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Abstract

Background: Pyrenean chamois (Rupicapra pyrenaica pyrenaica) is a nearly monomorphic mountain ungulate with
an unbiased sex-specific overwinter adult survival. Few differences in gastrointestinal parasitism have been reported by
coprology as yet. This study aims to assess diversity, prevalence, intensity of infection and aggregation of gastrointestinal
nematodes in male and female adult chamois. We expect no differences in the parasite infection rates between sexes.

Findings: Gastrointestinal tracts of 28 harvested Pyrenean chamois in the Catalan Pyrenees (autumn 2012 and 2013)
were necropsied and sexual differences in the diversity and structure of parasite community, prevalence, intensity of
infection, and richness were investigated. We found 25 helminth species belonging to 13 different genera.

Conclusions: Contrary to our expectations, male chamois showed different parasite communities, higher prevalence,
intensity of infection and richness than females. Such sexual differences were clear irrespective of age of individuals.
Hence, male chamois must cope with a more diverse and abundant parasite community than females, without apparent
biological cost. Further research will be required to confirm this hypothesis.
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Findings
Sex-biased parasitism has been linked to a higher sus-
ceptibility of helminth infection in males of a broad
range of mammal species [1]. Once infected, this greater
male-biased susceptibility is primarily driven by the ef-
fects of immunosuppressive hormones (i.e., testosterone
[2,3]) and differences in energy and nutrient require-
ments for parasite defence [4]. Hence, under stressful
environmental conditions (e.g., food shortage) resilience
of male hosts against parasitism may be lower than for
females.
In temperate ecosystems, higher energetic demands

occur in winter when a period of reduced availability co-
incides with increased thermoregulatory demands [5].
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The energetic requirements will be even higher if the rut
coincides with the decrease in food availability as in
most ungulate species (e.g., Caprinae) inhabiting Alpine
ecosystems [6]. On the other hand, rut-induced hypo-
phagia, the reduction in time spent foraging during the
mating season, of males in these mammals [7], may in-
crease susceptibility to parasite infection due to the high
testosterone concentration and the reduction in food
intake.
The Pyrenean chamois (Rupicapra pyrenaica pyre-

naica) is a nearly monomorphic mountain ungulate that
experiences much of the previously mentioned charac-
teristics linked to male-biased parasitism. In this capri-
nae, rut begins at the end of October and lasts until
December [8] coinciding with a period of diet impover-
ishment [9]. In addition, seasonal changes in androgen
metabolites match the sexual cycle of this mammal, and
an increase in lung nematode load in males [10]. How-
ever, this male-biased parasitism has not been fully con-
firmed for gastrointestinal helminths [10] and the
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increments in lung nematode loads are not widespread
depending on the mating tactic, i.e., only territorial
males but not all had greater lung nematode loads [11].
On the other hand, this slightly sex-biased susceptibility
to parasite infection has been assessed by indirect counts
(i.e., coprology) and to date no research has been con-
ducted to study whether this male-biased parasitism is
due to the higher reproduction rates of a few parasite
species or to a more abundant and diverse parasite com-
munity. Host are considered as complex ecosystems
composed of parasites [12], hence male-biased parasit-
ism should be explored considering as much as the en-
doparasites community as possible. Accordingly, in this
work we (i) identify the gastrointestinal helminth species
affecting male and female Pyrenean chamois during the
rut, and (ii) examine whether or not sexual differences,
in terms of prevalence, intensity of infection, diversity
and community structure of gastrointestinal helminths,
exists in different digestive regions (i.e., abomasum,
small intestine and large intestine) of chamois’ gastro-
intestinal tract.

