
 

 

 

 

This is the submitted version of the following article: Colón, J., et al. Towards the implementation 

of new regional biowaste management plans: environmental assessment of different waste 

management scenarios in Catalonia in Resources, conservation and recycling, vol. 95 (Feb. 

2015), p. 143-155, which has been published in final form at DOI 

10.1016/j.resconrec.2014.12.012 

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 

license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

http://creativecommons.org/licenses/by-nc-nd/4.0/


1 

Towards the implementation of new regional 
biowaste management plans: Environmental 
Assessment of different waste management 
scenarios in Catalonia 

Joan Colón1, Erasmo Cadena1, Ana Belen Colazo1, Roberto Quirós2, Antoni Sánchez1, Xavier 
Font1 and Adriana Artola1 

1 Composting Research Group. Department of Chemical Engineering. Universitat Autònoma de 
Barcelona. Bellaterra, Barcelona (Spain) 

2SosteniPrA Research Group, Institute of Environmental Science and Technology (ICTA), 
Universitat Autònoma de Barcelona, 08193 Edifici C Bellaterra (Barcelona), Spain 

Contact: Joan Colón, Universitat Autònoma de Barcelona, Departament d'Enginyeria Química, Escola 
d'Enginyeria, Edifici Q, Campus de Bellaterra, 08193- Cerdanyola del Vallès, Spain. Tel.: +34935814793, 
Fax.: +34935812013, e-mail address: joan.colon@uab.cat 

 

  



2 

Abstract 

In the present work, different scenarios for the treatment of the organic fraction of 

municipal waste at regional scale are proposed and assessed by means of LCA. The 

geographical area under study is Catalonia (Spain). The current Catalan waste 

management scenario treating 1,218 Gg of organic waste is analyzed and compared to a 

new scenario treating the same amount of waste but fulfilling the European Landfill 

Directive and the new recently approved Catalan waste management plan. As final 

disposal (incineration and sanitary landfill) of untreated municipal solid waste is not 

permitted, the new scenario includes increasing anaerobic digestion treatment of source 

selected organic fraction of municipal solid waste while maintaining the existing 

composting plants for this type of waste. Gaseous emissions treatment equipment will be 

provided when not installed in composting plants. Home composting is also included. 

Non-source selected organic fraction of municipal solid waste will be treated by 

composting. Different scenarios for sensitivity analysis have also been proposed dealing 

with the influence of transport, fugitive methane emissions from anaerobic digestion 

plants and the use of compost among other issues. The new scenario proposed decreases 

the impact in 5 out of the 6 impact categories studied (from a 49% in eutrophication 

potential to a 9% in ozone depletion potential). The inclusion of methane fugitive 

emissions in anaerobic digestion installations in impacts calculation impairs the 

environmental benefits of this type of treatment facilities (increasing global warming 

potential value up to a 31%). Improvement of landfill gas collection is of utmost 

importance in decreasing global warming potential.  
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Abbreviations 

LCA: Life Cycle Assessment 

MSW: Municipal Solid Waste 

OFMSW: Organic Fraction of Municipal Solid Waste 

SS-OFMSW: Source-Selected Organic Fraction of Municipal Solid Waste 

NSS-OFMSW: Non Source-Selected Organic Fraction of Municipal Solid Waste 

VOC: Volatile Organic Compounds 

Waste Treatments: 

AD: Anaerobic Digestion 

AWB: Aerated Windrows Composting with gaseous emissions Biofiltration 

AWC: Aerated Windrows Composting  

CT: In-vessel Composting 

HC: Home Composting 

TWC: Turned Windrows Composting 

Impact potentials: 

ADP: Abiotic Depletion Potential 

AP: Acidification Potential 

EUP: Eutrophication Potential 

GWP: Global Warming Potential 

OLDP: Ozone Layer Depletion Potential 

POP: Photochemical Oxidation Potential 
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1. Introduction 

Waste management operations including collection, valorization and/or treatment and 

disposal have suffered continuous changes within the last decades evolving from the 

simple form of collection and dumping to integrated solid waste management practices 

under a defined waste hierarchy and sustainability principles. Assessment of 

environmental, social and economic costs and benefits of the different waste management 

options is of growing interest. Thomas and McDougall (2005), members of the 

international expert group on life cycle assessment for integrated waste management, 

pointed Life Cycle Assessment (LCA) as an adequate tool to assess the overall 

environmental burdens of waste management proposals. 

Clift et al. (2000) presented a methodology for LCA application to integrated solid waste 

management on the light of the European Directive on Integrated Pollution Prevention 

and Control published in 1996 (and revised in 2008, Directive 2008/1/EC), which 

introduced in the European Union Member States legislation the need of considering 

industrial and other activities from a global point of view, including activities upstream 

and downstream the studied process. Laurent et al. (2014), who undertook a huge review 

of LCA studies on solid waste management systems, also highlight the strong dependence 

of the results reported on the local specificities. These authors conclude that, with 

exception of landfilling, with a poor environmental performance, there is no agreement 

among LCA results on the best treatment for organics, plastic, paper and mixed municipal 

solid waste. However, these authors recommend stakeholders in waste management to 

consider LCA as a tool to identify critical problems and strong aspects of the proposed 

options. Also, Cleary (2009) presented a wide review in this field, mainly regarding 

methodological aspects and concluding that the inventory data used in LCA play an 
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important role in results dispersion, also influenced by the unclear definition of system 

boundaries, methodological assumptions made or the different objectives of the studies. 

There are a significant number of papers on LCA of waste management systems applied 

at local or regional level, mainly comprising municipal solid waste (MSW). This is the 

case of Arena et al. (2003) who used LCA to quantify the relative advantages and 

disadvantages of different waste management schemes proposed in the Campania region 

(South Italy) or the work of Banar et al. (2009) in relation to MSW management in 

Eskisehir (Turkey), where alternatives should be proposed to the actual practice of 

dumping MSW in a landfill with neither liner nor biogas collection. Björklund and 

Finnveden (2007) also applied LCA in Sweden relating waste incineration in a Strategic 

Environmental Assessment (SEA) framework. Bovea et al. (2010) defined a large number 

of alternative MSW management strategies including collection systems, treatment and 

final disposal in a medium size Spanish municipality. Also, Fernández-Nava et al. (2014) 

presented different scenarios considering energy recovery options from MSW in Asturias 

(North of Spain).  

