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Abstract 

Using Au chloride as precursor, Pt nanocrystals as seeds, ascorbic acid (AA) as a 

reducer and hexadecyltrimethylammonium bromide, (CTAB) as surfactant and 

complexing agent, extremely long Au nanorods (NRs) have been grown. The influence 

of different parameters such as the composition of the seed particles, the concentration 

of Pt precursor or the type of Pt source present in solution have been analyzed. These 

large Au NRs have been exhaustively characterized by advanced electron microscopies, 

(S)TEM, SEM, HR-TEM and optical microscopy, as well as UV-Vis spectroscopy and 

their morphology correlated with the growth mechanism. 
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Introduction 

In the last years, to harness properties of the materials at the nanometer scale, size and 

shape control has been, and still is, one of the most important issues in nanotechnology. 

Consequently, a wide range of synthetic methods have been reported in the literature 

describing the preparation of nanoparticles (NPs) with different morphologies.1 A 

special case are long nanorods (NRs) (also called nanowires (NWs)) which are specially 

interesting due to their capacity to be integrated into modern nanocircuitry and flexible 

electronics, isothermal fabrics, plasmonic propagation devices2 and plasmonic 

antennas,3 and their emerging use to wire regenerative tissue 4,5, among many other 

benefits resultant from their very high anisotropy, as their special (toxic) biological 

effects related to frustrated phagocytosis.6 Different chemical approaches have been 

attempted to produce long gold NRs (Au NRs) by reduction methods in aqueous 

surfactant media such as electrochemical,7 photochemical8, or seed-mediated growth 

approaches.9 Initially, pre-synthesized small particles (seeds) were used as nuclei for the 

anisotropic growth of NRs as far as 30-40 nm in width and hundreds of nanometers in 

length.10, 11 In those cases, the particle size was controlled by varying the ratio between 

metal salt and (citrate-stabilized) Au seeds, while their aspect ratio (AR) was increased 

by increasing Ag+ ion concentration (AR between 2 and 18).10 El-Sayed and co-workers 

reported improvements of the Au seed-mediated growth method by replacing citrate by 

hexadecyltrimethylammonium bromide (CTAB) stabilizing molecules, which resulted 

in the formation of single crystalline cylindrical Au NRs with ARs below ~10 in very 

high yields.12 Later, the addition of an appropriate amount of nitric acid to the growth 

solution produced Au NRs with high AR (> 20) in high yield,13, 14 that were further 

grown up to ARs of 200 (10 µm, 50 nm) by decreasing the initial amount of seed 

particles.15 The role of the pH has been also recently studied in detail leading to the 
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adjustment of NRs length (between 1 to 6 µm) modifying the pH of the solution.16 At 

these large sizes, in the growth conditions, NRs started being colloidally unstable and 

sediment, resulting in phase segregation, where gelation can occur 13. In these 

conditions, the growth process is impaired, therefore limiting the further NRs growth. 

Besides, the benefit of using Pt as highly catalytic seeds for the growth of Ag NWs has 

been recently reported 17. Basically, from the synthetic point of view, the control of NR 

dimensions relies on the independent control of the NC nucleation and growth (i.e. the 

balance between the preparation of many short rods or few very long rods), a 

challenging situation to perform in just one step; therefore, multistep seeded growth 

methods need to be developed to grow large NCs. This is because most of actual wet 

chemistry methods for NP production are based on the Lamer supersaturation 

approach.18 In this process, the sudden monomer supersaturation provided by highly 

unstable precursors leads to a burst nucleation and a rapid growth, depleting monomer 

from the solution and favoring monodispersity 19. In these conditions, the size of the 

resultant particles is limited due to the fact that at certain point, the addition of more 

precursor leads to more, but not larger, NRs.  

