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Abstract 

The aim of this work was to evaluate the composting process of poultry manure mixed with 

other complementary organic wastes. Two mixtures (Treatment 1 and 2) were prepared 

with corn bare cobs, sawdust, shavings and manure. Temperature, pH, electrical 

conductivity, organic matter loss, total organic carbon, solved organic carbon, N loss, 

ammonium and nitrate concentration, laccase activity and respiration indices were 

analyzed. These variables showed similar tendencies during the composting process for 

both treatments. A peak of biological activity, organic matter mineralization and salts 

release were observed after 6 days of process. Treatment 2 showed higher concentration of 

solved organic carbon and higher organic matter loss than those of the mixture with less 

manure (Treatment 1). Laccase activity increased when solved organic carbon dropped. 

Compost from Treatment 1 showed lower phytotoxic effects than that of Treatment 2, 

probably due to a low salt content. As conclusion, it was observed that 60 % content of 

poultry manure in the mixture does not affect the composting process. However, the final 

product is less adequate for agricultural purposes than a mixture with less content of 

manure. Finally, it can be stated that these wastes valorization in the form of compost adds 

value to the materials, closing the biogeochemical nutrients cycle. 
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1. Introduction 

Poultry activity is steadily growing worldwide. In Argentina, during 2010, egg 

production showed a 4 % increase compared to 2009 [1]. 

Production increase can be partly explained by the degree of intensification that has 

been implemented in the production systems in last years. This kind of systems causes large 

accumulations of manure. This accumulation, which does not have a clear destination in the 

Pampean region of Argentina, poses several threats to the environment. The uncontrolled 

decomposition of hen manure releases NH3, N2O and CH4 to the atmosphere. Dekker et al. 

[2] found that the average emission per layer was 144 ± 13.5 g y-1 for NH3, 1.11 ± 0.33 g y-1 

for N2O and 27.4 ± 5.19 g y-1 for CH4. These wastes could pollute soil and water if 

periodically applied as a direct organic amendment (without treatment) to soils. 

Stabilization of organic wastes through composting can prevent environment 

damage and present a positive balance when applied to soil [3]. Although composting has 

been extensively studied, to the best of our knowledge, there are no published references on 

the composting of wastes produced in the Pampean region. This region is facing the 

problems of an important economical growth that must be sustainable regarding the waste 

management strategies that will be applied in the future. However, the composting process 

of manure requires the presence of an adequate bulking agent and an extra source of carbon 

for balancing the C/N ratio. The benefits of this strategy are a reduction in nitrogen losses 

and a high compost agricultural value.  

Therefore, the aim of this work was to evaluate different mixtures of wastes that 

may increase the use of poultry manure in the composting process with other wastes of high 

production in the region. The resulting mixture must permit a correct development of the 



4 

 

composting process and an adequate evolution of the main parameters, where the waste is 

generated, and without a big investment. A secondary objective of this study is to explore 

the possibility of using the compost obtained as growing media for horticultural use. 

 

2. Materials and Methods 

2.1. Composting experiments 

The experiments were carried out in the IMyZA, INTA (Buenos Aires, Argentina). 

The poultry manure (PM) was obtained from automatized sheds of hens for egg 

production of the Zucami® type, located in a farm in Mercedes, Buenos Aires (34° 

42´43.18´´ S; 59° 31´19.91´´O). This waste was mixed with corn bare cobs (CBC), sawdust 

(SA) and shavings (SH). The wastes used came from the same zone (Table 1). 

Percentages in volume for Treatment 1 (T1) contained 40% PM (53% in dry mass), 

20% CBC (9% in dry mass), 20% SA (24% in dry mass) and 20% SH (14% in dry mass), 

whereas treatment 2 (T2) contained 60% PM (71% in dry mass), 20% CBC (8% in dry 

mass) and 20% SA (21% in dry mass) Table 1 shows the characterization of wastes and 

initial mixtures to be composted. 

Mixtures were homogenized using a 0.5 m3 capacity mixer at the beginning of the 

trial. Piles were constructed in a trapezoidal shape (1.5 m height, 2 m wide and 2 m long). 