Legislative restrictions in waste management and treatment should be taken into account 

in scenarios proposal. Finnveden et al. (2009) reported different types of LCA scenarios 

depending on the type of question they were aimed to answer. Normative scenarios are 

those arising on how a specific target can be reached. The European Union Council 

Landfill Directive (99/31/CE) requires EU Member States to reduce the quantity of 

biodegradable waste ending up untreated in landfill sites by adopting measures to 

increase and improve waste reduction, recovery and recycling. In the particular case of 

the organic fraction of municipal solid waste (OFMSW), suitable valorization 

technologies proposed are composting and anaerobic digestion (European Commission, 

1999). Composting (at industrial or home scale) produces a final material (compost) that 
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can be used as soil amendment while anaerobic digestion stabilizes the waste organic 

matter ending up with a gas flow with a methane content of 60-70% (biogas) and a sludge 

also with soil improvement properties (Colón et al., 2012). Gaseous emissions in form of 

volatile organic compounds, methane (CH4), nitrous oxide (N2O) and ammonia (NH3) are 

considered as the main cause of the impacts of the composting process as well as its 

energy consumption (Colón et al., 2012). In the case of anaerobic digestion, gaseous 

emissions are lower than those of composting because anaerobic digestion takes place in 

closed reactors. In addition, energy recovery from the produced biowaste delivers a net 

positive production of energy thus contributing to resources preservation (Fricke et al., 

2005). 

In the present work, inventory data obtained in previous studies from different full-scale 

waste treatment plants operating in Catalonia (North-East of Spain, Mediterranean 

region) are used to estimate environmental impacts of the new MSW management 

scenario, mainly related to biowaste, that will be needed in Catalonia to fulfil the 

European Landfill Directive and the new recently approved Catalan waste management 

plan, PRECAT 2014-2020 (Agència de Residus de Catalunya, 2014). The main goal of 

this study is to compare different scenarios of organic waste management using the LCA 

methodology. These scenarios are based on real data collected from full scale waste 

treatment plants including uncertainties that are typically found in this type of plants such 

as fugitive emissions from anaerobic digesters, gaseous emissions from composting 

processes, etc. This region can serve as an example to other regions of Europe in similar 

situations, where the European recommendation must have to be applied in the mid-term 

future. 
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2. Methodology 

2.1. Area studied  

The area under study corresponds to Catalonia, in the Mediterranean coast of Europe 

(North-East of Spain). Catalonia has an extension of approximately 32000 km2 and a 

population of 7,539,000 inhabitants (2011). In 2012, the municipal waste generation was 

of 3,731 Gg from which 1,457 Gg (39 %) was source-selected (Agència de Residus de 

Catalunya, 2012). Previous and existing waste management plans in Catalonia clearly 

support the source-selection of all the fractions of municipal solid waste, in accordance 

with the European recommendations. Waste fractions considered in source-collection are: 

organic waste (OFMSW or biowaste), paper and cardboard, glass, plastics and light 

packaging, hazardous waste and refuse. Regarding the OFMSW, 384 Gg were collected 

in 2012 (all of them source-selected) plus 99 Gg of pruning waste (Agència de Residus de 

Catalunya, 2014). Pruning waste is used as bulking agent during composting in some 

treatment plants. A complete waste classification and sorting scheme can be found in the 

reports published by local administrations such as the Catalan Waste Agency (Agència de 

Residus de Catalunya, 2014). 

Table 1 shows the current composition of MSW generated in Catalonia and Table 2 

shows the amount of source-selected (SS-OFMSW) and non source-selected OFMSW 

(NSS-OFMSW) and its treatment/disposal destination. 

2.2 LCA General Methodology 

LCA is a methodology for the determination of environmental impacts associated to a 

product, process or service from cradle to grave, in other words, from production of the 

raw materials to ultimate disposal of waste. According to ISO 14040–14044 
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(International Organization for Standardization, 2006), there are four main steps in a 

LCA study: the goal and scope definition, the inventory analysis, the impact assessment 

and the interpretation. In this study, the software SimaPro v. 7.1.8 (PRé Consultants, 

2008) was used to evaluate the environmental impacts of all waste treatment technologies 

considered. Only the obligatory phases defined by the ISO 14040–14044 regulation for 

the impact assessment (International Organization for Standardization, 2006), namely 

classification and characterization, were performed as they avoid the subjectivity 

involved in impact evaluation (Martínez-Blanco et al., 2009). The impact assessment 

method used was CML 2001, which was based on the CML Leiden 2000 method 

developed by the Centre of Environmental Science of Leiden University (Guinée, 2002). 

The impact categories considered were: abiotic depletion (ADP), acidification (AP), 

eutrophication (EP), global warming (GWP), ozone layer depletion (OLDP) and 

photochemical oxidation (POP). 

2.3 Functional unit  

The key functions for all the technologies considered were the management of the 

OFMSW. The functional unit (FU) in LCA provides a reference to which the inputs and 

outputs of the inventory are related and allows the comparison among systems 

(International Organization for Standardization, 2006). In this study the functional unit 

(FU) selected was the management of one Mg of OFMSW. 

2.4 Description of the system 

Figure 1 shows the stages of the two systems considered in this LCA. Figure 1.a shows 

the current organic waste management model (Initial Scenario 1, ISc1), and Figure 1.b 

shows a proposed management model with the necessary modifications to fulfill the EU 
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Landfill directive (Scenario LDSc1). The steps included in the scenarios are marked 

using a dashed line in Figure 1. These steps are: (i) waste collection and transport from 

collection points to treatment/disposal facilities; (ii) waste treatment and disposal of raw 

OFMSW including gaseous emissions, leachate treatment, energy and water 

consumption; and (iii) disposal of non-recovered OFMSW from mechanical pretreatment 

and biostabilized material including transportation from treatment facilities to final 

disposal installations (incineration and landfill). 

Full description of the plants considered in this study can be found in previous works 

(Colón et al., 2012; Colón et al., 2010; Martínez-Blanco et al., 2010). 

2.4.1 General Assumptions 

General assumptions in this study for all the Scenarios are: 

(i) It has been supposed that all the plants using the same treatment technology 

will produce the same impacts per Mg of OFMSW treated. Obviously, even 

with the same technology and presenting a very similar layout each plant has 

some particularities. However, the detailed study of all the individual plants in 

terms of environmental burdens calculation is beyond the scope of this study. 

The installations used were chosen as they were representative of each 

technology, including in the representativeness the fact that they are treating 

the same type of waste produced in the same region. It has been stated that the 

geographical variability of the waste characteristics is an important source of 

errors when inventory data are used from global databases (Fricke et al., 

2005). 

(ii)  Amount of organic refuse: In order to estimate the amount of non-source-

selected OFMSW (NSS-OFMSW) that ends up in incinerators or sanitary 
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landfills, the total amount of municipal solid waste was multiplied by its 

average organic fraction content (39 %) (Agència de Residus de Catalunya, 

2014). Organic refuse coming from source-selected and non-source-selected 

treatment plants also ends up in a final disposal destination. A previous study 

(data not published) estimated that an average of 100 kg OFMSW Mg-1 SS-

OFMSW and 250 kg OFMSW Mg-1 NSS-OFMSW were lost because of 

inefficient pretreatment processes (rotary screens, ballistic separators, etc.). 

These amounts of refuse are also considered in the LCA. 