In the present work, we report the synthesis of extremely long NRs using Pt NCs as 

catalytic seeds for the reduction of a less active Au precursor. The decrease of precursor 

reactivity was achieved by the use of surfactants at high concentrations and taking 

advantage that the energy barrier for nucleation is higher than for growing. As a result, 

the slowly growth of Au NRs for days (30 days) is obtained, since there is enough raw 

material to grow very large crystals but always present at low concentrations to avoid 

new nucleation. These large Au NRs have been exhaustively characterized by (S)TEM, 

SEM and optical microscopy as well as UV-Vis spectroscopy and their bending 

morphology correlated with the growth mechanism. 
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Experimental Section  

Chemicals. Hydrogen tetrachloroaurate trihydrate (HAuCl4·3H2O), potassium 

tetrachloroplatinate(II) (K2PtCl4), hexadecyltrimethylammonium bromide (CTAB) 

95%, trisodium citrate 99%, sodium borohydride (NaBH4) and ascorbic acid (AA) were 

purchased from Sigma-Aldrich and used as received without further purification.  

 

Synthesis of CTAB stabilized Pt NPs seeds. The synthesis of ~3 nm Pt NCs stabilized 

in CTAB was carried out following the method described by Grzelczak et al.20 A 

mixture of 9.63 mL of CTAB 0.1 M with 50 µL of K2PtCl4 0.05 M was heated up to 40 

ºC for 5 min until the solution became clear. After adding 0.3 mL of NaBH4 0.06 M, the 

vial was capped immediately. After 10 min, the vial was opened and stirred for several 

minutes until the decomposition of the NaBH4. NP concentration was of ~ 5·1014 

NP/mL, in agreement with those previously reported for Au seeds.21 

 

Synthesis of CTAB stabilized Au NPs seeds. The synthesis of Au NPs stabilized in 

CTAB were prepared via the method developed by Nikoobakht and El-Sayed.12 Briefly, 

5 mL CTAB solution 0.2 M was mixed with 5 mL of HAuCl4 solution 0.0005 M. Next, 

0.6 mL of freshly prepared NaBH4 0.01 M was added to the mixture while vigorous 

stirring, which resulted in the formation of a light-brown solution within few seconds. 

Stirring of the solution was continued for 2 min. 

 

Synthesis of Au NRs with Pt seeds. Growth solution was prepared by mixing 5 mL of 

CTAB 0.2 M and 5 mL of HAuCl4 0.001 M. After that, 50 µL of AA 0.1 M was added 

as a mild reducing agent, changing the growth solution from dark yellow to colorless. 

Then, a volume between 5 and 30 µL of the pre-synthesized Pt seeds was added and 
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gently mixed for 10 seconds. The solution was kept at RT without stirring for 1 month. 

The evolution of the reaction was followed by UV-vis, ICP-MS and TEM. 

 

Synthesis of Au NRs with Au seeds. Three different volumes (0.015 mL, 0.15 mL and 

1.5 mL) of K2PtCl4 solution 0.004 M were added to 5 mL CTAB solution 0.2 M. Then, 

5 mL of HAuCl4 0.001 M and 55 µL of AA 0.1 M were added simultaneously to the 

solutions dropwise, and then gently mixed for 10 seconds. It is worth noting that the 

three solutions above are identical except for the Pt ion content. The final step was the 

addition of 12 µL of the pre-synthesized Au NP seed solution to the growth solutions. 

The solutions were kept at RT. 

 

Characterization. Au NRs were characterized by optical microscope, scanning electron 

microscopy (SEM), transmission electron microscopy (TEM) and High resolution TEM 

(HRTEM), and UV-vis spectroscopy. TEM analysis was performed on a JEOL 1010 

with an accelerating voltage of 80 kV and a digitalization image system Bioscan 

(Gatan). HRTEM was performed on a JEOL JEM 2010F field emission gun microscope 

with an accelerating voltage of 200 kV. For the Z-contrast imaging we used a high 

angle annular dark field (HAADF) detector coupled to the same microscope, which 

allows working in scanning TEM (STEM) mode. The as-synthesized Au NR solutions 

were concentrated and separated from the small nanospheres and surfactant by 

centrifugation. A volume of 1 mL of solution was centrifuged at 1500 rpm for 20 min. 