Each treatment was carried out using three replicates of 2 m3 each, in piles of an initial 

height of 1.5 m and approximately 1 Mg of total weight. The composting process lasted 83 

days.  

Composting piles were manually turned every 3 days during the first active 

decomposition phase of the process and every 5 days when the pile temperature was similar 
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to environment temperature (maturation stage). The moisture content was maintained 

through irrigation and taking into account the local precipitation. Samples (about 10 kg) 

were weekly taken from the composting piles at three different locations (days 0, 6, 13, 21, 

27, 34, 41, 48, 55, 62, 69, 76 and 83) and homogenized to obtain a representative aliquot of 

1 kg per pile [4]. Table 2 summarizes the variables measured each sampling day. 

 

2.2. Composting monitoring and compost characterization 

Environment temperature and local precipitation were daily recorded at the 

meteorological station of INTA. 

Seventeen parameters suggested by the TMECC [4] were monitored during the 

composting trials: temperature, pH, electrical conductivity (EC), moisture content, carbon 

to nitrogen ratio (C/N), bulk density (δ), total phosphorous (TP) and dissolved reactive 

phosphorous (DRP), calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), total 

organic carbon (%TOC), solved organic carbon (%SOC), dry matter (%DM), organic 

matter (%OM), total nitrogen (NT) and ashes (%Ash) percentages. The percentages of OM 

and NT losses were determined using the equations 1 and 2 as suggested by Paredes et al. 

[5]: 

 

OM loss (%) = 100–100[X1 (100–X2)]/[X 2 (100–X1)]  Eq. (1) 

NT loss (%) = 100–100 (X1  N2)/(X2 N1)    Eq. (2) 

 

where: N1 and N2 are the initial and final NT concentrations and X1 and X2 are the initial 

and final ash concentrations, respectively. 
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Ammonium (NH4
+) and nitrate (NO3

-) concentrations were measured by means of 

the micro distillation method [6]. 

Laccase enzymatic activity (LEA), expressed as µmol min-1 g DM-1, was 

determined spectrophotometrically (420 nm) by measuring the oxidation of 0.5 mM ABTS 

(2.2´-azinobis (3-ethyl benzothiazoline-6-sulfonate) in 0.1 M acetate buffer, pH 3.6 [7]. 

Biological activity was measured using the static respirometric index based on the 

OM content (SRI) [4]. A static respirometer was built according to the original model 

described by Iannotti et al. [8] and modified following the TMECC [4] recommendations. 

The drop of oxygen content in a flask containing a sample was monitored with a dissolved 

oxygen meter (Lutron 5510, Lutron Co. Ltd., Taiwan). The rate of respiration of the sample 

(Oxygen Uptake Rate, based on OM content) was calculated from the slope of oxygen level 

decrease according to the standard procedures [8]. 

Ecotoxicology bioassays were carried out with the final composts, using two 

species: Lactuca sativa (lettuce: L) and Raphanus sativus (radish: R). Seed germination and 

the root elongation were measured, according to US EPA standardized protocols [9]. These 

measurements were used to calculate the germination index (GI) according to Zucconi et al. 

[10, 11] and the root growth index (RGI) [12]. 

Considering the observed toxicity effect, RGI values have been classified within 3 

categories: Root elongation inhibition (I): 0 < RGI > 0.8; Non-significant effects (NSE): 0.8 

≤ RGI ≥ 1.2; Root elongation stimulation (S): RGI > 1.2 [13]. 

According to Barbaro et al. [14], the results from the agricultural valorization of the 

produced compost were analyzed. The use of different substrates formulated with T1 (C1), 
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T2 (C2) and pine bark (PB) composts in different proportions were evaluated in the Salvia 

splendens L. and Impatiens walleriana hybrids Hook. for plants development. 