(iii)  Transport: In this study, both urban transport collection and intercity transport 

to the plant were considered (Iriarte et al., 2009). A total value of 30.6 tkm t-1 

OFMSW for collection and transport of waste to waste treatment facilities was 

used. This data was reported by Martinez-Blanco et al. (2010) assuming a 21 

ton MAL lorry specifically designed for waste collection (Ecoinvent 2) and an 

average distance from the collection points to the treatment facilities 

(composting and MBT facilities) close to 10 km. The return trips made by the 

trucks were also included in the calculation. Thus, this average value has been 

used for all the OFMSW collected in Catalonia as no specific data was found 

for other regions. Although there are not reliable data on average distances 

from collection areas and its final disposal facilities (incineration and sanitary 

landfill), taking into account the distance from main urban areas and final 

disposal installations where the OFMSW is sent, an average distance from 

collection areas of 5 km and 20 km are assumed for incineration facilities and 

sanitary landfills respectively (the urban transport collection distance is 

considered the same as in composting and MBT facilities), thus a value of 
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20.6 and 50.6 tkm t-1 OFMSW  has been used for incineration and sanitary 

landfills respectively. No transport was considered for home composting. 

(iv) Greenhouse gases emissions: Regarding CO2 emissions from the biological 

treatment process, they have not been considered in impacts calculation due to 

the general consensus (Intergovernmental Panel on Climate Change, IPCC) 

that CO2 from this type of treatments is of biogenic origin and it does not 

contribute to global impacts (IPCC, 2006). Biogas emissions in anaerobic 

digestion plants were measured only on biofilter surfaces, the fugitive 

emissions from other sources (pipes, pressure release from the reactor, flared 

biogas) have been considered close to zero following the IPCC 

recommendations as no experimental measurement was possible (IPCC, 

2006). 

(v) The impacts derived from plant and machinery construction were not included 

because in a previous study (Martinez-Blanco et al., 2010) it was found that 

their overall contribution in all the impact categories was less than 2.5 %.  

Particular assumptions for each Scenario are detailed below. 

2.4.2 Initial Scenario 1 

This Scenario reflects the situation in 2012. Table 3 shows the number of facilities 

treating municipal organic waste in operation and the amount of waste treated at each 

type of facility during that year. The amount of SS-OFMSW treated at each installation 

has been directly obtained from data provided by the Catalan Waste Agency (Agència de 

Residus de Catalunya, 2014). In the SS-OFMSW input stream, 15 % of impurities were 

measured as average. Regarding home composting, no impurities (0%) were considered.  
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The existing installations in 2012 and the geographic distribution are presented in Figure 

2. Two main areas can be differentiated in Catalonia, the first one is the metropolitan area 

of Barcelona which includes Barcelona city and its nearby cities; this area is 

characterized by a high population density and a high degree of industrialization 

(3.500.000 inhabitants). The second one is the remaining part of Catalonia that is 

characterized by low-density population and in terms of waste management, it still relies 

strongly on landfilling. 

2.4.3 Scenario LDSc1 

This hypothetical scenario treats the same amount of organic waste as ISc1. This scenario 

would permit to fulfill the requirements of the European Union Landfill Directive 

(Council of European Union, 1999) and the recently approved Catalonia waste 

management plan (PRECAT 2014-2020). This scenario is based on two main premises: 

(i) 60 % of municipal organic waste must be source-selected and valorized and (ii) 100 % 

of mixed MSW must be treated at MSW-MBT facilities. Therefore, the final disposal 

(incineration and sanitary landfill) of untreated MSW is not allowed.  

The metropolitan area of Barcelona has a total installed treatment capacity of 346.5 Gg 

and 1,310 Gg of SS-OFMSW and MSW respectively. The current installed capacity is 

enough to treat all municipal waste generated in this area and the construction of new 

installations is not expected. Moreover, there is an extra AD treatment capacity originally 

designed to treat NSS-OFMSW that is currently out of use and could potentially be used 

as a SS-OFMSW treatment. As a result, there is a total installed AD treatment capacity 

close to 404 Gg. Assuming a 60 % source selection of OFMSW, a total amount of 400 

Gg will be generated and potentially could be treated by means of AD. The remaining 
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NSS-OFMSW waste generated in the metropolitan area of Barcelona will be treated at 

the currently in operation MSW-CT plants.  

On the contrary, the installed treatment capacity of both SS-OFMSW and MSW in the 

remaining part of Catalonia is not enough to treat the total amount of waste generated and 

in consequence, several installations must be designed and constructed. The total installed 

SS-OFMSW treatment capacity is close to 137 Gg, and an extra treatment capacity of 136 

Gg will be necessary to accomplish the proposed regulation. Regarding MSW treatment 

plants only a treatment capacity of 444 Gg is currently installed, and the construction of 

new facilities will be necessary to be able to treat the remaining MSW. 

Assuming the abovementioned conditions, the following considerations are selected for 

LDSc1 scenario:  

(i) All the SS-OFMSW generated in the metropolitan area of Barcelona will be 

treated by means of AD. 

(ii)  Some CT facilities are currently planned and/or being built, these new 

facilities are included in this scenario. 

(iii)  As stated above AD is the more environmental friendly technology, thus the 

new installations (not yet planned) will be designed using this technology.  

(iv) Home composting treatment capacity will be increased from 5 Gg in ISc1 up 

to 25 Gg (50.000 inhabitant equivalent). 

(v) AWC and TWC plants will be remodeled to include gas treatment installations 

(biofilters) to minimize the NH3 and VOC emissions (AWB facilities). The 

efficiency of these units will be based on experimental data. 
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(vi)  All NSS-OFMSW will be treated at MSW-CT plants. 

2.5 Life cycle inventory: Quality and origin of the data 

Real data on SS-OFMSW treatment facilities was obtained in previous works (Colon et 

al., 2012; Martinez-Blanco et al., 2010). In these works, a representative treatment 

facility of each type (AD, CT, AWC, TWC) was studied in detail to determine the 

environmental burdens associated to plant operation. The plants studied (5 treatment 

plants) were selected after a deep discussion with the Catalan Waste Agency for their 

representativeness, as a detailed study of all plants in operation was out of the 

possibilities of the work. Inventory data on energy and water consumption, waste treated, 

impurities separation and compost produced (as well as biogas in the case of the 

anaerobic digestion installation) was obtained from plant managers. In addition, an 

accurate gaseous emissions sampling was undertaken in order to quantify the emissions 

of ammonia, volatile organic compounds (VOC), methane and nitrous oxide (the 

methodology can be consulted in Colón et al. (2012) and Cadena et al. (2009)). Home 

composting was also studied as a treatment alternative for the OFMSW in low-density 

population areas (Colón et al., 2010; Martínez Blanco et al., 2010). Table 4 summarizes 

the inventory data obtained in the above-mentioned previous studies (Colón et al., 2012; 

Martinez et al., 2010). These data has been used as the basis to perform the calculations 

presented in this paper. Nowadays, in Catalonia aerated and turned windrows composting 

plants are not provided with gaseous emissions treatment equipment. Taking into 

consideration the impacts that can be derived from ammonia and VOC emissions, a new 

type of treatment plant (AWB) has been added to Table 4. AWB represents a theoretical 

configuration where composting occurs in aerated and turned windrows placed on a 

closed installation with gaseous emissions treatment using biofilters (as stated above, no 
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facilities with these characteristics are found in the studied area). Values on real biofilter 

efficiencies in contaminant removal were considered to determine reduced impacts 

(Amlinger et al., 2008; Colón et al., 2009) and are presented in Table 4. Energy 

consumption associated to biofilter operation was considered as an additional impact 

(also reported in Table 4) and obtained from Cadena (2009). 