The supernatant was removed with a syringe and the precipitate was redispersed in 20 

µL of distilled water. Finally, the concentrated solution was dropped onto a carbon 

coated copper grid. SEM analysis was performed on a MERLIN Field Emission SEM 

(Fe-SEM) from Zeiss with an operating voltage of 1.2 kV. The Au NR solution was 
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dropped on a highly ordered pyrolytic graphite (HOPG) substrate, and after 5 min the 

excess was removed tilting the substrate onto an absorbent paper. Then was rinsed with 

methanol and distilled water to remove CTAB. For optical images, Axio Observer z1m 

from Zeiss was used. The sample deposition onto a mica substrate was prepared by 

means the same procedure explained above. UV-vis spectra were obtained with a 

Shimadzu UV-2401PC spectrophotometer, over the range of 200–1000 nm with a 1 cm 

path length quartz cuvette after sample re-suspension to avoid exclusion of large 

crystals that slowly sediment. 

 

Results 

In this work we present a simple and reproducible method for preparing high AR Au 

NRs (as 20 µm length and 36 nm in diameter, ~ 500 AR), to our knowledge the largest 

one reported up to date. Note that hundred thousand of 10 nm Au spherical NPs (~104 

atoms/NP) fit into one single Au NR ((~109 atoms/NP), therefore, large amounts of Au 

precursor are required, which normally causes additional nucleation and increased 

fraction of byproducts. To overcome that, the chemical potential of the reaction was 

decreased, basically by increasing the concentration of complexing agents, lowering the 

reaction temperature and passivating NPs surface, thus new nucleation is avoided while 

the NRs grow up to very large sizes. The reaction has been performed in a closed 

system let for one month at RT without any stirring (Figure 1). These conditions should 

enable easy scaling up of the production of NRs thanks to the absence of temperature 

gradients and small mass gradients during synthesis. The use of Pt is thus justified as a 

reduction catalyst, non-miscible with Au at RT and not so easily oxidized by Au cations 

in the reaction mixture, favoring growth.  
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Figure 1. Schematic representation of the seeding-growth method for the synthesis of 

long Au NRs (drawn not at scale). 

 

Thus, following the procedures reported in the experimental section, high AR Au NRs 

have been obtained. Figure 2 shows TEM images of as-synthesized rods after 1 day 

(A), 1 week (B), 2 weeks (C) and 1 month (D) in the growth solution, employing 

CTAB-capped Pt seeds. From the size distribution diagram after 1 day reaction (Figure 

2A, inset), it can be observed that the Au NRs have lengths between 100 and 600 nm 

and a mean width of 26 ± 5 nm. The average length increases to ~1 µm at 1 week, and 

at 15 days it is of few microns (average ~5 μm). After 1 month in the reaction mixture, 

Au NRs have grown until reaching lengths of several microns (> 10 µm) and a mean 

width of 36 ± 11 nm (see more TEM images of Au NRs in Figure S1 of the supporting 

information). The synthesis of NRs is always accompanied by the formation of 

byproducts, spherical particles and plates. This is the highest growth rate and 

concentration we can achieve before producing too much bystanders (no rod-shaped 

NPs). Figure 2E shows the normalized UV-vis absorption spectra of the growth 

solution at different times. It can be seen that by increasing the reaction time the peak 

broadens and new features appear at higher wavelengths, as the transverse plasmon  
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Figure 2. TEM images of the Au NRs produced by a seeding growth method in presence 

of metallic Pt at different times: A) 1 day (inset: size distribution diagram of the length 

of Au NRs after 1 day reaction), B) 1 week, C) 2 weeks and D) 1 month. E) Normalized 

UV-visible spectrum of the growth of the Au NR solution right after addition of 30 µL of 

Pt seeds. F) Variation of the longitudinal surface plasmon peak with time. Only the 

transverse plasmon band of Au NRs is observed since the longitudinal peak appears al 

higher wavelengths at the IR range. The length of the NRs increases up to a certain 

limit after 1 month when no longer growth is observed. G) TEM image of Au NRs after 