 

2.3. Statistical analyses 

Variables were analyzed by ANOVA and with the Kruskal-Wallis non parametric 

test when the data did not satisfy the assumptions. A p value of 0.05 was considered to 

establish significant differences. The variables measured in the final composts were 

analyzed by principal components analysis. Statistical analyses were run using the statistics 

program InfoStat version 2010, Grupo InfoStat, Córdoba, Argentina. 

 

3. Results and Discussion 

3.1. Physicochemical characterization of composted wastes 

The results showed in Table 1 indicate that the principal limitations of PM for 

decomposition in composting are a slightly alkaline pH, a high salt content, high δ and low 

porosity [15] and low C/N ratio. To overcome these limitations and improve the aerobic 

biodegradation of PM, other three typical abundant wastes in the egg productive region 

were mixed with PM. The addition of SA, CBC and SH to PM improved the porosity and 

the C/N ratio of the mixtures proposed (Table 1). 

 

3.2. Evolution of routine parameters of the composting process 

Both treatments showed the typical composting thermophilic profile [3]. According 

to Ugwuanyi et al. [16], temperature above 45°C could be considered as thermophilic and 

suitable for killing pathogenic microorganisms. They highlighted the need of reaching the 
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minimum temperature of 45°C, for at least 5 days. In this assay, the thermophilic phase 

lasted 35 and 37 days for T1 and T2 respectively, which is a clear indication of compost 

sanitation. Within the thermophilic phase, two peaks were observed in both treatments. 

During the first weeks, the temperature increased to 60-65°C. T1 remained within this 

range for 13 days, whereas in T2 it lasted 8 days. The maximum temperature was reached 

at day 15 and then a drop in this parameter was observed. This moment corresponded to a 

5-days precipitation period, which could have favored the temperature decrease. A new 

temperature rise was observed from day 25 until day 40. Then, the composting piles started 

to cool down to a second stage of maturation, from day 55, when temperature was similar 

to that of the environment (Fig. 1). 

The initial pH values in both treatments were close to the upper limit of the range 

(6-8) suggested by Rink [17] as suitable for aerobic degradation. T1 showed an average 

initial value of 8.3 ± 0.2, while the initial value for T2 was 7.9 ± 0.3 (Table 1). Although T2 

presented more amount of PM, no significant differences were observed in pH for both 

mixtures. The alkaline condition of both mixtures was a consequence of the high content of 

PM, which presents an alkaline pH (Table 1). The evolution of this parameter was similar 

in both treatments (Fig. 2a). Extreme pH levels were 7.8 and 9.0 for T1 and 7.9 and 9.0 for 

T2. Bustamante et al. [18] related the pH increase during the first phase with the high 

concentration of NH3 released from proteins and aminoacids decomposition. The highest 

pH values (T1: 8.9 ± 0.1, T2: 9.1 ± 0.1) recorded in the first stage of the composting 

process also correlated with high temperature (T1: 63.0 ± 0.5ºC, T2: 61.0 ± 0.5ºC) reached 

the same days (Fig. 1), which again are associated to the NH3 formation and release [19]. 

Later, the NH4
+ profiles and N loss during the process for both treatments support the 
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hypothesis of the formation and release of NH3 during the first part of the process, which 

presents an exponential correlation with temperature in the first active decomposition stage 

of composting, and a soft linear evolution during the maturation stage [19].   

Moisture percentage of the composting piles was adjusted based on the results of 

the squeeze test (4) by watering. When it was necessary, water was sprayed over the 

material and mixed thoroughly. Fig. 2b show the moisture profiles for T1 and T2 and the 

days when the piles were watered. Rainfall days are also shown in Fig. 2b. The cumulative 

precipitation was of 216.3 mm after 83 composting days. The initial moisture percentage 

was similar (72 %) for T1 and T2 (Table 1). Both values were over the optimum moisture 

percentage range of 40-60% [3]. However, the results obtained by Petric et al. [20] suggest 

that the initial moisture percentage should be around 69%, when composting PM. For this 

type of wastes, Ahn et al. [21] found that the optimum moisture percentage was in the range 

of 60-80% depending on the water holding capacity. In the case under study, as seen in Fig. 

