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Abstract

The precise knowledge of the temperature of an ultracold lattice gas simulating a strongly correlated
system is a question of both fundamental and technological importance. Here, we address such
question by combining tools from quantum metrology together with the study of the quantum
correlations embedded in the system at finite temperatures. Within this frame we examine the spin-
1/2 XY chain, first estimating, by means of the quantum Fisher information, the lowest attainable
bound on the temperature precision. We then address the estimation of the temperature of the sample
from the analysis of correlations using a quantum non demolishing Faraday spectroscopy method.
Remarkably, our results show that the collective quantum correlations can become optimal
observables to accurately estimate the temperature of our model in a given range of temperatures.

1. Introduction

Ultracold atomic samples are considered to be, nowadays, one of the most promising setups for implementing
quantum simulators of condensed matter [ 1-3]. Such promise has been reinforced by several breakthroughs
which include, among others, the celebrated Mott insulator to superfluid quantum phase transition for bosons
[4], as well as recent simulations of antiferromagnetic spin chains with both, bosonic [5] and fermionic [6]
ultracold atomic gases.

At zero temperature, the emergence of a new order in a strongly correlated system is signalled by the
presence of quantum correlations at all length scales. At finite temperature, however, such emergence fades
gradually away due to the presence of thermal fluctuations. As a result, for low dimensional systems, critical
points signalling quantum phase transitions often broaden into ‘critical’ regions. Those regions still separate
different phases which keep track of their ground state correlations. Hence, the transition between those phases
might appear as smooth crossovers [7, 8], nonetheless carrying a footprint of the quantum phase transition
occurring at zero temperature. In view of these facts, finite temperature quantum correlations could be used as a
method for thermometry. Achieving low enough temperatures to simulate strongly correlated systems and other
exotic phenomena has been considered as the guiding principle of ultracold lattice physics. Difficulties to reach
such regimes arise first from the inability to measure the temperature on such systems which is a necessary step
in order to cross the frontier towards strongly correlated ultracold atoms [9].

As itis well known in quantum metrology, the quantum Cramér—Rao bound [10—12] settles a limit on the
precision of the estimation of a given parameter. If the parameter to be estimated is temperature and the system
is in thermal equilibrium, the Cramér—Rao bound for a single shot yields a relation of the form ATAH > T*
being H the Hamiltonian governing the system and where we have set the Boltzman constant kg = 1[13-15].
This relation indicates that the minimal error in temperature estimation of a thermal sample is realized by a
projective measurement on its energy eigenbasis. In general, such type of measurements in ultracold lattice gases
is not accessible. Instead, information about quantum phases and temperature is usually obtained from
momentum and density distributions or from density—density (or spin—spin) correlations. These quantities can
be extracted by using destructive methods such as time of flight imaging (the latter via the study of noise
correlations [16]) or in situ imaging, for instance using single site addressability [17, 18]. Despite their huge
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relevance, these methods might suffer limitations in certain occasions, due to their destructive character. For
instance, in order to study spin—spin correlations in currently available setups for single site imaging, one needs
to remove all particles from one of the two spin components. In this sense, quantum non demolition (QND)
methods can provide clear advantages [ 19]. The quantum Faraday spectroscopy is a minimally disturbing
matter—light interface that maps collective atomic quantum correlations into light quadrature fluctuations, the
latter can be measured by homodyne detection. Here, we adapt this method to estimate the temperature of a
strongly correlated system simulated by an atomic lattice gas. Furthermore, to assess the reliability of our
method for precision thermometry, we compare the signal-to-noise ratio obtained from the measurement of
collective atomic correlations with the minimal possible error provided by the quantum Cramér—Rao bound.
Our results show that the measurement of collective quantum correlations can become optimal for temperature
estimation in some integrable models.