1 day reaction, where it can be observed an elongated tip at the end of the NRs. 
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band redshifts and its intensity increases.12 Due to the length of the NRs, in the final 

product, the longitudinal plasmon band could not be observed at wavelengths below 800 

nm.22 Note that the absence of clear signal at ~ 800 nm indicates the absence of a 

significant amount of plates or other byproducts which manifest in that region of the 

spectra. 23 The long rods (> 10 μm) can easily be seen by low resolution SEM and even 

optical microscopes (Figure 3). The progressive evolution of the size distributions and 

the optical properties support our hypothesis of sustained growth without significant 

new nucleation.24  

 

 

Figure 3. Optical microscope image of the extremely Au NRs deposited onto a mica 

substrate (A) and SEM images of the Au NRs up to 20 µm deposited onto a HOPG 

substrate (B and C). 
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To investigate if the growth of Au NRs after 1 month was indeed still due to the Au+3 

precursor present in the growth solution or by the dissolution of other Au NPs (Ostwald 

ripening), the Au-content of the reaction mixture was monitored by ICP-MS. Samples at 

different time intervals were destabilized by adding organic solvents and fractioned by 

centrifugation and the precipitates and supernatant were analyzed. Analysis showed a 46 

% Au consumption after 1 day, 53 % after 1 week and 84 % after 1 month. Similarly, 

results were obtained when double amount of reagents were used, observing a similar 

trend (38 % after 1 day, 40 % after 1 week and 81 % after 1 month). No presence of 

elemental Pt was detected on the supernatant by ICP-MS in any case while it was 

detected in the pellet. Interestingly, at intermediate times, morphological 

characterization revealed the presence of a narrow tip at the end of the rods (Figure 

2G). This observation recalls, among others, to the colloidal synthesis of Ge NRs 

reported by Korgel group.25,26. Even more significant, in control experiments, no NR 

growth was observed by using Au or Ag seeds in the same conditions, likely due to the 

increased inertness of Au and the lower redox potential of Ag. Note that Pt and Au are 

immiscible at RT and that therefore, at some point, there should be a Pt domain in the 

grown rods. Unfortunately, the presence of Pt cannot be confirmed neither by EDX nor 

EELS which can be explained by the strong signal overlapping of Au and Pt in EDX, 

and by the poor and also overlapped signal of Au and Pt in EELS (Figure 4), due to 

their proximity in the periodic table. However, the absence of Pt in the supernatant and 

its presence in the precipitate after centrifugation (observed by ICP-MS) indicates that 

Pt is incorporated in the growing rod. Other control studies were performed to further 

understand the role of the Pt seeds in the AuNR formation. First, in the absence of 

metallic seeds, no formation of Au particles was observed in the growing mixture at RT, 

indicating that the AA is too weak to reduce Au+ in the presence of CTAB in these 
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conditions. Second, by modifying the amount of seeds, we observed that at low 

concentrations or in the absence of Pt seeds (replaced by Au seeds) resulted into less 

byproduct formation but shorter rods (Figure 5 A-D). Besides, a higher concentration 

of Pt-seeds resulted in a higher presence of byproducts that led to a redshift of the 

transverse plasmon band, indicative of both, an increase of the NRs width as well as an 

increase in the number of by-products in solution. Finally, to study if the ionic form of 

platinum (Pt+2) had some effect in the growth process, we performed similar 

experiments but replacing the Pt-seeds by equivalent amounts of the K2PtCl4 salt. In this 

set of experiments, we also employed Au-seeds synthesized in CTAB to catalyze the 

reaction. As it can be observed in Figures 5 F-H, when the amount of Pt+2 was 

increased, the rod size decreased gradually until polydisperse spherical Au NPs of about 

200 nm were finally formed. We can conclude that, under the reported conditions, the 

presence of low concentrations of metallic Pt facilitates the growth of large Au NRs, 

while the presence of ionic Pt+2 hampers it. Finally, we also note that the mixture of 

CTAB, AA and Pt+2 is not enough to produce Pt NPs at RT even after one month of 

incubation.  
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Figure 4. Z-contrast image and EELS spectra of three different zones. Every color mark 

in the Z-contrast image corresponds to the respective color frame EELS analysis. The 

EELS analyses show that both the particles and the long NRs are formed by gold. No 

signal of Pt was found, but is remarkably to mention that both signals of gold and Pt 

overlap in the EELS spectra. 