2b, the moisture content decreased to 60% in the first weeks of the process, showing a the 

correct evolution of the process. In both treatments, the moisture percentage remained 

within the range of 52-72%. An increase of the amount of water content in the piles was 

observed from day 40, corresponding to 3 consecutive days with a cumulative precipitation 

of 55 mm.  

The initial EC showed average values of 18.7 ± 4.4 and 21.4 ± 1.6 mS cm-1 for T1 

and T2, respectively (Table 1). The profile evolution of EC for T1 and T2 is shown in Fig. 

2b together with moisture content profiles. This high salt concentration can be related to the 

high PM content in the mixtures (Table 1). The maximum EC value was recorded 6 days 

after the beginning of the experiment in both treatments, coinciding with the highest OM 
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loss and with an important decrease of moisture content. The fast mineralization rate 

observed between days 6 and 13 could have resulted in the release of salts. Also, mineral 

salt leaching can contribute to the decrease of EC observed in Fig. 2b.  From day 6 on, this 

parameter decreased to reach a final average value of 2.0 ± 0.5 and 3.4 ± 0.1 mS cm-1 for 

T1 and T2, respectively. 

 

3.3. OM decomposition, biological activity and N dynamics 

OM and TOC contents were higher in T2 than T1 due to the higher content of PM 

in T2 (Table 1). In both treatments the %OM loss was more pronounced during the first 

weeks of the experiment, together with higher temperatures and a higher biological activity 

as shown by the SRI values during this period. Fig. 3a shows a progressive drop in the SRI 

up to day 55 in both treatments. However, from this moment an increase in the biological 

activity was observed in both treatments. A relative increase of biological activity was also 

reflected in the temperature profiles and could be due to a partial degradation of more 

recalcitrant materials [22]. Although we do not have a definitive explanation about this 

specific period, all the indicators (SRI, temperature, drop of SOC, etc.) seems to show that 

this could be due to the breakdown of laccase typical substrates [23]. A faster drop in 

activity was observed for T1 indicating a higher degradation of OM during the first days of 

the process. Nevertheless, the SRI profile for T2 showed a pronounced drop from the day 

20 on, suggesting that biodegradable OM was present in this mixture during a long period 

of time. 

The highest OM loss in T1 (31 ± 1) was observed at day 13, while in T2 it was 

observed at day 6 (29 ± 2). By day 33, the accumulated percentage of OM loss was of 69 ± 
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8 for T1 and 78 ± 6 for T2. From this moment on, the OM loss was relatively stable 

reaching final values of 80 ± 4 for T1 and 84 ± 2 for T2. Ruggieri et al. [24] and Colón et 

al. [25], also reported high losses of OM during the first phase of the process, followed by a 

period of slower degradation and respiration activity. 

The initial levels of %SOC decreased in both treatments throughout the experiment. 

Hsu and Lo [26] correlated this reduction to the breakdown of hemicellulose, sugars, 

phenolic substances, organic acids, peptides and other easily biodegradable substances. 

Laccase is responsible for the hydrolysis of the main fibers found in organic wastes [23]. In 

T1, LEA started to increase at day 13, when the SOC was 41.1%, whereas in T2 started to 

increase at day 27, when the SOC was 35.6 % (Fig. 3b). Both treatments achieved their 

maximum LEA in different moments. The activity peaked at day 41 for T1, while T2 did it 

at day 55 (Fig. 3b). These data seems to be related with the biological activity measured 

with the SRI and could be due to the composition of mixtures. The higher content of SOC 

in T2 could be delaying the degradation of lignocellulosic materials. Also, T1 was richer in 

lignocellulosic material (20 % of SH). De Bertoldi et al. [27] have observed similar effects 

when composting lignocellulosic materials. On this regard, fungi tend to grow in the later 

stages of composting and have been shown to attack polymers such as hemicellulose, lignin 

and cellulose. Tiquia [28] found that extracellular enzyme activities were greater in older 

compost than in younger compost. These previous studies seem to support the observations 

about the LEA determined for both mixtures. 