Regarding the treated NSS-OFMSW, most mechanical biological treatment plants (MBT) 

rely on composting tunnels plus a curing phase and to a lesser extent anaerobic digestion 

plus curing phase. The environmental burdens of these operations are related to energy 

consumption (tunnel and building ventilation, fuel consumption, etc.) and gases 

emissions/treatment. All these phases are considered in the LCA of source-selected 

composting tunnel (CT) and anaerobic digestion plants (AD) including also the energy 

recovery. The main difference is the extra energy needed at the pretreatment stage, but 

the allocation of this extra energy consumption should be accounted with the material 

recovery stage (packaging, metal, paper and cardboard). Therefore, in this work the 

environmental impact of MSW-MBT (MSW-AD & MSW-CT) plants is considered the 

same as the environmental impact related to SS-OFMSW treatment (CT or AD facilities).  

Table 5 summarizes the values calculated for the different impact potentials for each of 

the studied plants related to the treatment of 1 Mg of OFMSW. AD facilities have the 

best overall performance in terms of environmental impacts in all categories. 

Finally, in order to calculate the impact potentials of NSS-OFMSW and OFMSW refuse 

disposed at incineration facilities or sanitary landfills, data coming from ELCD database 

specifically compiled for the Mediterranean region were used. The modeled landfill 

includes energy recovery (Distribution of landfill gas: 22 % flare, 28 % used, 50 % 
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emissions) and leachate treatment. The modeled incineration also includes energy 

recovery and ash disposal to sanitary landfill. 

2.6 Sensitivity analysis 
 

Environmental impacts for several hypothetical scenarios in ISc1 and LDSc1 obtained by 

modifying relevant considerations were assessed to perform a sensitivity test for the 

following issues: 

(i) Transport: ISc2 and LDSc2 do not include transport while in ISc3 transport 

distances are reduced by a half. 

(ii)  Methane fugitive emissions: ISc4, ISc5, LDSc5 and LDSc6 consider different 

amounts of methane uncontrolled emissions. As stated above, methane 

emissions were measured only on biofilter surfaces. However, some studies 

(Møller et al., 2009) showed fugitive emissions ranging from 0 to 10 % of the 

total methane produced, for this reason, a sensitivity analysis including a 

percentage of 5 and 10 % fugitive emissions plus the combustion of biogas 

has also been included. Since 98.8 m3 biogas Mg-1 OFMSW were produced 

during the studied anaerobic digestion process, and assuming average methane 

content of 65 %, methane fugitive emissions of 2.3 and 4.6 kg CH4 Mg-1 

OFMSW for 5 and 10% fugitive emissions were considered respectively in the 

sensitivity analysis. During combustion in biogas engines, methane is 

converted to energy and CO2, but as the combustion process is not 100% 

efficient, some methane is left unburned and in this way contributes to the 

GWP, 0.8 kg CH4 Mg.1 OFMSW (Møller et al., 2009) were considered. Thus, 

a total amount of 3.1 and 5.4 kg CH4 Mg-1 OFMSW can be considered when 

fugitive emissions are taken into account (5 and 10% sensitivity analysis 
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respectively). The fugitive emissions accounted for 57.5 and 115 kg CO2 eq. 

Mg -1 OFMSW (5 and 10% sensitivity analysis respectively) and the 

combustion of biogas accounted for 20 kg CO2 eq. Mg -1 OFMSW (for both 5 

and 10% sensitivity analysis). To our knowledge, this is the first study where 

fugitive emissions of methane are considered in LCA. 

(iii)  Biogas collection in landfills: In ISc6 and LDSc7 a collection efficiency of 

17% is considered which correspond to the actual biogas collection estimation 

in Catalan landfills. LDSc8 considers a collection efficiency of 60% as 

predicted in PRECAT 2014-2020 (Agència de Residus de Catalunya, 2014). 

(iv) Use of compost and biostabilized material: ISc7 and LDSc9 consider the use 

of compost as an organic amendment. ISc8 and LDSc10 consider the use both 

compost and biostabilized material. Biostabilized material results from the 

treatment of NSS-OFMSW. 

(v) Treatment technologies: In LDSc3 supposes that the new SS-OFMSW 

facilities that will be needed will be designed using composting (CT) instead 

of AD. In LDSc4 all the extra SS-OFMSW will be treated in composting 

tunnels (CT) installations while AD will remain treating the same amount of 

waste as in ISc1 (which means that the extra AD capacity currently installed 

and out of use will remain unused).  

3 Results and discussion 

3.2 Initial Scenario 1 

In addition to the number of installations in operation for each treatment technology and 

the total waste treated, Table 3 also present the impact potential values calculated on a 
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yearly basis using data from Table 5 and data from Ecoinvent (transport) and ELCD 

(sanitary landfill and incineration) dabatases. 

As seen in Table 3 and Figure 3.a, the OFMSW landfilled without any treatment (28%) is 

the main responsible for the GWP (47.4%) and EUP (55.2%), these impacts are mainly 

related to air emissions (methane and ammonia) and water emissions (phosphorus and 

nitrogen compounds). If the environmental impacts of landfilled refuse are also included, 

the total GWP and EUP percentages increase up to 60.8 and 85.6 respectively. The NSS-

OFMSW treated at MBT facilities (36%) has an environmental impact ranging from 2.5 

to 35% in all categories, its main contributions found in AP (26.5 %) and POP (35.6%). 

On the contrary, incineration (8%) has low impact (<5%) in all categories. 

The SS-OFMSW (27%) is the main responsible for the AP (35.5%) and POP (49%); a 

closer analysis focusing on the type of source-selected treatment installations shows that 

treatment plants without gaseous emissions treatment (AWC and TWC) are the main 

responsible for AP (76.5%), POP (52.5%) and EUP (77%) although they are only treating 

14 % of the total amount of SS-OFMSW. These data demonstrate the contribution of the 

gaseous treatment equipment to the reduction of the impact of the OFMSW treatment 

plants in some of the impact potentials. However, the energy required by this equipment 

derives in higher contributions to GWP, ADP and ODP, as occurs in the case of CT 

plants. Biogas recovery in AD plants and the existence of gaseous emissions treatment 

result in relatively lower impact potential values. 