 

The presence of the surfactant is also critical in the formation process. It controls the 

kinetics of the reaction by interacting with the growing NCs, ions and intermediates 

present in solution 27-29, in addition to passivate the NC surface against aggregation and 

to promote anisotropic or faceted growth30. It is known that the AuNR growth rate in 

water is controlled by the collisions of the Au+–CTAB metallo-micelles with the formed 

rods.31 In fact, a high concentration of CTAB (up to 0.1 M) is usually required for NR 

growth and favour the solubility of Au-CTAB complexes,32 even though the critical 

micelle concentration (CMC) of CTAB is 0.9 mM at RT (also affected by the presence 

of ions in solution).  
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Figure 5. The effect of Pt in the synthetic process. (A-D) TEM images of the synthesis in 

the presence of different volumes of Pt-seed (~ 5·1014 NP/mL): 5 µL (A), 10 µL (B), 20 

µL (C) and 30 µL (D). (E) Normalized UV-visible spectrum of the Au NR solution after 

addition of different volumes of Pt-seeds (5, 10, 20 and 30 µL) measured after 1 month. 

(F-H) TEM images showing the Pt+2-salt (K2PtCl4) effect in the synthetic process. 

Different volumes of K2PtCl4 solution (0.004 M) added: 0.015 mL (F), 0.15 mL (G) and 

1.5 mL (H).  
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Electrical, magnetic and optical properties of NCs are strongly dependent on atomic 

structure, defects, grain boundaries and growth orientations, for example, the presence 

of twins have been shown recently to have a finest effect by changing the local stacking 

of the atomic planes and thus creating different structural polytypes with different 

tunable optical and electrical properties.33-37 Figure 6 shows HR-TEM images of the Au 

NRs. The Au NRs, as expected, perfectly crystallize in the Au fcc cubic structure, which 

is in agreement with previous studies12. Remarkably, the grand majority of all the 

analyzed NRs are single crystals with different number of defects (see more HR-TEM 

characterization of Au NRs in Figure S2 of the supporting information) suggesting an 

atom by atom growth.  The growth direction of these rods is always along the [1-10] 

axis. However, the NRs contain plenty of crystalline {111} twin and/or stacking fault 

defects parallel to the growth axis. In both cases, twin defects crossing the entire length 

of the NR can be observed. These twin defects occur as rotation along the {111} planes 

parallel to the growth axis and tend to occur on the central part of the NR. The HRTEM 

images are accompanied by the FFT analysis of two different zones, the central and 

lateral side of a NR, in which the presence of multiple spots on the (-1-11) axis can be 

found on the power spectrum, thus agreeing with the fact that the twins are partially 

ordered. In fact, as indicated with the arrows on the inset of Figure 6A, these twins may 

occur every 2 or 3 (-1-11) atomic planes, thus forming a kind of ordered twinned 

superstructure, which can explain the curvature observed in the long Au NRs (crystal 

strain induces bending). This presence of {111} twins parallel to the zone axis is a 

common feature found in NRs composed of cubic crystalline materials33, 36. It can be 

also observed in Figure 6B that some of the NRs suddenly change their direction 

forming an elbow. A further analysis on the bending region confirmed that the shoulder 
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is composed of a grain boundary, suggesting a merging area between two different NRs 

that have fused in some way. During growth, reactive surfaces may easily merge while 

they are incorporating atoms in a process called pasting or cementation (sintering at low 

T while growing).38 This grain boundary is not net, meaning that there was not a clear 

atomic continuity between both sides. In fact, both are just fusing together and creating 

a boundary. Moirée fringes can be appreciated on the boundary region demonstrating 

the overlapping of both crystals. In both cases, these boundaries are formed by the 

fusion of two independent NRs, both growing along the [1-10] axis.   