The N dynamics were similar to that of the OM. The highest decrease in N was 

detected during the first 6 days, with an average of 32 ± 15 % and 58 ± 10 % for T1 and T2, 
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respectively, as shown in Fig. 3. Thus, the highest OM loss was recorded during the first 13 

days, jointly with a pH close to 9 and high temperature.  

These conditions are often coupled with the organic N mineralization and provoke 

the release of NH4
+ and NH3 gas [19]. Fig. 3 shows the coincidence in time of the highest 

values of N losses with the highest NH4
+ concentration, which confirm previous research 

studies [19]. NH3 generation tends to increase with pH, since uric acid breakdown rise 

under alkaline (pH > 7) conditions, and the effect of uricase is maximum at pH of 9 [28]. 

Regarding this, NH3 emissions can be inhibited by acidic compounds that decrease the 

conversion of NH4
+ to NH3. These compounds can also inhibit enzymes involved in the 

formation of NH3, decreasing its production [29]. In this case, the initial content of NH4
+ in 

T2 was significantly higher than in T1. Although the NH4
+ dynamics were similar for T1 

and T2; the decrease of NH4
+ content was significantly delayed in T2. The higher amount 

of PM in the initial mixture (60%) in T2 could be responsible for this delay. 

Regarding the C/N, the initial values were 24 ± 5 and 14 ± 2 for T1 and T2, 

respectively (Table 1). The C/N evolution of T1 and T2 is shown in Fig. 2a, whereas in Fig. 

4 the N loss and NH4
+ are presented. There is an important increase of C/N ratio on day 6 

of process due to by the N loss as previously commented. After this moment, this ratio 

decreased at the beginning of the composting process, when the OM loss reached its 

maximum. Comparable results were found by Ferrer et al. [30] and Bustamante et al. [18]. 

However, it has to be emphasized that most of the published results on composting and the 

evolution of C/N are referred to the overall C/N, which is chemically determined and can 

be very different from biodegradable C/N [31]. Accordingly, it is possible that SOC 
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variations are more reliable to interpret the available carbon present in each mixture, rather 

than TOC or total OM.  

 

3.4. Compost quality and agricultural valorization  

The characteristics of the final composts are summarized in Table 3. In order to 

compare these properties, the recommended values of the most important parameters for 

the use compost in growing media [32] and the minimum content of some nutrients 

according to the Regulation proposal for organic fertilizers in Argentina [33] are included 

in Table 3.  

pH values in both treatments were slightly alkaline. Compost with pH levels close 

to 8 decreases the heavy metals transference to the food chain, reducing their phytotoxicity 

potential [12]. On the contrary, the N availability was not affected by pH levels, whereas P 

was mainly associated to Ca2+ ion, resulting in TP and DRP concentrations similar for both 

treatments, reaching an average availability of 5 ± 1 and 4 ± 1 (%) for T1 and T2, 

respectively (Table 3). 

The EC, Ca, Mg, Na and K contents were significantly higher in the compost 

obtained in T2, according to the initial amount of manure of this mixture. EC and Ca 

contents are above the recommend values for growing media [32]. One possible strategy to 

improve these parameters is to formulate mixtures with wastes with low values of EC.  

The final values of C/N (T1: 14.4 ± 0.7 and T2: 13.6 ± 0.8) suggest that both 

composts have an acceptable maturity level, considering that these values are lower than 20 

[29, 32]. 
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The stability limit of the SRI for compost samples is between 0.5 and 1 mg O2 g
-1 

OM h-1 [4, 22, 34]. Both composts reached SRI values below this stability limit, with 

average values of 0.25 ± 0.05 and 0.45 ± 0.04 mg O2 g
-1 OM h-1 for T1 and T2, respectively 

(Table 3). 

