings of cultured hippocampal
neurons and measured AMPAR-mediated mEPSCs. Cells were
treated with tetrodotoxin to block synaptic transmission and
with D-AP-5, 7-CK, and SR95531 to block NMDA and GABAA
receptors. We found that mEPSC amplitude was decreased in
neurons from CPT1C KO animals (Fig. 2, A–C) when com-
pared with WT neurons (�18.96 � 0.95 pA for WT versus
�15.46 � 0.99 pA for KO; n 	 26 and n 	 18, respectively; p 	
0.0175; t test). Cumulative amplitude histograms for mEPSCs
(Fig. 2D) revealed that the distribution of amplitudes in CPT1C
KO neurons shifted toward smaller values, indicating a
decrease in the quantity of postsynaptic AMPARs. We then
examined the frequency of AMPA-mediated mEPSCs and
found no significant differences (4.12 � 0.84 Hz for WT versus
3.83 � 1.24 Hz for KO; p 	 0.3519; Mann-Whitney test; Fig.
2E), demonstrating that no presynaptic alteration is present in
CPT1C KO cells.

Next, we measured the decay time constant of AMPAR-me-
diated mEPSCs in WT and KO animals and did not observe any
change (3.67 � 0.20 ms for WT versus 3.69 � 0.16 ms for KO;
p 	 0.9256; t test; Fig. 2F), suggesting that no alteration in

AMPAR subunit composition takes place in CPT1C-deficient
neurons (21).

CPT1C Deficiency Reduces the Quantity of AMPARs at the
Synaptic Level—The decrease in postsynaptic AMPARs in
CPT1C KO neurons was further confirmed when we analyzed
the presence of surface GluA1 and GluA2 at synaptic puncta by
double immunocytochemistry with the postsynaptic marker
postsynaptic density protein 95 (PSD95) in cultured hippocam-
pal neurons (Fig. 3A). Quantitative image analysis showed that
the percentage of postsynaptic puncta containing AMPARs was
reduced in CPT1C KO neurons (39.3 � 2.4% with GluA1 for
WT versus 27.8 � 1.8% for KO, p 	 0.0002 (Fig. 3B); 49.0 �
1.9% with GluA2 versus 28.0 � 2.1%; p � 0.0001 (Fig. 3C); t test)
and that the intensity of synaptic AMPARs was particularly
decreased in CPT1C KO hippocampal neurons when com-
pared with WT (1.00 � 0.06 GluA1 intensity for WT versus
0.77 � 0.03 for KO, p 	 0.0033, n 	 79 and 69, respectively (Fig.
3D); 1.00 � 0.04 GluA2 intensity versus 0.61 � 0.03, p � 0.0001,
n 	 74 (Fig. 2E); t test).

Interestingly, the number of PSD95 puncta per 10 �m was
increased (11.85 � 0.76 puncta for WT versus 16.71 � 1.14 for
KO; n 	 79 and n 	 69, respectively; p 	 0.0004; t test; Fig. 3F),
and the size of PSD95 puncta was decreased in CPT1C-defi-
cient neurons (1.00 � 0.08 versus 0.61 � 0.03; p � 0.0001; t test;
Fig. 3G).

In summary, our results demonstrate that the number of
AMPARs in synaptic puncta is clearly reduced and that basal
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synaptic activity is compromised in CPT1C KO animals. Based
on these findings, we asked whether these deficits could be
explained because CPT1C was involved in the regulation of
AMPAR expression.

CPT1C Regulates AMPAR Protein Expression—AMPAR pro-
tein levels were first analyzed in hippocampal cultured neurons
over DIV from 4 to 16 DIV. GluA1 and GluA2 expression inten-
sified in the same manner as CPT1C during neuronal matura-
tion (Fig. 4A). However, AMPAR levels in CPT1C KO cultured
neurons were clearly diminished when compared with WT
cells (1.00 � 0.02 GluA1 levels for WT versus 0.45 � 0.08 for
KO at 14 DIV; p 	 0.0001; and 1.00 � 0.07 GluA2 levels versus
0.46 � 0.10; p 	 0.0018; n 	 5; t test; Fig. 4B). Other synaptic
proteins, including PSD95, synapsin I, and GluN2A, remained
unaltered (not significantly different at 14 DIV; n 	 3; t test; Fig.
4, C and D).