 

Figure 6. A: panel of HRTEM images of the top part (growth front) of a twinned Au NR 

(left), with the corresponding FFT patterns of the selected areas, and of a middle 

section of the same NR (right), showing the twin ordered superstructure in the inset 

image. B: panel of different grain boundaries between NRs with the corresponding FFT 

patterns of the selected areas.  
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Discussion 

Morphological control is achieved by selective attachment and kinetic/diffusion 

control24,30, 39. In here, using Pt seeds at RT, the presence of weak reducers and large 

amounts of surfactants allows interesting conditions for designed NC growth.40 Note 

that the same process at high temperatures yields multiple Au shapes and very short 

rods. It is true that the frequently used sequential version –step by step- of the seeded 

growth process have provided a handy strategy to overgrow NCs, however, limitations 

exists and careful and costly control of the growth environment is necessary.24 The idea 

here was to prepare a solution that provides reactive monomer to the growing rod at 

appropriate rates, therefore, avoiding increase of monomer concentration and new 

nucleation. The production of these long Au rods is promoted by the presence of the Pt 

seeds, which are incorporated in the rods and probably keep the NR tip “hot” promoting 

growth in the reacting mixture. Besides, it has also emerged an increasing interest in 

finding greener methods for NP synthesis.41 These green methodologies try to solve 

problems such as energy consumption (temperature, stirring), the use of toxic reagents 

and generation of toxic by-products, and scaling-up feasibility, what requires selecting 

appropriately surfactants, reducers and complexing agents.42  
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Supporting Information Available. Additional TEM images of Au NRs, HRTEM 

characterization and Z-contrast images. This material is available free of charge via the 

Internet at http://pubs.acs.org. 

 

Page 17 of 20

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



18 
 

References  

1. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A., Chemistry and Properties 
of Nanocrystals of Different Shapes. Chemical Reviews 2005, 105, (4), 1025-1102. 

2. Wild, B.; Cao, L.; Sun, Y.; Khanal, B. P.; Zubarev, E. R.; Gray, S. K.; Scherer, 
N. F.; Pelton, M., Propagation Lengths and Group Velocities of Plasmons in Chemically 
Synthesized Gold and Silver Nanowires. ACS Nano 2011, 6, (1), 472-482. 

3. Paolo, B.; Jer-Shing, H.; Bert, H., Nanoantennas for visible and infrared 
radiation. Reports on Progress in Physics 2012, 75, (2), 024402. 

4. Dvir, T.; Timko, B. P.; Brigham, M. D.; Naik, S. R.; Karajanagi, S. S.; Levy, O.; 
Jin, H.; Parker, K. K.; Langer, R.; Kohane, D. S., Nanowired three-dimensional cardiac 
patches. Nat Nanotechnol 2011, 6, (11), 720-5. 

5. Tian, B.; Liu, J.; Dvir, T.; Jin, L.; Tsui, J. H.; Qing, Q.; Suo, Z.; Langer, R.; 
Kohane, D. S.; Lieber, C. M., Macroporous nanowire nanoelectronic scaffolds for 
synthetic tissues. Nature materials 2012, 11, (11), 986-994. 

6. Stoehr, L.; Gonzalez, E.; Stampfl, A.; Casals, E.; Duschl, A.; Puntes, V.; 
Oostingh, G., Shape matters: effects of silver nanospheres and wires on human alveolar 
epithelial cells. Particle and Fibre Toxicology 2011, 8, (1), 36. 

7. Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C., Gold nanorods: 
Electrochemical synthesis and optical properties. Journal of Physical Chemistry B 1997, 
101, (34), 6661-6664. 

8. Esumi, K.; Matsuhisa, K.; Torigoe, K., Preparation of Rodlike Gold Particles by 
Uv Irradiation Using Cationic Micelles as a Template. Langmuir 1995, 11, (9), 3285-
3287. 

9. Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet chemical synthesis of high aspect 
ratio cylindrical gold nanorods. Journal of Physical Chemistry B 2001, 105, (19), 4065-
4067. 

10. Jana, N. R.; Gearheart, L.; Murphy, C. J., Seed-Mediated Growth Approach for 
Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a 
Surfactant Template. Advanced Materials 2001, 13, (18), 1389-1393. 

11. Busbee, B. D.; Obare, S. O.; Murphy, C. J., An Improved Synthesis of High-
Aspect-Ratio Gold Nanorods. Advanced Materials 2003, 15, (5), 414-416. 