Finally transportation has its main impacts in ADP (40.3%), OLDP (66.5%) and AP 

(20%). Because of the amount treated and the longer distance to sanitary landfills from 

the collection point, the transportation of the NSS-OFMSW landfilled without any 

treatment is the responsible of 40 % of the total transport impacts. 
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3.1.1 ISc sensitivity analysis 

As the results obtained correspond to a quite particular situation, environmental impacts 

for several hypothetical scenarios obtained by modifying relevant assumptions of the 

OFMSW management model were assessed and compared with the initial scenario 

studied (ISc1) to perform the sensitivity analysis of the results. As stated in the 

Methodology section, four new issues were studied: (i) the distance between the 

treatment/disposal installations and the collection point, (ii) the methane fugitive 

emissions in AD and MSW-AD plants, (iii) the efficiency of biogas collection in sanitary 

landfills and (iv) the use of compost as an organic amendment. Results are shown in 

Table 6. 

A first scenario (ISc2) without considering the transport is proposed to highlight only the 

differences among the treatment technologies. Figure 3.b shows the environmental 

impact of each treatment technology. Regarding ADP and OLDP, the two impact 

categories in which transport was the main responsible in ISc1, landfilling and NSS-

OFMSW treatment plants are in ISc2 the main contributors with an overall percentage 

ranging from 20 to 45%. 

As the emplacement of treatment facilities and final disposal installations may change as 

a function of the local distribution and restrictions of this kind of facilities, distances from 

collection points have been changed. Distances of 5 km and 10 km between the collection 

point and the SS-OFMSW treatment facility and the sanitary landfill have been 

respectively considered (ISc3) (half the distance considered in ISc1). Impacts in scenario 

ISc3 were significantly lower for ADP (14 %) and OLDP (23 %) impact categories, 

whereas no significant reductions (<7 %) were observed for the rest of categories. 
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An important factor usually omitted is the methane fugitive emissions produced in AD 

and MSW-AD installations. Scenarios ISc4 and ISc5 include methane fugitive emissions 

of 5 and 10 % respectively in the inventory. Methane contributes mainly in GWP and in a 

lesser extent in POP. As can be seen in Table 6, taking into account the whole 

management system an increase of 4 and 9% of GWP is reported when fugitive emissions 

are considered. In terms of POP the increment is negligible (<2 %). When considering 

AD or MSW-AD installations, these fugitive emissions have a huge impact on GWP 

increasing up to 400% (10% fugitive emissions) its initial value considered in ISc1. 

These data must be taken into account when planning the future LDSc scenario, as AD 

has been pointed as the most suitable treatment technology, but fugitive emissions close 

to 10% will eventually lead to an important increment in GWP if AD is widely spread. 

Landfill gas collection systems are assessed in ISc6. Although in ISc1 the biogas 

recovered is 50% (22% flared + 28% energy recovery), several studies pointed out that 

the current biogas recovery in Catalonia could be as low as 17% (Sostenipra, 2013); 

therefore a new scenario is modeled taking into account this amount of biogas recovery. 

In this situation, each ton of landfilled organic material releases to the atmosphere 786 kg 

CO2 eq, and a significant increase in GWP (36%) is observed.  

Finally, the use of compost and also the use of biostabilized material as organic 

amendment are assessed in ISc7 and ISc8 in terms of GWP contribution. An avoided 

impact of 88 kg CO2 eq/t compost arises (Sostenipra, 2013) which implies a GWP 

reduction ranging from 2 to 5%. Although not included in this study, the agricultural use 

of compost also have many other advantages as for example the nutrient supply, the weed 

and disease suppression, the improvement of soil workability, the increase of the water 

holding and cation-exchange capacity and the prevention of soil erosion among others 

(Favoino and Hogg, 2008; Martinez-Blanco et al., 2013).  The current legislation does not 
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recommend the use of biostabilized material as organic amendment, in consequence, the 

vast majority of biostabilized material is used for the recovery of sanitary landfills and in 

a lesser extent for quarry restoration. 

3.3 Scenario LDSc1 

For each treatment technology, Table 7 presents the total Gg treated at each installation 

and the impact potential values calculated on a yearly basis using data from Table 5 and 

data from Ecoinvent (transport) and ELCD (sanitary landfill and incineration) databases. 

Although fresh NSS-OFMSW is not landfilled without treatment, the refuse coming from 

both SS-OFMSW and NSS-OFMSW treatment facilities that ends up to sanitary landfill 

still has a significant impact in categories such as GWP, ADP and mainly EUP. 

Landfill methane emissions still represent a total impact close to 28 % (Fig. 4.a) of the 

overall GWP and if the transport is not taken into account (Fig 4.b) this percentage 

increases up to 37 %. The same situation occurs regarding EUP, although the landfilled 

OFMSW is strongly minimized, it still is the main contributor to EUP with a total 

contribution close to 75 %. These data highlight the importance of improving both source 

selection and the efficiency of the pretreatment processes to minimize the lost of fresh 

organic matter during pretreatment processes. 

 

3.2.1 LDSc sensitivity analysis 

Environmental impacts for several hypothetical scenarios obtained by modifying relevant 

assumptions of the OFMSW management model were assessed and compared with the 

initial scenario studied (LDSc1) to perform the sensitivity analysis of the results. Five 
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issues were assessed (see Methodology section): (i) transport is not considered, (ii) 

methane fugitive emissions in AD plants, (iii) the efficiency of biogas collection in 

sanitary landfills, (iv) the use of compost as an organic amendment and (v) the use of CT 

technology instead of AD. Results are shown in Table 8. 

A first scenario (LDSc2) without considering the transport is proposed in order to 

highlight only the differences among the treatment technologies. Figure 4.b shows the 

environmental impact of each treatment technology. Regarding ADP and OLDP, the two 

impact categories in which transport was the main responsible in LDSc1, NSS-OFMSW 

treatment plants (MSW-CT) are in LDSc2 the responsible of more than 60% of the 

overall impact. 

Due to higher capital costs and higher operation complexity, it is probable that AD will 

not be the main treatment technology applied to new facilities. Therefore two new 

scenarios are proposed (LDSc3 and LDSc4). LDSc3 scenario uses all the current AD 

installed capacity (current facilities in operation and out of use reactors designed for 

treating NSS-OFMSW) but considers that all new installations will be using CT 

technologies. This scenario shows that the change in all impact potentials is less than 5%. 

On the other hand LDSc4, maintains the same amount of waste currently treated by AD 

and assumes that the new SS-OFMSW will be treated by means of CT facilities (out of 

use AD reactors will not be used). In that case, all the impact potentials related to energy 

recovery/consumption (GWP, ADP, AP and OLDP) present an increment ranging from 8 

to 28 %. 

AD treatment capacity in LDSc1 scenario is more than two times higher than in ISc1, so 

the fugitive emissions control becomes of upmost importance. LDSc5 and LDSc6 include 
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in the inventory fugitive emissions of 5 and 10% respectively. In the worst-case scenario 

the GWP could increase up to 31%.  