Previous results in our group demonstrated that the require-
ment of CPT1C for efficient spinogenesis is related with its
ability to regulate ceramide levels; exogenous ceramide treat-
ment rescues CPT1C KO phenotype on spine morphology.
Therefore, we decided to analyze whether ceramide could
reverse an AMPAR decrease in CPT1C-deficient neurons. Sur-
prisingly, neither soluble C6 ceramide nor the treatment with
the ceramide precursor serine increased GluA1 or GluA2 pro-
tein levels in KO cells (not significantly different; n 	 6; t test;
Fig. 4, E–H).

In contrast, exogenous CPT1C expression using lentiviral
vectors rescued the decrease in GluA1 and GluA2 protein levels
in CPT1C-deficient neurons without affecting GluN2A levels
(Fig. 4I). Moreover, CPT1C overexpression in cultured WT
hippocampal neurons was able to increase AMPAR protein lev-
els (0.85 � 0.40 GluA1 levels for empty vector (EV) versus
2.59 � 0.48 for CPT1C; 0.82 � 0.33 GluA2 levels for EV versus
2.64 � 0.67 for CPT1C; p � 0.05; n 	 5 for non-infected, n 	 3
for EV, and n 	 5 for CPT1C; ANOVA; Fig. 4J), demonstrating
the capacity of CPT1C to enhance AMPAR expression.

Similar results were obtained in the hippocampi of CPT1C
KO animals. First, we analyzed CPT1C expression during hip-
pocampal development in WT mice. As seen in hippocampal
cultures, total CPT1C protein levels were regulated with the
same pattern expression as GluA1 and GluA2, which increases
progressively up to adult age, as well as synapsin I, PSD95, and
GluN2A (Fig. 5, A and B). To examine whether CPT1C was
involved in the regulation of AMPAR expression, we measured
total GluA1 and GluA2 protein levels in the hippocampi of
adult CPT1C KO mice (Fig. 5C). CPT1C KO hippocampi
showed lower levels of AMPARs when compared with WT
mice (1.00 � 0.04 GluA1 levels for WT versus 0.67 � 0.07 for
KO; p 	 0.0012; 1.00 � 0.05 GluA2 levels versus 0.67 � 0.05;
p 	 0.0002; n 	 9 for WT and n 	 13 for KO; t test; Fig. 5D).
PSD95, synapsin I, and GluN2A remained unaffected (not sig-
nificantly different; n 	 6; t test; Fig. 5, E and F). These findings
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confirm that CPT1C expression in the hippocampus specifi-
cally regulates total AMPAR protein levels.

CPT1C Regulates AMPAR Expression at the Post-transcrip-
tional Level—In order to understand how CPT1C regulates
AMPAR expression, we first analyzed Cpt1c, Gria1, and Gria2
mRNA levels in WT and CPT1C KO mice during hippocampal
development. Fig. 6A shows that Cpt1c mRNA levels increased
during the first developmental days and then remained unal-
tered during the rest of the period of study (until 6 months of
age). Gria1 transcription exerted a similar pattern of expression

than Cpt1c (Fig. 6B), whereas Gria2 mRNA levels did not sig-
nificantly change during hippocampal development (Fig. 6C).
Interestingly, no differences were detected between WT and
CPT1C KO animals in Gria1 or Gria2 mRNA levels (n 	 3– 6;
t test; Fig. 6, B and C).