The paper is organized as follows. In section 2, we briefly review the basic properties of the spin-1/2 XY chain
in a transverse field, both at zero and finite temperatures. Unlike the majority of quantum spin models, the XY
model can be exactly solved by means of a Jordan—Wigner transformation mapping it onto a system of non-
interacting fermions and giving access to the full energy spectrum [20]. In section 3, we focus on the quantum
metrology aspects of the problem. To this aim, we derive first a closed form of the quantum Fisher information
(QFI) as a function of the temperature for the whole phase diagram. This, in turn, provides the minimal error on
the temperature estimation when performing an optimal measurement. Section 4 reviews the basic concepts
describing the QND Faraday spectroscopy, while section 5 is devoted to the analysis of quantum correlations at
finite temperatures with this method. We evaluate, for the whole phase diagram of the model, the signal-to-noise
ratio, T/AT, obtained with a Faraday interface. As we will show later, the thermal sensitivity of a given quantum
phase strongly depends on the temperature of the sample. Remarkably, our results support the suitability of
collective quantum correlations as optimal observables for quantum thermometry of strongly correlated
systems in many cases. In section 6 we conclude and present some open questions.

2. The XY model

The spin-1/2 XY chain in a transverse field (including the Ising and isotropic XX models as particular cases) is an
exactly solvable model, and as such, it can be used as a prototype to understand the interplay between quantum
and thermal fluctuations. The Hamiltonian governing the system can be written as:

N N
1+ 1-
H= —]Z [Tyaixaiﬁ—l + T}/Uzygz)-/l—l:l - hz o/ (1)
i=1 i=1

where o;* are the usual Pauli matrices at site i, —1 < y < 1is the parameter that sets the XY anisotropy (y = +1
and y = 0 for Isingand XX models respectively), h is the transverse magnetic field and N is the number of sites of
the chain. The coupling constant ] can be positive (ferromagnet) or negative (antiferromagnet). Throughout this
paper, we will consider only the ferromagnetic case J > 0. However, equivalent results can be straightforwardly
derived for the antiferromagnetic case J < 0. For simplicity, we consider here periodic boundary conditions
with an even number of sites, but the results can be easily extended to an odd number of sites or an open chain.
However, for large enough chains, one expects such variations not to influence the results [20].

The Hamiltonian (1) can be easily diagonalized by mapping it onto a non-interacting fermionic model that
provides the full energy spectrum. As it is well known [20, 21] the non-interacting fermionic representation of
the XY model is obtained by means of the Jordan—Wigner transformation, followed by a unitary Bogoliubov
transformation in the quasi-momentum space, yielding the separable Hamiltonian (up to a constant):

H= Y e no 2)
k

and the energy dispersion relation

ex = 2Jy (cos k — h/T)? + (7 sin k)2, (3)

being k the quasi-momentum, k = z (2j + 1),and j = —N/2,..., N/2 — 1. The sign of this energy is arbitrary.

Choosing a positive value corresponds to the particle-hole picture for the fermionic quasiparticles, which are
defined for k € (0, ) by the following Bogoliubov transformation:

vl = cos Ol + 1 sin Opex. (4)

Here, tan (26;) = y sin k/(cos k — h/]) for 6; € (0, n/2),and c,:r are the Fourier transform of the on-site
fermionic operators that directly relate to the spin operators via the Jordan—Wigner transformation
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Figure 1. (a) Sketch of the phase diagram at zero temperature for the XY model. The y = 0 and y = 1lines correspond to the isotropic
XX and Ising models respectively. FM(AFM) denote phases with quasi long-range ferro(antiferro)-magnetic order along the x- and y-
axisfor y > 0 and y < 0, respectively. PM is the paramagnetic phase. There are second order phase transitions at h/J = +1 (Ising
transition) and at y = 0 (anisotropy transition). The dashed line denotes the factorization line for this model. (b) Energy gap AE to
the continuum of excited states (in units of 2] ). The energy spectrum is always gapped except at the critical point h/] = +1and at the
critical phase y = 0, |h/J| < 1. (c) Energy dispersion relation for different values of the anisotropy parameter y. FM phases are
displayedinred (h/] = 0) anddarkred (0 < h/J < 1). PM phases are displayed in blue (h/] > 1). Critical points are displayed by the
dashed backline (h/] = 1).

o = af“H of, o= GI_H of . (5)
I<i I<i
The ground state of the system corresponds to the vacuum of the Bogoliubov quasiparticles, and excitations are
obtained with creation operators acting on the vacuum. The energy gap between the ground state and the
continuum of excited states is thus given by AE = miny (e ).