Landfill gas collection systems are assessed in LDSc7 and LDSc8. LDSc7 as in the case 

of ISc6 uses only a 17% of landfill gas recovery. On the contrary, the collection 

efficiency is increased up to 60% in LDSc8, this percentage of biogas recovery is 

proposed as a goal by the Catalan Waste Agency in PRECAT 2014-2020 (Agència de 

Residus de Catalunya, 2014). As only organic refuse are landfilled and the biogas 

recovery in LDSc1 is 50% (flared + used), a small difference is shown in GWP of 

LDSc8. On the contrary an increase of 17% in GWP is shown when biogas collection is 

decreases until 17%.  

Finally, the use of compost and also the use of biostabilized material as organic 

amendment are assessed in LDSc9 and LDSc10 in terms of GWP contribution. Due to the 

increase in source selection and also the amount of MSW treated at MBT plants, the 

production of compost and biostabilized material rises from 83 to 183 and from 110 to 

121 Gg respectively. Reductions from 7 to 12% are expected in GWP when these 

materials are used as an organic amendment.  

3.4 Comparison of both scenarios 

Figure 5 shows the comparison of both waste management scenarios, ISc1 and LDSc1. 

The new LDSc1 scenario decreases the environmental impact in 5 out of 6 impact 

categories; only POP shows a higher impact (23%), this increment is mainly due to the 

higher VOC emissions during composting processes compared with VOC landfill 

emissions (ELCD database).  
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GWP shows a decrease of 36% mainly because of the absence of landfilled NSS-

OFMSW. It is important to remark that probably the current landfill biogas capture 

efficiency is close to 17% and the goal is to achieve an efficiency of 60%, therefore a 

comparison of scenarios ISc6 and LDSc8 should be performed. In this situation a GWP 

decrease close to 55% is achieved. If the use of compost coming from SS-OFMSW as an 

organic amendment is also taken into account, a maximum decrease close to 58% could 

be expected. The Catalan Office for Climate Change (Oficina Catalana del Canvi 

Climàtic, 2014) reported a total estimated GWP close to 46,000 Gg CO2 eq. year-1 (2012), 

data presented in this study shows that in the best and worst case scenario, LDSc8 and 

ISc6 respectively, the total contribution of organic waste treatment to GWP only 

represents between 0.47 and 1.05 % of the overall impact.   

Abiotic depletion shows a decrease of 16 %, this impact reduction can be attributed to 

two different factors. The first one is related to the increase of the amount of organic 

waste treated by AD facilities, Table 5 shows that because of the energy recovery in AD 

plants, there is an avoided impact in terms of ADP. The second factor is related to the 

decrease of intercity transport, treatment facilities are located at an average distance of 10 

km while sanitary landfills are at an average distance of 20 km. 

A decrease of 17 % is achieved regarding AP. The main contributors to this impact 

category are the biological treatment plants, especially the ones without gaseous 

emissions treatment, with ammonia and electricity consumption as the main contributors 

to this category. Consequently, the new AWB configuration proposed in this work as well 

as the increase of the amount of organic waste treated by AD facilities (energy recovery) 

are the responsible of the decrease in AP value. 
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EUP has the highest impact reduction (49%). Again, this reduction can be attributed to 

two factors. Nitrogen and phosphorous compounds released from landfills are the main 

responsible of this impact; therefore the absence of landfilled NSS-OFMSW avoids a 

substantial part of this impact. Moreover, ammonia emissions from treatment plants, 

especially the ones without gas treatment, were also responsible for EUP, the new AWB 

proposed plants reduce up to 70% the EUP compared with the TWC and AWC 

composting plants. 

Finally, a 9 % reduction is only observed for OLDP. This decrease can be almost entirely 

attributed to the decrease of the transportation of NSS-OFMSW to landfills.  

4 Conclusions and remarks 

• The main conclusion of this study is that the environmental performance of the 

different OFMSW treatment technologies should be included as a decision 

criterion in waste management planning.  

• The new LDSc1 scenario decreases the environmental impact in 5 out of 6 impact 

categories (GWP, ADP, AP, EUP and OLDP) and only POP shows a higher 

impact.  

• Sensitivity analysis shows that an improvement of landfill gas collection is of 

utmost importance in order to decrease the GWP. Also a detailed study regarding 

fugitive methane emissions in AD installations is necessary, as AD has been 

pointed out as the most suitable technology from an environmental point of view, 

but in the case studied fugitive methane emissions could increase the GWP up to 

31 % if this technology is widely used in new treatment facilities.   

• The use of anaerobic digestion (LDSc1) instead of composting tunnels (LDSc4) 

shows better performance (ranging from 8 to 28 %) in GWP, ADP, AP and OLDP 
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impact categories. However when fugitive emissions are included (LDSc5 and 

LDSc6), GWP increases up to 30 %. Hence, in this situation the use of 

composting tunnels could be a more environmental friendly technology regarding 

GWP impact category. 

• It should also be highlighted that there are economical and social constraints 

regarding waste management planning that have not been considered in this study. 

The cost of the different treatment options, the importance of the waste collection 

system and the source selection process as well as social acceptance required for 

home composting implementation are extremely important factors. 
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Table 1. Municipal solid waste (in Gg) generated in Catalonia during year 2012 (Agència 
de Residus de Catalunya, 2014). 
 
 
  

Catalonia municipal waste  
Total MSW 3,731 
Total mixed municipal solid waste 2,274 
Total source selected municipal solid waste 1,457 
 Biodegradable solid waste 488 
  Pruning 99 
  OFMSW (15 % improper material) 384 
   OFMSW (improper free) 326 
  Home composting 5 
 Paper and cardboard 318 
 Glass 169 
 Packaging 135 

  

Others (bulky material, oil, tires, textile, 
batteries, inert material, hazardous 
materials, etc.) 

347 
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Table 2. Organic waste generated and treated (in Gg) in Catalonia during year 2012 
(Agència de Residus de Catalunya, 2014). 
 
 
  

Catalonia municipal organic waste 
Biodegradable solid waste generation 1,317 
 Pruning 99 
 Total OFMSW generated 1,218 
  Total source selected OFMSW treated 326 
  Home composting 5 
  Total OFMSW not source selected 887 
   Landfilled without treatment* 344 
   Incineration* 103 
      Treated in MBT plants* 440 
*39 % of mixed MSW corresponded to OFMSW (Agència de Residus 
de Catalunya, 2014)   
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Table 3. Scenario ISc1: Amount of waste treated, number of waste treatment and disposal installations and total and partial impact results. 