Moreover, hippocampal cultured neurons from CPT1C KO
mice did not show any difference in mRNA levels when com-
pared with WT neurons (not significantly different; n 	 6; t test;
Fig. 6D). In addition, CPT1C overexpression did not induce any
change in the mRNA levels of either AMPAR (not significantly

CPT1C

GluA1

GluA2

β-tubulin

4            8          12          14         16DIV

A WT KO  WT KO  WT KO  WT KO WT KO 

synapsin I

CPT1C

PSD95

WT     KO

β-tubulin

C

GluN2A

CPT1C

GluA1

GluA2

GFP

β-tubulin

EV CPT1C
CPT1C

GluA1
GluA2

GFP

β-tubulin

EV CPT1C

CPT1C KO WTI J

GluN2A

GluA1 GluA2
0

1

2

3

4

5 EV
CPT1C

* *

AM
PA

R
 / 

tu
bu

lin
 le

ve
ls

(v
s 

no
n-

in
fe

ct
ed

)

B

D

GluA1 GluA2
0.0

0.5

1.0

1.5 WT
CPT1C KO

*** **

AM
PA

R
 / 

tu
bu

lin
 le

ve
ls 14 DIV

0.0

0.5

1.0

1.5

2.0 WT
CPT1C KO

Pr
ot

ei
n 

/ t
ub

ul
in

 le
ve

ls

PSD95 GluN2A

GluA2

E

GluA1

C6 ceramide - +

CPT1C

β-tubulin

G

+-

CPT1C KO

CPT1C

GluA1

GluA2

serine - + +-

CPT1C KO

F

H

synapsin I

β-tubulin GluA1 GluA2
0.0

0.5

1.0

1.5

2.0 vehicle
serine

AM
PA

R
 / 

tu
bu

lin
 le

ve
ls

GluA1 GluA2
0.0

0.5

1.0

1.5

2.0 vehicle
C6 ceramide

AM
PA

R
 / 

tu
bu

lin
 le

ve
ls

FIGURE 4. CPT1C regulation of GluA1 and GluA2 expression in hippocampal neurons. A, protein expression in hippocampal neurons from WT or CPT1C KO
mice along the days in vitro. B–D, quantification of AMPARs and other synaptic proteins at 14 DIV. Tubulin was used as a loading control. Values are shown as
mean � S.E. (error bars) of 3–5 independent experiments. E–H, ceramide is unable to rescue AMPAR decrease in CPT1C KO neurons. Soluble C6-ceramide (1.5
�M) or vehicle (DMSO) was added to hippocampal neurons at 7 DIV. L-Serine-D7 (4 �M) was added at 13 DIV. Cells were collected at 14 DIV, and AMPAR levels
were determined by immunoblotting. I and J, CPT1C-induced expression of AMPARs. Neurons obtained from CPT1C KO (I) and WT embryos (J) were infected
with lentiviral CPT1C-IRES-GFP (CPT1C) or GFP alone (EV). At 14 DIV, protein levels were analyzed using immunoblotting. *, p � 0.05; **, p � 0.01; ***, p � 0.001.

CPT1C Regulation of AMPAR Expression

OCTOBER 16, 2015 • VOLUME 290 • NUMBER 42 JOURNAL OF BIOLOGICAL CHEMISTRY 25553

 at U
A

B
/FA

C
. M

E
D

IC
IN

A
 on O

ctober 29, 2015
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


different; n 	 6; ANOVA; Fig. 6E). These data indicate that
CPT1C does not regulate AMPARs at the transcriptional level
and suggest that CPT1C is directly involved in protein
turnover.

CPT1C Is Not Involved in AMPAR Degradation—The reduc-
tion in AMPAR protein levels observed in CPT1C-deficient
neurons could be explained by enhanced degradation. To assay
this possibility, we treated cells with a protein translation inhib-
itor, cycloheximide, and measured the decrease of AMPAR
protein levels for 24 h. Results showed that GluA1 and GluA2
basal degradation was not enhanced in CPT1C KO neurons
(not significantly different; n 	 3; t test; Fig. 7A). In fact, there is
a tendency in the opposite direction: a decrease in the rate of
degradation, which may be due to the lower levels of synaptic
AMPARs in those cells.