12. Nikoobakht, B.; El-Sayed, M. A., Preparation and Growth Mechanism of Gold 
Nanorods (NRs) Using Seed-Mediated Growth Method. Chemistry of Materials 2003, 
15, (10), 1957-1962. 

13. Wu, H. Y.; Huang, W. L.; Huang, M. H., Direct high-yield synthesis of high 
aspect ratio gold nanorods. Crystal Growth & Design 2007, 7, (4), 831-835. 

14. Wu, H. Y.; Chu, H. C.; Kuo, T. J.; Kuo, C. L.; Huang, M. H., Seed-mediated 
synthesis of high aspect ratio gold nanorods with nitric acid. Chemistry of Materials 
2005, 17, (25), 6447-6451. 

15. Kim, F.; Sohn, K.; Wu, J. S.; Huang, J. X., Chemical Synthesis of Gold 
Nanowires in Acidic Solutions. Journal of the American Chemical Society 2008, 130, 
(44), 14442-+. 

Page 18 of 20

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



19 
 

16. Wang, Y.-N.; Wei, W.-T.; Yang, C.-W.; Huang, M. H., Seed-Mediated Growth 
of Ultralong Gold Nanorods and Nanowires with a Wide Range of Length Tunability. 
Langmuir 2013, 29, (33), 10491-10497. 

17. Lu, X.; Rycenga, M.; Skrabalak, S. E.; Wiley, B.; Xia, Y., Chemical Synthesis 
of Novel Plasmonic Nanoparticles. Annual Review of Physical Chemistry 2009, 60, (1), 
167-192. 

18. LaMer, V. K.; Dinegar, R. H., Theory, Production and Mechanism of Formation 
of Monodispersed Hydrosols. Journal of the American Chemical Society 1950, 72, (11), 
4847-4854. 

19. Reiss, H., The Growth of Uniform Colloidal Dispersions. The Journal of 
Chemical Physics 1951, 19, (4), 482-487. 

20. Grzelczak, M.; Perez-Juste, J.; Rodriguez-Gonzalez, B.; Spasova, M.; Barsukov, 
I.; Farle, M.; Liz-Marzan, L. M., Pt-Catalyzed Growth of Ni Nanoparticles in Aqueous 
CTAB Solution. Chemistry of Materials 2008, 20, (16), 5399-5405. 

21. Liu, M. Z.; Guyot-Sionnest, P., Mechanism of silver(I)-assisted growth of gold 
nanorods and bipyramids. Journal of Physical Chemistry B 2005, 109, (47), 22192-
22200. 

22. Eustis, S.; El-Sayed, M. A., Determination of the aspect ratio statistical 
distribution of gold nanorods in solution from a theoretical fit of the observed 
inhomogeneously broadened longitudinal plasmon resonance absorption spectrum. 
Journal of Applied Physics 2006, 100, (4), 044324-044324-7. 

23. Huang, W.-L.; Chen, C.-H.; Huang, M. H., Investigation of the Growth Process 
of Gold Nanoplates Formed by Thermal Aqueous Solution Approach and the Synthesis 
of Ultra-Small Gold Nanoplates. The Journal of Physical Chemistry C 2007, 111, (6), 
2533-2538. 

24. Bastús, N. G.; Comenge, J.; Puntes, V. c., Kinetically Controlled Seeded Growth 
Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing 
versus Ostwald Ripening. Langmuir 2011, 27, (17), 11098-11105. 

25. Chockla, A. M.; Harris, J. T.; Korgel, B. A., Colloidal Synthesis of Germanium 
Nanorods. Chemistry of Materials 2011, 23, (7), 1964-1970. 

26. Lim, S. I.; Varon, M.; Ojea-Jimenez, I.; Arbiol, J.; Puntes, V., Pt nanocrystal 
evolution in the presence of Au(iii)-salts at room temperature: spontaneous formation of 
AuPt heterodimers. J. Mater. Chem. 2011, 21, (31). 

27. Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S., Growth and 
form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. 
Journal of Materials Chemistry 2002, 12, (6), 1765-1770. 