  

Number of 
installations 

Treated 
OFMSW  GWP ADP AP EUP OLDP POP 
(Gg y-1) (t CO2 eq y-1) (t Sb eq y-1) (t SO2 eq y-1) (t PO4

3- eq y-1) (t CFC-11 eq y-1) (t C2H4 eq y-1) 

Source-selected OFMSW                 
 Anaerobic Digestion (AD) 5 196 8,859 -31.4 31.4 13.7 -5.23E-05 70.6 

 In-vessel composting (CT) 7 85 8,934 51.2 76.3 6.2 4.65E-04 30.0 

 Aerated windrows composting (AWC) 3 25 3,075 10.8 93.8 18.0 1.13E-04 64.8 

 Turned windrows composting (TWC) 7 20 3,920 2.8 280.0 60.6 4.74E-05 47.6 

 Home composting (HC) 20,000 5 1,045 0.2 7.0 1.5 1.53E-06 1.2 

 Collection and transport   326 13,333 86.7 59.7 11.9 2.00E-03 2.3 

Non Source-selected OFMSW (from mixed MSW)         
 Anaerobic Digestion (MSW-AD) 1 41 1,853 -6.6 6.6 2.9 -1.09E-05 14.8 

 In-vessel composting (MSW-CT) 10 399 41,939 240.6 358.1 29.2 2.18E-03 140.8 

 Collection and transport   440 17,996 117.0 80.5 16.0 2.69E-03 3.1 

Incineration 4        
 Fresh OFMSW 

 

103 5,044 28.4 45.4 9.1 3.09E-04 0.8 

 SS-OFMSW refuse 8 392 2.2 3.5 0.7 2.40E-05 0.1 

 NSS-OFMSW refuse 45 2,204 12.4 19.8 4.0 1.35E-04 0.4 

 Collection and transport of fresh OFMSW  103 2,834 18.4 12.7 2.5 4.24E-04 0.5 

 Transport of SS-OFMSW & NSS-OFMSW refuse   0       

Sanitary Landfill 29        
 Fresh OFMSW 

 

344 168,717 182.1 109.9 826.5 9.57E-04 35.6 

 SS-OFMSW refuse 30 14,714 15.9 9.6 72.1 8.35E-05 3.1 

 NSS-OFMSW refuse 65 31,880 34.4 20.8 156.2 1.81E-04 6.7 

 Biostabilized material 100 1,203 52.9 31.9 240.3 2.78E-04 10.4 

 Collection and transport of fresh OFMSW  344 25,628 162.7 116.3 24.0 3.85E-03 4.2 

 Transport of SS-OFMSW & NSS-OFMSW refuse  95 1,267 8.2 5.7 1.1 1.90E-04 0.2 

 Transport of biostabilized materials  110 1,334 8.7 6.0 1.2 2.00E-04 0.2 

Total environmental impact (tIC y-1)   1218 3.56E+05 9.98E+02 1.37E+03 1.50E+03 1.4E-02 4.37E+02 

Total environmental impact (tIC Gg-1 OFMSW)  1218 2.92E+02 8.19E-01 1.13E+00 1.23E+00 1.16E-05 3.59E-01 
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Table 4. Inventory data obtained from the installations considered in this study (AD: 
anaerobic digestion; CT: in-vessel composting; AWC: aerated windrows composting; 
TWC: turned windrows composting, HC: home composting) previously published in 
(Colón et al. 2012). AWB (aerated and turned windrows with gaseous emissions 
treatment) data have been theoretically calculated.  

Facility Element 
Units  

(t-1 OFMSW) 
AD &  

MSW-AD 
CT & 

MSW-CT 
AWC TWC HC AWB 

Inputs Electricity  MJ  166.32 770.4 235.8 33.41 33.77 354.8 (119)* 

 
Electricity self-
generation 

MJ  167.04 0 0 0 0 0 

 Diesel  L  3.64 2.66 9 5.33 0 9 

  
Total enegry 
(electricity + diesel) 

MJ  472.26 871.9 
579.2

4 
236.8 33.77 698.24 

Outputs NH3 emissions Kg  0.23 0.11 2 8.63 0.84 0.2 (90)** 
 VOC emissions kg 0.86 0.75 6.22 5.7 0.56 1.87 (70)** 
 N2O emissions Kg  0.035 0.085 0.076 0.251 0.676 0.076 (0)** 
 CH4 emissions Kg  2.39  0.15 1.68 4.37 0.16 1.51 (10)** 
 Biogas production m3  98.9 n/a n/a n/a n/a n/a 

  
Electricity 
production 

MJ  550.08 n/a n/a n/a n/a n/a 

*  Value in brackets is the surplus of energy needed for the implementation of a gas treatment in AWB plants 
** Values in brackets are the gas treatment removal efficiency considered in AWB plants 
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Table 5. Impact potentials determined for OFMSW treatment plants representative of the treatment technologies implemented in Catalonia 
(Colón et al., 2012).  

 

Treatment technology 
Gaseous emissions 

treatment 

Impact potentials 

GWP ADP AP EUP ODP POP 

(kg CO2 eq t-1) (kg Sb eq t-1) (kg SO2 eq t-1) (kg PO4
3- eq t-1) (kg CFC-11 eq t-1) (kg C2H4 eq t-1) 

Anaerobic Digestion                             
(AD & MBT-AD) 

Wet scrubber + 
biofilter 

45.2 -0.16 0.16 0.07 -2.67E-07 0.36 

In-vessel composting                             
(CT & MBT-CT)* 

Wet scrubber + 
biofilter 

105.1 0.6 0.9 0.1 5.48E-06 0.35 

Aerated windrows composting 
(AWC) 

No 123 0.43 3.75 0.72 4.52E-06 2.59 

Aerated windrow composting with 
biofiltration (AWB) 

Biofilter 182 0.56 1.59 0.21 6.41E-06 1.22 

Turned windrows composting 
(TWC) 

No 196 0.14 14 3.03 2.37E-06 2.38 

Home composting (HC) No 209 0.04 1.4 0.3 3.05E-07 0.23 

* Average value from Colón et al., 2012 & Martínez-Blanco et al., 2010 
GWP: global warming potential; ADP: abiotic depletion potential; AP: acidification potential; EUP: eutrophication potential; ODP:  ozone layer depletion potential; POP: 
photochemical oxidation potential 
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Table 6: Comparison of the environmental impacts between the scenario ISc1 and the seven sensitivity analysis cases considered (ISc2–Isc8). 
Initial Isc1 is considered as the base scenario (100% of contribution of each category), whereas the rest of sensitivity analysis cases are 
normalized to this base scenario. 
 
 

Impact 
category 

Units Initial Scenario Sensitivity analysis for other scenarios (%) 
(Gg-1 OFMSW) ISc1 ISc2 ISc3 ISc4 ISc5 ISc6 ISc7 ISc8 

GWP (t CO2 eq y-1) 3.56E+05 82 94 105 109 136 98 95 
ADP (t Sb eq y-1) 9.98E+02 60 86 100 100 106 n.a. n.a. 

AP (t SO2 eq y-1) 1.37E+03 80 93 100 100 106 n.a. n.a. 

EP (t PO4
3- eq y-1) 1.50E+03 96 99 100 100 100 n.a. n.a. 

OLDP (t CFC-11 eq y-1) 1.41E-02 34 77 100 100 114 n.a. n.a. 