According to the principal component analyses, the highest values for pH, EC, Ca, 

Mg, Na, K, N, TP and δ were associated to T2, whereas NO3
- concentration, C/N, GIL and 

GIR were associated to T1 (Fig. 5). The RGIL was lower than 0.8 from 25 % in both 

composts. On the other hand, the RGIR was lower than 0.8 from 50 and 80 % of the 

compost T1 and T2, respectively. RGI values below 0.8 indicate inhibitory effects on the 

root growth [13]. The GI in both species was less affected in T1 compost. Fig. 5 shows that 

the GIL and GIR were inversely correlated to the salt content and the EC. As commented, 

the mixture with other materials with low salt content can improve the final use of these 

composts, especially from T2. Domènech et al. [35] compared two composts from two 

different wastewater treatment plants in several phases of the degradation process. They 

found that seed emergence was significantly affected by compost dosage but also by the 

time of composting.  

Both composts were mixed with PB compost in 20%, 50% and 80% [14]. The six 

formulated substrates were also compared with a Sphagnum commercial substrate as 

control. Each substrate was a treatment: 1) 80% C1 + 20% PB; 2) 50% C1 + 50% PB; 3) 

20% C1 + 80% PB; 4) 80% C2 + 20% PB; 5) 50% C2 + 50% PB; 6) 20% C2 + 80% PB; 7) 

Commercial substrate. Salvia splendens L. var. red and Impatiens walleriana hybrids Hook. 

f. var. Accent Pink Imp. were used. Each species was grown in the 7 treatments with five 

replicates. 
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All substrates total porosity (TPo) exceeded the 80% optimum value [36]. The 

substrates that showed significantly higher TPo percentages were the ones made of 80 % 

compost. On the other hand, significant differences were found in the water holding 

capacity (WHC), being higher in the substrates with 20% and 50% compost. The free 

airspace (FAS) higher values were found in the substrates with 80% compost. These results 

suggest the evaluated compost made of poultry manure improves aeration and reduces the 

WHC of the substrates. However, according to several authors [35,37] all the substrates 

presented an adequate WHC (24-40%) and a high FAS percentage (20-30%). 

Both substrates with 80% compost had the highest pH values (7.9 – 8.3) followed 

by the substrates with 50% (7.0 – 7.6) exceeding the optimum range established for most 

cultivated species according to Handreck and Black [38] (pH between 5.5 and 6.3). 

However, all values are in the range recommended for the use of compost as a growing 

media [32]. Therefore, the selected cultivated species will finally condition its use, and they 

will determine the dosage in the mixture with other substrates.  

The substrates with 80% C1, 50% and 80% C2 showed EC values higher than 1 dS 

cm-1 (1.1, 1.3 and 1.6 dS cm-1, respectively). If the substrate exceeds this value, it could 

lead to salinity problems, depending on the plant, environmental conditions, management 

practices and species characteristics [39]. 

The plants cultivated in the commercial substrate reached the greatest aerial and 

radicular dried matter (1.3 g and 0.5 g), followed by the plants developed in both substrates 

with 20% compost. The substrates with 50% C2 and, 80% C1 and C2 had EC higher than 1 

dS m-1. Salvia splendens plants grown in the substrates with 80% C2 died three days after 
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being transplanted. The Salvia splendens plants died from an EC of 1.6 dS m-1, while 

Impatiens walleriana died from 2 dS m-1 on. 

The aerial dried matter chemical analysis showed that both species plants developed 

in the commercial substrate and in the ones with 20% compost had a higher Ca and Mg 

concentration and a lower K concentration. On the other hand, the substrates with 80%, 

50% C1 and C2 has a higher K content but lower of Ca and Mg. These results suggest that 

there was an excessive K consumption and Ca and Mg adsorption inhibition [37]. Carmona 

et al. [39] mentioned the high salinity and the low WHC of most composts as one of the 

principal disadvantages. They suggested that it is necessary to mix composts with other 

materials to formulate a substrate. 

The substrates formulated with less percentages of C1 and C2 (20%) and with 50% 

C1 were the ones with a higher WHC and lower salinity, favoring the Salvia splendens and 

Impatiens walleriana plants development.  

 

4. Conclusions 

It can be concluded that the addition of sawdust, corn bare cobs and shavings to 

poultry manure improves its porosity, reduces the initial pH and balances its C/N ratio. 