To further explore the degradation hypothesis, we analyzed
whether activity-dependent GluA1 degradation was altered in
CPT1C KO neurons. It is well described that chemical long
term depression (chemLTD) triggers a persistent decrease in
total GluA1 levels (22), a mechanism involving the proteasome
(23). After NMDA treatment, the total levels of GluA1
decreased in both WT and CPT1C-deficient neurons (94.7 �
1.5% in WT versus 73.1 � 7.8% in KO; n 	 3; not significantly
different; t test; Fig. 7B), indicating that GluA1 degradation was
not increased in CPT1C KO cells. Interestingly, CPT1C protein
levels were also decreased in response to chemLTD (100.0 �

12.5% for vehicle versus 50.8 � 11.0% for NMDA in WT; n 	 3;
p 	 0.042; t test; Fig. 7C), confirming the correlation between
CPT1C and GluA1 expression.

CPT1C Regulates GluA1 Protein Synthesis—Because we did
not observe significant differences at the level of transcription
or degradation, we then explored whether CPT1C deficiency
directly affected AMPAR protein synthesis. For this purpose,
we measured GluA1 accumulation for 3 h after chemLTD by
treating cultured neurons with inhibitors of proteasome and
lysosome function to block protein degradation. We performed
this analysis after chemLTD due to the very low AMPAR syn-
thesis observed under basal conditions. As expected, an
increase in GluA1 protein levels was detected in neurons from
WT mice, whereas this increase was totally blocked in CPT1C
KO neurons (145.2 � 33.6% for WT versus 5.3 � 11.9% for KO;
n 	 3; p 	 0.0171; t test; Fig. 7C). Next, we used the bio-orthog-
onal noncanonical amino acid tagging method, which uses click
chemistry to label methionine in newly synthesized proteins
(see “Experimental Procedures” for a detailed description) to
directly measure the de novo synthesis of GluA1 protein in both
genotypes. WT or CPT1C KO hippocampal neurons were met-
abolically labeled with azidohomoalanine, and after conjuga-
tion to biotin, newly synthesized proteins were purified using
NeutrAvidin beads. Immunoblotting of biotin-azidohomoala-
nine-labeled samples developed with NeutrAvidin showed sim-
ilar total levels of the de novo synthetized proteins in both types
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of cells (Fig. 7D, left). In contrast, the levels of newly translated
(nascent) GluA1 protein in KO neurons were highly decreased
compared with WT ones (Fig. 7D, right), indicating that the
decrease observed in total levels of GluA1 comes from the
reduction in protein synthesis. The voltage-dependent anion-
selective channel, a mitochondrial protein not regulated by syn-
aptic activity, did not show significant changes.

Because CPT1C is an ER protein, we wanted to determine
whether the decrease in GluA1 synthesis was the result of a
hypothetical ER stress response caused by CPT1C deficiency.
For this purpose, we analyzed the levels of different effectors of
the unfolded protein response pathway (24). We studied the
levels of phospho-PERK (RNA-activated, protein kinase-like
ER-resident kinase), phospho-EIF2 (eukaryotic initiation factor
2�), ATF4 (activating transcription factor 4), and GADD34 (a
subunit of an EIF2-directed phosphatase) by immunoblotting;
however, the unfolded protein response was not activated
under basal conditions in CPT1C-deficient neurons (Fig. 7E).

CPT1C Is Required for Brain-derived Neurotrophic Factor
(BDNF)-induced GluA1 Synthesis—It has been recently
described that BDNF activates GluA1 translation through phos-