Note that the Hamiltonian is symmetric under the exchange h <> —h (by k <> 7/2 — k) andundery < —y
(by 6, < 0,). A sketch of the phase diagram at zero temperature, together with the energy gap AE and the
energy dispersion relation are displayed in figure 1. The system is always gapped, i.e. AE > 0, except for the
quantum critical lines occurringat h/] = +1 (Ising transitions), which separate the paramagnetic phases (PM)
from the ferromagnetic (FM) ones (or antiferromagneticif ] < 0) and for y = 0 and |h/J| < 1, corresponding
to the critical phase in the XX model (anisotropic transition). Moreover, Heisenberg systems with general
anisotropies exhibit, for particular values of the couplings, a ground state which is doubly degenerated and
which is factorizable as a product of on-site localized wave-functions [22, 23]. In the XY model, for each value of
7, this product ground state corresponds to an external transverse field h/] = +4/1 — y?, which is depicted by a
dashed line in the phase diagram of figure 1(a).

In the thermodynamic limit (large N), the system in thermal equilibrium at a given temperature 7 can be
described by the density matrix in the macrocanonical ensemble (we set kg = 1):

e—Hh)/T

oy, W1, T/]) = = % o™y, h1, T/)), (6)

where Z denotes the partition function of the system. For compactness of notation we write from now on

oW (y, h/], T/J)simplyas ¢ (T). Since the Hamiltonian (2) is separable, the density matrix can be directly
written as a tensor product of the density matrices associated to each quasiparticle mode k. These quasiparticles
obey fermionic commutation relations, and thus

[ 0),0 | + e /T | 1) (1]
1+ e T

where |0) (|1)x) denotes an empty (occupied) quasiparticle state k. We take the above expression as the starting
point to study correlations at finite temperatures.

oW(T) = , (7)
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Finally, let us remark that the XY model can be realistically implemented in experiments. In particular, the
isotropic XX model directly maps onto a system of hard-core bosons and it has been experimentally realized
with cold atoms in optical lattices [24], while the Ising model has been also engineered with a similar system [5].
Moreover, other models that can be implemented with cold atoms, as the bond-charge Hubbard model, directly
map onto the XY model [25].

3. Optimal strategy: lowest bound on the temperature error

Consider the state of our strongly correlated system given by ¢ (T). This state depends on the value of the
temperature T, which is unknown and that we want to estimate. In general, if a quantum state depends on an
unknown parameter 6 that we want to infer, the typical strategy is to choose an unbiased estimator 6 for which
(0) = 6 and repeat the estimation v times. The standard deviation of this estimator, i.e. A§ = \/Var(§),

quantifies the error on estimation of 6. The quantum Cramér—Rao bound sets alower bound on this error as
follows [10,11]:

A 1
(A9)2 > JF0) (8)

The factor v just follows from the central limit theorem, and 7 (0) is the QFI associated to the parameter 6,
which is given by:

F(0) = Trf 047 |, )
where the symmetric logarithmic derivative, Ay, is defined as

oo + Agoy

060y = > (10)
For temperature estimation on a Gibbs state ¢ (T'), the QFI is explicitly given by [ 14, 26]:
AH?
F(T,o(T) = S, (11)

where AH? = Tr(H%(T)) — [Tr(Hp(T))]>. Maximizing the QFI is hence equivalent to maximize the
variance of the Hamiltonian. Introducing the thermal energy as T (note that kg is set to one), it is possible to
express the quantum Cramér—Rao bound in the form of an uncertainty relation [ 14, 15], that for a single shot
reads

AHF > 1, (12)
or equivalently, AHAS > 1. This provides a very useful insight to understand how the thermal energy, the energy
spectrum of the Hamiltonian and the error on the temperature determination come into play. Indeed, according
to (8), quantum states having a larger QFI can be estimated with a smaller error. As a figure of merit, we define
the thermal sensitity as the value of the bound obtained for a single shot (v = 1). In this way, we withdraw the
statistical dependence on the number of times the sample is probed.