POP (t C2H4 eq y-1) 4.37E+02 98 99 101 102 108 n.a. n.a. 
ISc2: Transport not included         
ISc3: Average distance from collection points to SS-OFMSW treatment facilities is 5 km and the average distance to landfills is 10 km 
ISc4: methane fugitive emissions (5 %) are included in AD & MSW-AD treatment plants     
ISc5: methane fugitive emissions (10 %) are included in AD & MSW-AD treatment plants     
ISc6: landfill biogas collection decreased to 17 %   
ISc7: Compost is used as organic amendment        
ISc8: Compost and biostabilized material coming from NSS-OFMSW treatment are used as organic amendment 
n.a: not analyzed         
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Table 7. Total and partial impact results for Scenario LDSc1. 

  

Treated 
OFMSW  

GWP ADP AP EUP OLDP POP 

(Gg y-1) (t CO2 eq y-1) (t Sb eq y-1) (t SO2 eq y-1) 
(t PO4

3- eq y-
1) 

(t CFC-11 eq y-
1) 

(t C2H4 eq y-1) 

Source-selected OFMSW               
 Anaerobic Digestion (AD) 525 22,600 -80.0 80.0 35.0 -1.34E-04 180.0 

 In-vessel composting (CT) 135 13,139 75.4 112.2 9.1 6.84E-04 44.1 

 Aerated windrows composting (AWB) 45 14,742 45.4 128.8 17.0 5.19E-04 98.8 

 Home composting (HC) 25 5,225 1.0 35.0 7.5 7.63E-06 5.8 

 Collection and transport  705 28,835 187.5 129.0 25.7 4.315E-03 4.9 

Non Source-selected OFMSW (from mixed MSW)        
 Anaerobic Digestion (MSW-AD) 0 0 0.0 0.0 0.0 0.00E+00 0.0 

 In-vessel composting (MSW-CT) 487 51,189 293.6 437.1 35.6 2.67E-03 171.9 

 Collection and transport 487 19,918 129.5 89.1 17.7 2.98E-03 3.4 

Incineration        

 Fresh OFMSW 0 0 0.0 0.0 0.0 0.00E+00 0.0 

 SS-OFMSW refuse 15 735 4.1 6.6 1.3 4.50E-05 0.1 

 NSS-OFMSW refuse 50 2,449 13.8 22.0 4.4 1.50E-04 0.4 

 Collection and transport of fresh OFMSW 103 2,834 18.4 12.7 2.5 4.24E-04 0.5 

 Transport of SS-OFMSW & NSS-OFMSW refuse 0       

Sanitary Landfill        
 Fresh OFMSW 0 0 0.0 0.0 0.0 0.00E+00 0.0 

 SS-OFMSW refuse 56 27,466 29.6 17.9 134.6 1.56E-04 5.8 

 NSS-OFMSW refuse 72 35,313 38.1 23.0 173.0 2.00E-04 7.5 

 Biostabilized material 121 1,456 64.1 38.7 290.7 3.37E-04 12.5 

 Collection and transport of fresh OFMSW 0 0 0.0 0.0 0.0 0.00E+00 0.0 

 Transport of SS-OFMSW & NSS-OFMSW refuse 95 1,267 8.2 5.7 1.1 1.90E-04 0.2 

 Transport of biostabilized materials 121 1,614 10.5 7.2 1.4 2.42E-04 0.3 

Total environmental impact (tIC y
-1) 1218 2.29E+05 8.39E+02 1.14E+03 7.57E+02 1.28E-02 5.36E+02 

Total environmental impact (tIC Gg-1 OFMSW) 1218 1.88E+02 6.89E-01 9.40E-01 6.21E-01 1.05E-05 4.40E-01 
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Table 8: Comparison of the environmental impacts between the scenario LDSc1 and the nine sensitivity analysis cases (LDSc2–LDSc10). 
Scenario LDSc1 is considered as the base scenario (100% of contribution of each category), whereas the rest of sensitivity analysis cases are 
normalized to this base scenario impact. 
 

Impact 
category 

Units Initial Scenario Sensitivity analysis for other scenarios (%) 

(Gg-1 OFMSW) LDSc1 LDSc2 LDSc3 LDSc4 LDSc5 LDSc6 LDSc7 LDSc8 LDSc9 
LDSc1

0 
GWP (t CO2 eq y-1) 2.29E+05 75 101 108 118 131 117 96 93 88 
ADP (t Sb eq y-1) 8.39E+02 56 105 128 100 100 101 97 n.a. n.a. 
AP (t SO2 eq y-1) 1.14E+03 78 104 120 100 100 101 97 n.a. n.a. 

EP (t PO4
3- eq y-1) 7.57E+02 93 100 100 100 100 100 100 n.a. n.a. 

OLDP (t CFC-11 eq y-1) 1.28E-02 35 101 114 100 100 102 95 n.a. n.a. 
POP (t C2H4 eq y-1) 5.36E+02 98 100 100 102 103 101 99 n.a. n.a. 
LDSc2: Transport not included           
LDSc3: New designed SS-OFMSW facilities uses CT technology instead of AD technology 
LDSc4: All the extra SS-OFMSW is treated by means of CT technology (AD treats the same amount as in ISc1) 
LDSc5: methane fugitive emissions (5 %) are included in AD treatment plants 
LDSc6: methane fugitive emissions (10 %) are included in AD treatment plants       
LDSc7: landfill biogas collection decreased to 17 %         
LDSc8: landfill biogas collection increased up to 60 %         
LDSc9: Compost is used as organic amendment          
LDSc10: Compost and biostabilizaed material coming from NSS-OFMSW treatment are used as organic amendment 
n.a: not analyzed           
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Figure Captions 

 

Fig 1 Waste treatment scenarios considered in this study. 1a) Current scenario (ISc1) and 1b) 

future scenario fulfilling the European Landfill Directive (LDSc1). 

Fig 2. Existing waste treatment and disposal installations in Catalonia in 2012 and their 

geographic distribution.  

Fig 3 Fig 3.a Contribution (in percentage) of the items considered in scenario ISc1 to its total 

environmental impact. Figure 3b, contribution (in percentage) of the items considered (transport 

excluded) in scenario ISc1 to its total environmental impact. Impact categories: GWP, global 

warming potential; ADP, abiotic depletion potential; AP, acidification potential; EP, 

eutrophication potential; OLDP, ozone layer depletion potential; POP, photochemical oxidation 

potential; CED, cumulative energy demand. 

Fig 4 Fig 4.a Contribution (in percentage) of the items considered in scenario LDSc1 to its total 

environmental impact. Figure 4b, contribution (in percentage) of the items considered (transport 

excluded) in scenario LDSc1 to its total environmental impact. Impact categories: GWP, global 

warming potential; ADP, abiotic depletion potential; AP, acidification potential; EP, 

eutrophication potential; OLDP, ozone layer depletion potential; POP, photochemical oxidation 

potential; CED, cumulative energy demand. 

Fig 5 Comparison of the total environmental impacts of the two proposed scenarios: ISc1 and 

LDSc1.  
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Figure 2  
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Figure 5  