Material and methods
Chamois sampling
Gastrointestinal tracts (n = 28) were obtained by nec-
ropsy of 17 female (3–16 years old) and 11 adult male
(2–12 years old) Pyrenean chamois from the Freser-
Setcases National Game Reserve, Catalan Pyrenees,
Spain (4°21′N, 2°09′E). Animals were hunter-harvested
during October-December 2012 and 2013 coinciding
with the rut period. Age determination was based on
horn annuli counts. Once the gastrointestinal tract was
removed, we tied the abomasum, and small and large in-
testine ends. The gastrointestinal tract was then stored
in labelled plastic bags and transported in a cold box at
4°C to our facilities. In the laboratory, the material was
stored at -20°C until parasitological examination.

Parasitological data
Once gastrointestinal tracts were defrosted, the aboma-
sum, and small and large intestine were longitudinally
opened (n = 84), the mucosa scrapped and the content
washed and filtered through three sieves of 6.3, 3.2 and
0.3 mm, respectively. The content was diluted in 1000
ml of tap water in a sedimentation cup and three ali-
quots of 100 ml (10%) each were examined to collect
parasites. Male nematodes were cleared in lactophenol
and Cestodes stained in Semichon’s carmine and later
identified.

Statistical analyses
For nematodes, prevalence and intensity of infection
(number of parasite individuals/number of infected
hosts) were calculated whereas for cestodes, only preva-
lence was estimated.
We used null models to assess parasite diversity and

to explore whether gastrointestinal parasite species in fe-
male and male chamois were occurring in structured
communities. For parasite diversity we used both the
species richness (number of gastrointestinal parasite spe-
cies per individual chamois) and the PIE Hurlbert’s index
(i.e., the probability that two randomly sampled parasites
from the host population belong to different species). To
assess co-occurrence among parasite species we used
the C-score index. Low C-score values mean that species
frequently occur together and hence a C-score smaller
than expected by chance (O<E) indicates positive co-
occurrence, e.g., species in that community will tend to
be aggregated [13]. The fixed-equiprobable (F-E) algo-
rithm was used, and a standardised effect size (SES) for
each matrix (i.e., number of standard deviations that the
C-score is above or below the mean index of the simu-
lated communities) calculated. Expected C-scores were
estimated for 5000 null matrices by Monte Carlo proce-
dures using EcoSim 7.72 [14].
Sex differences in mean prevalence of specific gastro-

intestinal helminth infections (as response variable) were
assessed using linear models (LM). In these models, sex,
digestive region (i.e., abomasum, small intestine and large
intestine) and their interaction were considered as
explanatory variables. On the other hand, male-biased hel-
minth richness or intensity of infection was also evaluated
using LM including the age (in years), sex, digestive por-
tion and their interaction as explanatory variables. Host
individual was initially included as random factor
(intercept) in a linear mixed model, but later excluded
since it was not statistically significant. Model selection
was assessed by the Akaike Information Criterion [15].
Richness and mean intensity of infection was log-
transformed to minimise the residual pattern. Prior to
model interpretation, model requirements were evalu-
ated according to Zuur et al. 2013. Analyses were per-
formed in R, version 3. 1. 2 [16].

Results and discussion
Prevalence of gastrointestinal helminth infection was
96.5% and a single female was infection-free. The num-
ber of parasites per individual ranged from 0 to 6500
helminths. Twenty-five helminth species were identified,
9 species in both the abomasum and small intestine
whereas 7 were identified in the large intestine (Table 1).
In both sexes, the highest probability of an inter-

specific encounter (PIE) occurred in the abomasum and
the lowest in the small intestine (Table 2). The observed
C-score (Table 2) was smaller than that expected by
chance (O>E) in every digestive portion, indicating that
parasites were organised in communities.