In general, finding the corresponding QFI of a system is a very difficult task, and different bounds exist on the
QFI that are easier to evaluate, as suggested in [27-29]. In the temperature estimation of a strongly correlated
thermal state, the difficulty arises in the calculation of its intricate energy spectrum, and, in general, it is not
possible to derive a closed expression for the QFI. However, such calculation becomes straightforward for the
XY model due to the simple structure of a thermal state which corresponds to a product state in the fermionic
representation (6), (because of the fact that the Hamiltonian itself (equation (2)) is separable in this
representation). From this it follows trivially that the QFI, being linked to the uncertainty of the Hamiltonian,
has to be additive, which allows us to express F (T, ¢ (T)) as the sum of the QFI F (T, ¢ (T)) of each
individual modek, i.e.

2 2
P o) = Sk = TP (1, oM (n) = E( 55 w1 = mo (13)
k k

being n; = (1 + e%'T)~! the Fermi-Dirac distribution of the quasiparticles.

Using (12) and (13), the upper bound on the signal-to-noise ratio is given by

2
(T/ATy = T (T, 0(1) = 3 2] me(1 = mo. (14)

k
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T/J=0.05 T/J=0.2 T/J=0.8

I0.08 1 I0.45

I

-1 0 -1 0
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Figure 2. (a) Optimal signal-to-noise ratio, (T/AT)Zgs, where AT denotes the temperature uncertainty given by the Cramér—Rao
bound when assuming the optimal measurement strategy, plotted as a function of the Hamiltonian parameters and for different
values of T/] . Atvery low T, the thermal sensitivity is larger close to the critical points, whereas when increasing T, the maximum
gradually shifts to the Ising and & = 0 point. (b) and (c) Signal-to-noise ratio, (T/A T)2, estimated for the Faraday interface for the two
mean values of the observables (J, — (J,))? and ], respectively. The Var (J, ) is more sensitive in the FM phase, whereas (J, ) works
better in the PM phase. All the figures are normalized by the number of atoms (N = 50 here). Also notice that the color scales are
different in each plot.

In the top panels of figure 2, we display this upper bound, normalized by the total number of sites N, for the
whole phase diagram at different temperatures. For finite T, this quantity scales linearly with N. For very small
temperatures, e.g. T/] = 0.05, the QFI becomes noticeable only close to the critical lines. This is not surprising,
since for a gapless system, excitations to the lowest part of the energy spectrum will be created no matter how
small the temperature is. Thus, as the uncertainty in energy of the state grows, so does the QFI, and accordingly
the state becomes very sensitive to thermal fluctuations. In contrast, for a gapped phase, if T < AE, the
probability of creating excitations remains low. In such cases, the energy remains well defined, yielding a
vanishing value of the QFI and correspondingly a large error in temperature estimation. On the other hand, for
large enough values of the temperature, i.e. T > AE, different modes become excited, and other regions of the
phase diagram become more sensitive and optimal for thermometry. In fact, for a given value of T, the accurate
estimation of the sample temperature depends not only on the energy spectrum but also on the density of states
(DOS), as they play a crucial role in the QFI expression (13). This can be clearly seen in figure 2, where the value
of the optimal signal-to-noise ratio (T/AT )&y is also displayed for T/] = 0.2 and T/J = 0.8. The more sensitive
regions of the phase diagram are now clearly different than the ‘zero temperature transition points’, i.e. h = +1
and y = Ofor |h/]| < 1.Inthe same figure, in the middle and bottom panels, we display the signal-to-noise ratio
obtained from measuring collective correlations that we will analyze in section 5.

Finally, the behavior of the QFI or thermal sensitivity with temperature is explicitly shown for some
particular cases in figure 5 (solid lines). After displaying a maximum at certain value of T/J, this quantity
decreases again as the state tends to be maximally disordered. Indeed, at very large temperatures ( — 0), and
despite the variance AH is maximum and the error Af is minimum, the signal-to-noise ratio T/AT = f/Af will
tend to zero.