phorylation of mTOR (25). Therefore, we decided to explore
whether CPT1C was necessary for BDNF-induced GluA1 syn-
thesis. As expected, BDNF treatment was found to increase
GluA1 protein levels in WT neurons; however, this increase
was blocked in CPT1C KO cells (1.00 � 0.03 for WT versus
1.30 � 0.10 for WT with BDNF; p � 0.05; 0.60 � 0.06 for KO
versus 0.60 � 0.06 for KO with BDNF; WT versus KO p � 0.01;
WT with BDNF versus KO BDNF p � 0.001; n 	 8; ANOVA;
Fig. 8, A and B). Although Akt and ERK (well known BDNF
downstream factors) were activated by the neurotrophin in
both WT and KO neurons (for phospho-AKT: 1.00 � 0.08 for
WT versus 1.64 � 0.11 for WT with BDNF; p � 0.001; 0.78 �
0.08 for KO versus 1.34 � 0.12 for KO with BDNF; n 	 8;
ANOVA (Fig. 8C); for phospho-ERK: 1.00 � 0.09 for WT versus
4.78 � 0.42 for WT with BDNF; p � 0.001; 0.73 � 0.07 for KO
versus 3.97 � 0.40 for KO with BDNF; n 	 8; ANOVA (Fig.
8D)), BDNF-induced mTOR phosphorylation was inhibited in
KO cells (1.00 � 0.15 for WT versus 1.61 � 0.24 for WT with
BDNF; p � 0.05; 0.98 � 0.1 for KO versus 0.62 � 0.17 for KO
with BDNF; WT with BDNF versus KO BDNF p � 0.01; n 	 8;
ANOVA; Fig. 8E).
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FIGURE 6. Gria1 and Gria2 mRNA levels in CPT1C KO animals. A–C, hippocampi were dissected from the following WT and CPT1C KO specimens: 17-day post
coitus fetuses and 0-, 10-, 21-, 60-, and 120-day-old mice. Cpt1c (A), Gria1 (B), and Gria2 (C) mRNA levels were determined by real-time PCR. Gapdh was used as
a housekeeping gene. Graphs show the mean � S.E. (error bars) of 3 animals/group. D, AMPAR mRNA levels detected at 14 DIV in WT or CPT1C KO hippocampal
neurons in culture. Results are shown as mean � S.E. in three independent experiments performed in duplicate. E, Gria1 and Gria2 levels in WT neurons infected
with lentiviral CPT1C. Results are shown as mean � S.E. in two independent experiments performed in triplicate.
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Recently, it has also been described that phosphorylation of
AMPK triggers GluA1 translation (26). Interestingly, CPT1C
KO neurons show a reduction in the phosphorylation of this
kinase under basal conditions (1.00 � 0.07 for WT versus
0.41 � 0.04 for KO; n 	 8; p � 0.001; t test; Fig. 8, F and G). All
of these data indicate that CPT1C is involved in GluA1 protein
synthesis regulation under basal and stimulated conditions.

Discussion

In this study, we reveal that CPT1C regulates AMPAR pro-
tein levels by modulating its translational efficiency. CPT1C

expression parallels GluA1 and GluA2 and other synaptic pro-
teins during the development of the hippocampus and cultured
hippocampal neurons. Moreover, CPT1C deficiency or CPT1C
overexpression results in a specific decrease or increase, respec-
tively, in total GluA1 and GluA2 levels without any change in
their mRNA levels or degradation rate. The reduced expression
of AMPARs results in reduced synaptic AMPAR content and
diminished synaptic transmission in the hippocampal neurons
of CPT1C KO mice, which may explain the impairment in den-
dritic spine maturation as well as the learning deficits we
described previously in those mice (3).
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CPT1C Interaction with AMPARs—GluA1 and GluA2 were
the first identified partners of CPT1C (9). The authors of that
study demonstrated that CPT1C position within the macromo-
lecular complex of AMPARs was more peripheral than other
associated AMPAR constituents, but it appears to be one of the
most abundant proteins of native AMPAR complexes in rodent
brain solubilized membrane fractions. Unlike other AMPAR
auxiliary proteins, CPT1C equally interacts with AMPARs in
the hippocampus, cortex, and cerebellum (10), and CPT1C dis-
plays very similar richness profiles in AMPAR complexes
across all brain regions (11). In the present study, we confirm
the interaction of CPT1C with AMPARs in hippocampal neu-