Table 1 Prevalence, mean intensity and range (min-max) of gastrointestinal helminth infections in Pyrenean chamois
(17 ♀ and 11 ♂) hunter-harvested in the Freser-Setcases National Game Reserve, Catalonia, Spain

Prevalence Mean intensity Range

Abomasum ♀ ♂ ♀ ♂ ♀ ♂

Haemonchus contortus 43.7 81.8 55.1 59.5 0–147 0–242

Trichostrongylus axei 50.0 100 178.2 246.7 0–971 18–998

Teladorsagia circumcincta 62.5 90.9 194.1 414.3 0–695 0–1158

Teladorsagia trifurcata 43.7 90.9 37.2 95.6 0–137 0–378

Ostertagia leptospicularis 18.7 54.5 10.7 285.9 0–17 0–1344

Ostertagia ostertagi 6.2 54.5 8.4 194.5 0–8 0–836

Ostertagia lyrata 0 9.1 0 31.2 0–0 0–31

Marshallagia marshalli 56.2 90.9 115.2 334.1 0–374 0–974

Marshallagia occidentalis 37.5 72.7 19.4 111.7 0–37 0–413

Total 87.5 100 371.9 1408.9 0–1292 37–3678

Small intestine

Trichostrongylus capricola 11.7 18.2 8.6 25.3 0–17 0–28

Trichostrongylus colubriformis 11.7 27.3 32.2 24.8 0–53 0–38

Trichostrongylus vitrinus 35.3 27.3 18.6 15.8 0–40 0–22

Nematodirus oiratianus 58.8 100 280.9 1137.9 0–1254 75–3059

Nematodirus filicolis 41.2 100 102.1 206.1 0–366 5–517

Nematodirus abnormalis 0 18.2 0 86.6 0–0 0–149

Capilaria bovis 29.4 18.2 4.6 6.7 0–7 0–10

Cooperia oncophora 0 9.1 0 47.8 0–0 0–48

Cestodes 11.7 45.4 - - - -

Total 76.5 100 191.7 1381.1 0–1120 80–3382

Large intestine

Oesophagostomum venulosum 64.7 81.8 2.4 4.8 0–6 0–14

Trichuris globulosa 11.7 9.1 1 1 0–1 0–1

Trichuris ovis 5.9 36.4 3 1.5 0–3 0–2

Trichuris discolor 5.9 9.1 2 1 0–2 0–1

Trichuris skrjabini 5.9 0 1 0 0–1 0–0

Skrjabinema ovis 0 9.1 0 4 0–0 0–4

Chabertia ovina 0 9.1 0 1 0–0 0–1

Total 64.7 81.8 3.1 6.2 0–8 0–16

Total 93.7 100 489.8 2795.1 0–2209 120–6500

Only 3 of the 7 cestodes found were classified as Moniezia sp.

Table 2 Parasite community diversity and aggregation analysis of Pyrenean chamois (17 ♀ and 11 ♂) from Freser-
Setcases National Game Reserve, Catalonia, Spain