4. Quantum Faraday spectroscopy

Here, we briefly review a QND scheme for measuring quantum correlations in ultracold atomic lattices. The
method is based on a light—matter interface [30] employing the quantum Faraday effect. It was adapted to
determine quantum phases of strongly correlated systems in optical lattice systems in [19, 31]. The scheme is
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LHD

homodyne
detection

Figure 3. Schematic diagram of the proposed experimental set-up to measure the collective angular momentum imprinted on the
light quadratures. The ultracold atomic sample is trapped by an optical lattice potential with wavelength d (blue). An additional strong
laser beam (yellow) initially polarized in the x direction is impinging on a beamsplitter. The transmitted part of this probe is
propagating through the sample and reflected off a mirror, forming a standing wave with wavevector k,. After the second pass, the
laser beam is outcoupled to a homodyne detector, where the light quadrature is measured and recorded.

extremely versatile and can detect superfluidity, superlattice ordering and itinerant magnetism for fermionic
and bosonic lattice gases [32, 33]. It also allows to reconstruct the phase diagram of non-trivial spin chain models
[34,35] and to engineer quantum correlations by suitable post-selection [36]. In the following we review the
basics of the scheme but we point the reader to the previous references for more details.

The basics of a QND Faraday spectroscopy assume a strongly linearly polarized light beam along e.g. the x-
axis propagating on the z-axis and interacting off resonantly with the internal spin degree of freedom of an
atomic sample. Due to the atom—photon interaction, the light polarisation is rotated by an amount that depends
on the magnetic state of the sample. The light can be described by time-integrated canonical operators
X=5 / m and P = S; / \/VW , where S, 3y denote the Stokes operators in the perpendicular directions of
the incoming beam while Ny, is the total number of photons of the beam. If the atomic sample is confined in an
optical lattice, the light can be modulated in a standing wave configuration as schematically depicted in figure 3.
After the Faraday interaction has taken place, the integrated equations of motion result into [30]

Jz> (15)

K
JN
where X, and X, represent, in the input—output formalism, the light quadratures before and after the Faraday
interaction, and N is the number of atoms, which is equal to the number of lattice sites in the ‘single atom per

site’ scenario. The observable J, corresponds to the modulated collective angular momentum along z-direction
and is defined as:

Xouwt = Xin —

Jo =Y cos? (kyld) of. (16)
1

The above sum extends on all lattice sites ], k, is the wave vector of the probing beam and d is the inter-site
distance. Finally, the light—matter coupling constant k = \/ﬂ depends on the optical depth of the atomic
sample d, as well as on the spontaneous emission probability induced by the probe. Typical values of k are in the
range 1-10 [37, 38].

As the light and atom states are initially uncorrelated, it follows that
(Kou) = === (L), (17)

JN
1 «?
Var(Xou) = E + ﬁvar(]z)a (18)

where we assume the incoming light beam to be in a coherent state with zero mean and variance 1/2. For the
ferromagnetic case (J > 0), the output signal is maximum when the wave vector of the probe beam is set to
k,=nr/d,ie. the light is not modulated. For the antiferromagnetic case (J < 0), since the total magnetization of
the sample is zero, it is necessary to modulate the incoming beam with half of the frequency k, = z/24.

After the outcoming light quadrature X, has been homodyne measured, the atomic sample is projected
onto a subspace of fixed J,. Owing to the fact that the off resonant interaction with the light does not destroy the
sample, we further assume that after the measurement thermalization will take place on such given subspace.
Since typical thermalization times for ultracold lattice gases are on the order of ms and the many-body sample is
stable on the time scale of seconds, the Faraday interface taking place in the us regime can be considered as
instantaneous. Thus, the Faraday interface could be repeated several times on the same sample preserving its

6
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QND character. Finally, we remark that in order to measure the other collective operators J, and J, using the
same experimental setup, one should apply an appropriate spin rotation to the atomic sample so to map
6* = c*ore’ = o7 [39].