rons and show that CPT1C does not interact with other gluta-
mate receptor constituents, such as GluN2A or stargazin. Inter-
estingly, we observed a stronger interaction between CPT1C
and GluA1 than between CPT1C and the GluA2 AMPAR sub-
unit, suggesting that CPT1C has a greater influence on that
subunit. Indeed, functional studies on expression systems have
demonstrated that CPT1C enhances surface expression of
homomeric GluA1 but has no effect on homomeric GluA2 (9),
supporting the hypothesis of subunit specificity. The fact that
CPT1C co-localizes with AMPARs only at the ER level and not
at the Golgi apparatus or at the plasma membrane (12),
together with the high abundance of CPT1C in hippocampal
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AMPAR complexes, suggests that it could be involved in
AMPAR synthesis or in AMPAR mobility and export from the
ER to the surface, ultimately controlling AMPAR synaptic func-
tion. Recently, it has been demonstrated that CPT1C is
involved in GluA1 trafficking (12). In the present study, we
demonstrate that CPT1C is involved in GluA1 protein synthe-
sis, confirming the role of CPT1C in both processes and indi-
cating that CPT1C may be a key component in AMPAR home-
ostasis when located in the ER. It is important to note that
biophysical gating properties of surface AMPARs (single chan-
nel conductance, peak open probability, and desensitization
kinetics) are not modulated by CPT1C (12).

CPT1C Expression Profile—Interestingly, the CPT1C expres-
sion profile during hippocampal maturation after birth or dur-
ing neuronal maturation in primary cultures resembled those of
GluA1 and GluA2. In the hippocampus, the three proteins
increased after birth, reaching their maximum values after
weaning, and in hippocampal cultures, they also increased over
DIV, the maximum taking place at 14 DIV. This expression
profile, which is followed by other synaptic proteins, suggests
that CPT1C function is closely related to synaptic function. In
fact, activity-dependent degradation of AMPARs induced by
chemLTD also coincides with a decrease in CPT1C protein
levels, indicating a parallelism in CPT1C and AMPAR expres-
sion not only in terms of development but also in synaptic
plasticity.

CPT1C Regulation of AMPAR Translation—Unlike other
auxiliary proteins of the AMPAR complex that influence
AMPAR trafficking, kinetics, and channel properties (27),
CPT1C improves AMPAR translation efficiency. We show that
the regulation of AMPAR expression by CPT1C is not exerted
at the transcriptional level; nor is the basal degradation of
AMPARs enhanced in KO CPT1C cells. By contrast, we clearly
demonstrate that CPT1C regulates de novo synthesis of GluA1
under basal conditions using labeled methionine and that
GluA1 synthesis after chemLTD is dependent on CPT1C avail-
ability. It would be interesting to study whether other synaptic
stimulus, such as long term potentiation, which induces the
delivery of AMPAR at the synaptic level, could regulate
AMPAR synthesis mediated by CPT1C.

Few proteins have been previously related with AMPAR syn-
thesis. It has been demonstrated that BDNF treatment of hip-
pocampal neurons triggers GluA1 translation through phos-
phorylation of mTOR (28). The activation of mTOR blocks the
translation repressor 4E-BP2, which selectively inhibits the
synthesis of GluA1 in hippocampal pyramidal neurons, result-
ing in an increase of GluA1 protein translation (29). mTOR has
been implicated in the regulation of dendritic growth (30, 31),
spine formation (31–33), and synaptic function (32, 34). In the
present study, we demonstrate that CPT1C KO neurons are
unable to synthetize GluA1 in response to a BDNF stimulus;
nor are they able to phosphorylate mTOR. It is unknown
whether an activation of 4E-BP2 could explain the reduced
expression of AMPARs in CPT1C-deficient neurons; however,
our results suggest that CPT1C acts upstream from mTOR acti-
vation. CPT1C does not seem to regulate the PI3K/AKT path-
way, because BDNF-induced phosphorylation of AKT at serine
473 is not impaired in CPT1C-deficient neurons. We are cur-