28. Nikoobakht, B.; El-Sayed, M. A., Evidence for bilayer assembly of cationic 
surfactants on the surface of gold nanorods. Langmuir 2001, 17, (20), 6368-6374. 

29. Gao, J. X.; Bender, C. M.; Murphy, C. J., Dependence of the gold nanorod 
aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 
2003, 19, (21), 9065-9070. 

30. Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P., Colloidal Nanocrystal Shape 
and Size Control: The Case of Cobalt. Science 2001, 291, (5511), 2115-2117. 

Page 19 of 20

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



20 
 

31. Pérez-Juste, J.; Liz-Marzán, L. M.; Carnie, S.; Chan, D. Y. C.; Mulvaney, P., 
Electric-Field-Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions. 
Advanced Functional Materials 2004, 14, (6), 571-579. 

32. Tornblom, M.; Henriksson, U., Effect of Solubilization of Aliphatic 
Hydrocarbons on Size and Shape of Rodlike C16TABr Micelles Studied by 2H NMR 
Relaxation. The Journal of Physical Chemistry B 1997, 101, (31), 6028-6035. 

33. Arbiol, J.; Estrade, S.; Prades, J. D.; Cirera, A.; Furtmayr, F.; Stark, C.; Laufer, 
A.; Stutzmann, M.; Eickhoff, M.; Gass, M. H.; Bleloch, A. L.; Peiro, F.; Morante, J. R., 
Triple-twin domains in Mg doped GaN wurtzite nanowires: structural and electronic 
properties of this zinc-blende-like stacking. Nanotechnology 2009, 20, (14). 

34. Lopez, F. J.; Hemesath, E. R.; Lauhon, L. J., Ordered Stacking Fault Arrays in 
Silicon Nanowires. Nano Letters 2009, 9, (7), 2774-2779. 

35. Arbiol, J.; Comini, E.; Faglia, G.; Sberveglieri, G.; Morante, J. R., Orthorhombic 
Pbcn SnO2 nanowires for gas sensing applications. Journal of Crystal Growth 2008, 
310, (1), 253-260. 

36. Arbiol, J.; Morral, A. F. I.; Estrade, S.; Peiro, F.; Kalache, B.; Cabarrocas, P. R. 
I.; Morante, J. R., Influence of the (111) twinning on the formation of diamond 
cubic/diamond hexagonal heterostructures in Cu-catalyzed Si nanowires. Journal of 
Applied Physics 2008, 104, (6). 

37. Arbiol, J.; Kalache, B.; Cabarrocas, P. R. I.; Morante, J. R.; Morral, A. F. I., 
Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the 
vapour-solid-solid mechanism. Nanotechnology 2007, 18, (30). 

38. Lim, S. I.; Ojea-Jiménez, I.; Varon, M.; Casals, E.; Arbiol, J.; Puntes, V., 
Synthesis of Platinum Cubes, Polypods, Cuboctahedrons, and Raspberries Assisted by 
Cobalt Nanocrystals. Nano Letters 2010, 10, (3), 964-973. 

39. Peng, X.; Wickham, J.; Alivisatos, A. P., Kinetics of II-VI and III-V Colloidal 
Semiconductor Nanocrystal Growth:  “Focusing” of Size Distributions. Journal of the 
American Chemical Society 1998, 120, (21), 5343-5344. 

40. González, E.; Arbiol, J.; Puntes, V. F., Carving at the Nanoscale: Sequential 
Galvanic Exchange and Kirkendall Growth at Room Temperature. Science 2011, 334, 
(6061), 1377-1380. 

41. Kharissova, O. V.; Dias, H. V. R.; Kharisov, B. I.; Perez, B. O.; Perez, V. M. J., 
The greener synthesis of nanoparticles. Trends in Biotechnology 2013, 31, (4), 240-248. 

42. Raveendran, P.; Fu, J.; Wallen, S. L., Completely "green" synthesis and 
stabilization of metal nanoparticles. Journal of the American Chemical Society 2003, 
125, (46), 13940-13941. 

 

  

Page 20 of 20

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60