Digestive
portion

Richness PIE C-score

♂ ♀ ♂ ♀ ♀ ♂

O E P SES O E P SES

Abomasum 9 8 0.83 0.74 6.14 13.02 <0,001 -4.08 1.11 3.68 0.000 -4.86

Small intestine 9 7 0.40 0.30 8.29 9.89 0.006 -2.77 1.97 3.04 0.026 -2.15

Large intestine 6 5 0.40 0.40 0.40 2.94 0.004 -2.17 0.93 2.12 0.05 -1.74

Average richness, mean probability of an interspecific encounter (PIE, Hurlbert’s 1971), and observed (O) and expected by chance (E) values of the C-score for
presence/absence matrices. The P indicates the p-value (O<E). Negative values of the standardised effect size (SES) indicate that O < E.
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The additive effects of sex and digestive region were
sufficient to explain the observed variability in preva-
lence of gastrointestinal helminth infection (F3, 46= 7.6,
p < 0.01, R2= 33.3%). In fact, a male-biased mean preva-
lence (46% in males vs 24% in females) was clear in our
sample of chamois. Regarding the intensity of infection,
64% of the observed variability was due to the effects of
age, digestive portion and the sex of chamois (F4, 75 =
33.39, p < 0.01). In both sexes, intensity of infection de-
creased with age (β= -0.06, SE = 0.03, t= -2.2, p = 0.01),
being higher in males (β= 1.52, SE = 0.28, t= 5.3, p =
0.02) than in females (133.8 helminths /individual host
in males vs 42 helminths/individual host in females).
Interestingly, in both sexes the greatest intensity of hel-
minth infections were found in the abomasum (133 hel-
minths/host individual), followed by the small intestine
(111 helminths/host individual) and lastly the large in-
testine (1.6 helminths/host individual). A picture sum-
marising the parasite distribution in an adult chamois
can be seen in Figure 1. Along the same lines, 55.1% of
the observed helminth richness variability was also due
to the effects of age, sex and the digestive portion
(F4, 75 = 23.12, p < 0.01). Richness also decreased with
age (β= -0.01, SE = 0.02, t = -2.71, p < 0.01), males
hosted more parasite species than females (β= 0.12,
SE = 0.02, t = 4.6, p < 0.01), and the abomasum was
richer in species than the small or the large intestine.
In addition, the PIE tended to be sex-biased, being higher
in males in the abomasum and small intestine (Table 2).
These considerable variations among digestive segments
are common and likely because of the greater nutrient
Figure 1 Gastrointestinal helminth community of Pyrenean chamois,
ordered according to decreasing order of mean intensity of infection. Oma
are placed on the right size.
availability in the first two portions; however, no informa-
tion exists to support this hypothesis.
These sexual differences were mainly due to the higher

infection rates of Ostertagia spp., Teladorsagia spp.,
Nematodirus spp., and Marshallagia spp. in males
(Table 1). Actually, one helminth species (Trichuris
skrjabini) was not found in males whereas five helminth
species (Ostertagia lyrata, Skrjabinema ovis, Chabertia
ovina, Cooperia onchophora and Nematodirus abnorma-
lis) where not found in female chamois.
We found the first record of C. oncophora, Ostertagia

leptospicularis, O. lyrata and Trichuris discolor in the
Southern chamois and the first report of O. ostertagi in
chamois from the Iberian Peninsula. Interestingly, we
found several parasite species common to livestock (e.g.,
N. filicolis, C. oncophora, H. contortus, C. ovina, and Tel-
adorsagia spp., [17]), highlighting the risk of cross-
infections with sheep sharing alpine pastures.
Our co-occurrence analysis indicates that gastrointes-

tinal parasites in each digestive part are organised in
structured assemblages (i.e., not a random combination
of helminth species) in both female and male chamois.
There is no consensus however regarding the meaning
of interspecific interactions among parasites in these
structured communities, but the most plausible hypoth-
esis is that the structuring process is based on competi-
tive interactions, i.e., the exclusion of one species by
another, between nematodes [18].
Furthermore and contrary to our expectations, the

male-biased gastrointestinal helminth prevalence, intensity
of infection and richness was manifest at any age. Few
a monomorphic mountain ungulate. Helminth genus have been
sum, abomasum and first portion of the small intestine (grey solid line)
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differences in the behaviour of males can partially explain
the differences in the parasitization rates. In the summer,
male chamois have larger home ranges [19] and feed at
greater intensities [20] than females coinciding with the
peak of infective L3 larvae in the alpine meadows [21].
This behaviour not only allows males to achieve more ac-
cumulated body resources for the rut period [22], but may
also influence the likelihood of acquiring new parasite spe-
cies by accidental ingestion of infective larvae. Subse-
quently, the energetic demand of rut, the rut-induced
hypophagia, and the increased concentration of androgens
[23] may favour the establishment of the helminth infec-
tions. Interestingly, this male-biased parasitism is also de-
tectable outside of the rut period [24] and hence this
establishment of new infections during the rut period
would result in a greater bioaccumulation of parasites in
male chamois.

Conclusions
This study confirms male-biased parasitism in the Pyrenean
chamois, despite the low sexual dimorphism in this mam-
mal. However, and in contrast to other polygynous ungu-
lates, survival patterns of female and male Pyrenean
chamois are similar [25,26]. Hence, this sex-biased parasit-
ism may not implicate a greater biological cost for males
with respect to females. Further research will be oriented to
test this supposition.
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