5. Quantum thermometry for the XY model using a Faraday interface

The quantum polarization spectroscopy technique described in the previous section grants access, a priori, to
any order of the statistical moments of the collective atomic angular momentum, which are obtained from the
values of the corresponding collective angular moments J,, [18]. For certain phases, as for instance the
paramagnetic phase, the mean value of the transverse magnetization J, is sufficient to infer the temperature of
the sample. However, the mean value might vanish for other observables in an unbroken symmetry phase (e.g.
the longitudinal magnetization for the thermal state in the Ising model). Instead, the ordering is clearly revealed
when looking at the quantum fluctuations or variance of the observable. Here, for reasons that will become
clearer later, we focus our study on the mean value of J, and the variance of J,.. The latter can be written as:

Var(J,) = Z(al"o;ﬁ —{o{"Yoy) = ZCorr(]lx, ],’f,), (19)
Lm Im

and corresponds to the sum over any two-site correlation function or, equivalently, to the magnetic structure
factor at zero quasi-momentum. The two body correlations can be straightforwardly derived [21]:

Lo detG’ =l-m#0
COI'I'(]I)]m)={ el ::l—?::ljo

where,

81 &, &3 - &,
g 8.1 82 &3

G=|1 & &
gr—2
And the elements are given by:
N/2-1
2 2r 2
= — cos | —kj + 20 |nx + sin| —kj + O |sin O | — 6; .
§j Nk=§/2( (N J k) k (N ] k) k) 7,0

We start by analyzing the strength of the output signal when measuring the variance of the observable
associated to the order parameter, i.e. Var(J;) for y > 0. Note that the results for J,and y < 0 are equivalent to
those for J,and y > 0. We recall that for a coherent input beam, the shot noise is Var(X;,) = 1/2. As expected,
the variance of the operator associated to the order parameter always exceeds the variance of the angular
momentum along the other two directions. Moreover, this is maximal for the Ising model (y = 1) and
continuously decreases when approaching the XX model (y = 0).

A comparison between these two limiting cases (y = 1and y = 0) is depicted in figure 4, where in the top
panels we display the output signal Var (J, )/N normalized by the input shot-noise Var (Xj, ) as a function of
T/], for different values of h/] and two different system sizes N =100 and N = 200. At zero temperature, and in
the gapped FM phase (red line), the signal scales as k>N, whereas in the PM phase (blue line), it scales as k.
Strictly speaking, and since we are dealing with a 1D system, there exists no phase transition at finite
temperature. This is reflected in the fact that, at any finite value of T, the signal in the gapped FM phase does not
scale anymore as k2N, as it should be at T= 0 where the magnetization of the ground state is proportional to the
number of atoms, but shows a 2 behavior, and the signals for the two system sizes overlap. Therefore, the
plateau depicted in the top panel of figure 4 is only a finite size effect and it disappears as the system size increases.
This fact shows that for small systems (N < 100), the ferromagnetic region is not useful for thermometry as the
signal is constant with T. The results for any y # 0 are qualitatively similar to those for the Ising model.
Moreover, for any value of the parameters y and h the inequality Var(J,) > 1isalways satisfied. Therefore, if the
optical depth d, is such that ¥ > 1, the signal of the output beam will be always greater than the input beam shot-
noise. This is, however, not the case for the other two observables Var(J, ) and Var (J, ), which go well below the
shot noise limit when approaching the XX model.

The output signal, when measuring the mean value of the J, observable ((J, )/ JN),is depicted in the bottom
panels of figure 4. In contrast to the former observable, this is maximum (in absolute value) in the PM phase and
itincreases when approaching the y = 0 limit.
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Figure 4. Output signal (assuming « = 1) asa function of T/J for the two limiting cases y = 1 (Ising model) and y = 0 (isotropic XX
model), for two observables. In red (blue/black) FM (PM/critical) phase for different values of h/J . (a) Var(J,)/N, normalized, for
comparison, to the incoming beam shot-noise (Var (Xj,) = 1/2). At finite T and in the thermodynamic limit, Var (J; ) scales linearly
with N, and the signal is always larger than Var (Xj, ). Atlow T/], the signal decreases (increases) with T'in the FM (PM) phase. (b)
(J,}/</N.The mean value (J,) scales linearly with N, and it shows the opposite behavior compared to (a). Solid (dashed) lines
correspond to N =200 (N =100).