rently performing proteomic approaches to elucidate the
mechanism by which CPT1C regulates GluA1 translation. The
fact that we do not observe a complete loss of AMPARs in
CPT1C KO neurons highlights the role of other mechanisms
involved in AMPAR translation, such as the regulation of initi-
ation and elongation by CPEB3 (35) or the control of expression
by miRNA501-3p (36). Recently, it has been demonstrated that
the activation of the energy sensor AMPK is involved in GluA1
translation (26). In our model, we observe a strong decrease in
the phosphorylation of this kinase in CPT1C KO neurons.
Interestingly, CPT1C has been previously associated with
mTOR and AMPK in situations of energy homeostasis and
metabolic stress (5, 6, 37–39). CPT1C might be a link between
energetic metabolism and learning through the direct regula-
tion of AMPAR synthesis. We speculate that CPT1C is a sensor
of the energetic status of the neuron through its ability to bind
malonyl-CoA (2), an intermediate in the fatty acid synthesis,
whose cellular levels in hippocampus fluctuate during fasting
and feeding (40). In fact, it has been described that the regula-
tion of energy metabolism contributes to AMPAR synaptic
incorporation (41), synaptic plasticity (42, 43), and memory pro-
cesses (44).

Synaptic Function in CPT1C KO Mice—Our data from
mEPSCs demonstrate that AMPAR synaptic transmission is
reduced in CPT1C KO animals, although the specific subunit
composition seems not to be altered. These data correlate per-
fectly with the reduced quantity of both GluA1 and GluA2
receptors we observed in synaptic puncta in CPT1C KO hip-
pocampal neurons. We propose that the 25– 40% reduction in
synaptic AMPARs is mainly due to the 40 –55% decrease in the
total levels of GluA1 and GluA2, although we cannot rule out
that other mechanisms, such as trafficking, are involved.

Interestingly, in CPT1C KO neurons, the number of PSD95
puncta increases, whereas the area of the PSD95 puncta and the
quantity of AMPARs in synaptic puncta diminishes. These data
suggest that the number of immature synapses is increased,
whereas the number of functional synapses is decreased in
CPT1C KO cells, which is in agreement with our previous
observation of increased filopodia and reduced mature spines
(3) in cultured hippocampal neurons. It is well known that
filopodia contain fewer synaptic AMPARs than shorter regular
spines (45). Therefore, reduced levels of synaptic AMPARs in
CPT1C-deficient hippocampal neurons may contribute to the
immature morphology of the dendritic spines.

We had previously demonstrated that the treatment of
CPT1C KO neurons with exogenous ceramide increased spine
maturation and reversed the KO phenotype (3). However,
exogenous ceramide was not able to rescue the depletion of
GluA1 and GluA2 levels observed in CPT1C KO cells. These
results indicate that ceramide is not modulating AMPAR
expression itself but might be necessary for other mechanisms
in spinogenesis. In fact, other studies have described the
involvement of GM1 ganglioside (a ceramide derivative) in the
regulation of GluA2-containing AMPAR synaptic content by
acting on endocytosis (46).

In summary, our results demonstrate that CPT1C is neces-
sary for an efficient translation of AMPARs. In CPT1C-defi-
cient neurons, total AMPAR levels are decreased, causing syn-

CPT1C Regulation of AMPAR Expression

25558 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 290 • NUMBER 42 • OCTOBER 16, 2015

 at U
A

B
/FA

C
. M

E
D

IC
IN

A
 on O

ctober 29, 2015
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


aptic transmission impairment and most likely the learning
deficits observed in CPT1C KO mice. In contrast, CPT1C over-
expression increases AMPAR synthesis. The rise in AMPAR
levels may be not sufficient to increase synaptic activity (47);
however, it probably ensures an adequate GluA1 and GluA2
reservoir and availability for synapsis requirements. Because
AMPAR disruption is a major causative agent of synaptic dys-
function in neurodegenerative diseases and aging (27), we
hypothesize that CPT1C modulation could constitute a new
tool to prevent AMPAR decline and learning deficits during
aging and in neurodegenerative disease.
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