Regarding the composting process, the thermophilic phase lasted over 30 days in both 

treatments, favoring pathogen elimination. However, the thermophilic phase was longer in 

T2 than T1. Differences in the rate of biodegradation were observed in both mixtures. 

According to compost characteristics, T1 showed lower phytotoxic effects than T2, 

probably related with the high salts content of T2. It was found that 60 % of poultry manure 

content in the mixture has no adverse effect in the composting process. Nevertheless, the 
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final product shows more agricultural use limitations than a mixture with less poultry 

manure. 

This problematic waste, once composted and in a correct dosage, could be used as a 

substrate component for ornamental plant cultivation closing the biogeochemical nutrient 

cycle. 

These results suggest that it is necessary further research about strategies to reduce 

the composting process time, such as the co-compost poultry manure with others wastes. 

The final use of these composts in agricultural applications is also worthy of investigation. 
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Table 1. Characterization of the wastes and the mixtures (T1 and T2). 

 

Parameter Units Agricultural Wastes Treatments 

PM CBC SH SA T1 T2 

pH  8.0 ± 0.3 6.3 ± 0.0 6.0 ± 0.1 7.6 ± 0.1 8.3 ± 0.2 7.9 ± 0.3 

EC mS cm-1 21.8 ± 0.6 1.3 ± 0.0 1.2 ± 0.0 0.8 ± 0.0 18.7 ± 4.4 21.4 ± 1.6 

δ g L -1 996 ± 41 95 ± 2 165 ± 7 265 ± 12 564 ± 62 663 ± 38 

Moisture % 73.9 ± 0.2 8.4 ± 0.1 10.9 ± 0.1 11.5 ± 0.1 72.4 ± 1.6 71.9 ± 1.0 

OM % 75.3 ± 1.6 96.8 ± 0.9 99.1 ± 0.1 98.9 ± 0.0 73.8 ± 3.0 80.8 ± 6.2 

Ash % 24.7 ± 1.6 3.2 ± 0.9 0.8 ± 0.1 1.1 ± 0.0 26.1 ± 3.0 21.6 ± 2.1 

TOC % 37.6 ± 0.8 48.4 ± 0.4 49.6 ± 0.0 49.5 ± 0.0 36.9 ± 1.5 40.4 ± 3.1 

SOC % 1.5 ± 0.6 0.7 ± 0.0 0.9 ± 0.1 1.4 ± 0.1 48.5 ± 5.8 79.5 ± 11.8 

NT % 6.2 ± 0.9 2.5 ± 0.1 1.7 ± 0.0 2.1 ± 0.0 1.6 ± 0.4 2.9 ± 0.4 

C/N % 6.2 ± 0.8 19.1 ± 0.2 29.1 ± 0.0 23.5 ± 0.0 23.5 ± 5.7 14.4 ± 2.2 

 

EC = electrical conductivity, δ = density, OM = organic matter, TOC = total organic 

carbon, SOC = dissolved organic carbon, NT = total nitrogen, C/N = carbon nitrogen ratio, 

PM = poultry manure, CBC = corn bare cobs, SH = shavings, SA = sawdust, T1 = 

treatment 1, T2 = treatment 2. 

 



24 

 

Figure Captions: 

 

Fig. 1 Temperature evolution of T1 and T2 and environment temperature 

Fig. 2 a) pH and C/N ratio evolution in T1 and T2; b) EC and moisture content evolution in 

T1 and T2. Watering of piles (full symbols) and rainfall days (empty symbols) are 

indicated.  

Fig. 3 a) OM loss (%) and SRI (mg O2 g
-1 OM h-1); b) SOC (%) and LEA (EU) evolution 

in T1 and T2 

Fig. 4 N losses (%) and NH4
+ concentration (mg g-1) evolution in T1 and T2 

Fig. 5 Principal component analyses of parameters determined in the final composts. 1, 2 

and 3 dots belong to the replicates of T1, 4, 5 and 6 dots belong to T2 
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