In order to asses the optimality of measuring collective quantum correlations for precision thermometry, we
focus on the signal-to-noise ratio (T/AT) achievable by using the Faraday interface, and compare it with the
minimal possible error in temperature estimation, provided by the Cramér—Rao bound (T/AT)Egy (14). To this
aim, the error performed in measuring temperature using the observable A can be estimated as [12]

-1
AT =~ (%) (Var(A))Y2, (20)

Therefore,

2 2

M
AT )y dT ) Var(A)

The variance of the two observables of interest can be evaluated for the studied model. The

Var(J?) = (Ji) — (J?) contains, in the first term, the sum over any four-body spin correlations (o o)) 61 01)),s

where the subindices run over any lattice site). This can be rewritten using the Jordan—Wigner transformation as

astring of fermionic operators. By using Wick’s theorem it can be expanded as product of only two-body

correlations (similar to what is done for the off-diagonal spin correlation functions in [20]), that can be readily

evaluated in the quasi-momentum representation after using the Bogoliubov transformation. The Var(J,) can

be directly evaluated since it only contains density—density terms.

A comparison between the optimal signal-to-noise ratio (T/AT)&g (top panels), and the one obtained
measuring the two observables A = ]f(},) - s (y))z fory > 0 (y < 0) (middle panels) and A" = J, (bottom
panels), all normalized by the number of atoms (N = 50), is presented in figure 2, for the whole phase diagram
and different temperatures. By fixing the value of /1/], a quantitative comparison between both signals can be
performed as a function of temperature for different phases. In figure 5 we fix the anisotropy parameterto y = 1,

y = 0.3and y = 0, and analyze the behaviour of the FM phase (h/] = 0) (top panel) and the PM phase
(h/] = 1.5) (bottom panel).

These two figures show that, in general, A (A") performs better in the FM (PM) regions. Also, in the FM
regions the signal-to-noise ratio of A follows the same qualitative behavior as (T/AT)&gg, shifting with
temperature its maximum value from the multicritical points (y = 0, |h/] | = 1) to the Ising modelat h = 0.
However, it decays faster with T/J than (T/AT)&gg. Moreover—having in mind that the range of temperatures
of interest for present experiments with ultracold atomic gases simulating strongly correlated systems lay,
approximately, in the interval 0.2 < T/J < 0.5, [6, 24]—our results clearly show that, the Faraday spectroscopy,
when reading out the observable Var (], ), provides an accurate measurement of temperature in the FM phase in
the Ising model, and its optimality decreases when approaching the critical XX model (y = 0). Instead, in the
PM phases, (], ) approaches the ideal bound in the XX model for a wider temperature range.

8
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Figure 5. Comparison between the optimal signal-to-noise ratio (solid line), estimated by the Cramér—Rao bound, (T/AT)%g, and
the signal-to-noise ratio obtained with the Faraday interface using Var (J,) (dashed line) and (J, ) (dotted line), all normalized with the
number of atoms (N = 50), for different values of y and as a function of T/J. (a) h/J] = 0 (FM phase) and (b) h/J = 1.5 (PM phase).
Var (J,) is optimal in the FM phase and y = 1, (J, ) is optimal in the PM phase and y = 0. The optimality of the Faraday method is
depicted in the insets, where we plot the ratio between the signal-to-noise given by the Faraday and the ultimate achievable signal-to-
noise given by the Cramer—Rao bound.

6. Summary

In summary, we have analyzed the suitability of QND Faraday interfaces to provide a precise estimate of the
temperature of a sample of ultracold gases simulating the XY model. The Faraday interface, giving access,

a priori, to any statistical moment of the collective angular momentum operators, might become optimal for this
task. Their suitability depend upon the order displayed in the strongly correlated system and the temperature
range. By borrowing concepts from quantum metrology, we have analytically derived the optimal signal-to-
noise ratio for a thermal state governed by the XY Hamiltonian given by the quantum Cramér—Rao bound, and
we have compared it with the one obtained from the Faraday interface. Remarkably enough, collective atomic
correlations can be considered as optimal observables for precision thermometry in the temperature range of
interest in present experiments of ultracold lattice gases simulating strongly correlated systems. Our results hold
for the XY model, but it remains to be analyzed if the method can also be optimal for other quantum spin
models, either integrable or not.
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