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This paper investigates some boundedness and convergence properties of sequences which are generated iteratively through
switched mappings defined on probabilistic metric spaces as well as conditions of existence and uniqueness of fixed points. Such
switching mappings are built from a set of primary self-mappings selected through switching laws. The switching laws govern the
switching process in between primary self-mappings when constructing the switching map. The primary self-mappings are not
necessarily contractive but if at least one of them is contractive then there always exist switching maps which exhibit convergence
properties and have a unique fixed point. If at least one of the self-mappings is nonexpansive or an appropriate combination given
by the switching law is nonexpansive, then sequences are bounded although not convergent, in general. Some illustrative examples

are also given.

1. Introduction

The background literature on fixed point theory and applica-
tions and associated convergence properties in metric spaces,
Banach spaces, probabilistic metric spaces, Menger spaces,
and some fuzzy-type versions is very abundant. See, for
instance, [1-19] and the references therein. In particular, the
theory focused on probabilistic metric spaces, including their
specialization to Menger spaces, is also abundant. See, for
instance, [1-4, 15, 16, 20] and the references therein. There
are also studies in the graph framework for fixed point
theory and problems of stability. See, for instance, [21, 22]
and the references therein. On the other hand, fixed point
theory has a wide range of applications, for instance, in the
study of convergence of iterative schemes [17], in particular,
of Mann and Jungck types or their many variants [18, 19],
and in that of stability of dynamic systems and that of
differential and difference equations. A particular class of
real world applications refer to the stability of the so-called

switched dynamic systems where a switching law assigns
active parameterization for the dynamic system through time
(or through an iterative discrete process) [23-27].

This paper investigates some boundedness and conver-
gence properties of sequences which are generated through
a class of switched mappings defined on probabilistic metric
spaces, as well as conditions of existence and uniqueness of
fixed points. The above switching mappings are defined via
the selection as active of a set of primary self-mappings with
the activation process governed by a “so-called” switching
law. In this way, such switching laws govern the switch-
ing process in between primary self-mappings when con-
structing the switching map. The primary self-mappings are
not necessarily contractive but if at least one of them is
contractive then there always exist switching maps which
exhibit convergence properties and have a unique fixed point.
On the other hand, if at least one of the primary self-
mappings is nonexpansive or an appropriate combination
given by the switching law is nonexpansive, then sequences



are bounded although not convergent, in general. Some
illustrative examples are also discussed. Section 2 introduces
C,« and C; classes of primary self-mappings in probabilis-
tic metric spaces as well as associated upper- and lower-
bounding constraints of the probability density of the built
sequences. The above class allows the characterization of
strict contractions as well as nonexpansive or expansive
self-mappings in the probabilistic metric spaces. In parallel,
some needed definitions are revisited while some preliminary
results of convergence of sequences, Cauchy sequences, and
boundedness of sequences in probabilistic metric spaces and
in Menger spaces are obtained. Section 3 gives formalism
in probabilistic metric spaces related to the switched maps
defined via the activation of the primary self-mappings
through switching laws. The obtained results for switched
maps rely on boundedness and convergence of sequences in
a probabilistic context.

2. On C,; and C; Classes of Self-Mappings in
Probabilistic Metric Spaces

Let us define a probabilistic distance F : X x X — Ay, where
X is a nonempty abstract set represented by F, , for each
(x,y) € X x X, where Ay is a set of distribution functions.
A distribution function F € A is a mapping F : R — R,
which is nondecreasing and left-continuous with inf, g F(t) =
0 and sup, g F(t) = 1.

The ordered pair (X, F) is a probabilistic metric (PM)
space if for any x, y,z € X and all t,s € R, the following
conditions hold [1]:

W) E,, () =H(t) e x=y,

0, ift<o,
where H € Ay is defined by H (¢) =
1, ift>0;

(2) F,, (1) = F,, (1); o)
B)if F,, (1) =1,
Fy,z (s)=1

then F, , (t +s) = L.

The triplet (X, F, A) is a Menger space where (X, F) is a PM-
space and A is a triangular norm which satisfies the inequality
F, (t+5) 2 A(F,,(t), F, ,(5)), Vx, y,z € X, Vt,s € R,.

Note that Fx’y(O) = Fx,y(t) = 0fort < 0and Fx’y(t) =
F,,(0") = 1fort > 0if x = y since H € Ay is nondecreasing
and left-continuous. Note also that every metric space (X, d)
can be realized as a PM-space by taking F : X x X — Apg
being defined by Fx,y(t) = H(t —d(x,y)) forall x,y € X
[1-4]. In the following, D, is the space of all mappings F :
R — [0,1] which are left-continuous and nondecreasing
with F(0) = 0 and ¢ F(+00) = 1. The space D, is partially
ordered by the usual pointwise ordering of functions; namely,
F < Gifand only if F(t) < G(t), Vt € R, and its maximal
element is the distribution H(t) [4].
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Definition 1. Let (X, F) be a PM-space. A mapping T : X —
X is said to be of Cy-class for some functionk : XxX — R,
if

Fror, )2 F, (K" (x,y)t); VYx,yeX, VteR,. (2)

Definition 2. Let (X, F) be PM-space. AmappingT : X — X
is said to be of C-class for some functions p,k : X x X —
R, if

Fx,y (P_l (x’ )/) t) 2 FTx,Ty (t) 2 Fx,y (k_l (x’ y) t) >

Vx,y e X, Vt € R,

3)

where the functions p,k : X x X — R, satisfy p(x, y) <
k(x,y),Vx,y € X.

Note that if T : X — X is of C~class, then it is also
of Cy-class. Note also that T : X — X is nonexpansive if
it is of Cy-class with sup, ,.xk(x, y) < 1 and, in particular,
a probabilistic strict contraction if it is of Ci-class with
sup, yexk(x, y) < 1. Also,if T : X — X'is of C,-class with
Sup, yexk(x, y) < 1 (sup, yexk(x,y) < 1), then it is non-
expansive (probabilistic strictly contractive) [1-4]. If T
X — Xisof Cy-class with 1 < inf, ,cxp(x,y) <
inf k(x, y), then it is expansive [1-4]. If there is some

x,yeX
p: X xX — Ry withinf, xp(x,y) > 1 such that

Fo,(p' (x,9)t) 2 Frop, (8); Vx,y€X, VteR,, (4)

then T : X — X is expansive (evenif T : X — X is not
of C,p-class for some k : X x X — R, subject to 1 <

inf, jexp(x, y) < inf, e xk(x, ).
The following technical result follows.

Lemma 3. The following properties hold:

(i) Let (X,F) be a PM-space and let T : X — X bea
mapping of C~class. Consider the sequences {x,} <
X and {y,} < X built by x,,,; = Txp Vo1 = TV
Vn € Z,, withx, = x, y, = y for some given x, y € X.
Then,

i=

n-1
Fx,y < [P;l (x’ y)] t) Z FT”x,T"y (t)
0

3 (5)
-y (116" Gl ).
i=0
where k,(x,y) = k(T"x,T"y), p,(x,y) =
p(T"x, T"y), Vn € Z,,.
) T : X — Xisof Ceclass, then Fpnypm (t) >

Fo (I e ' (x, p)]8), ¥n € Z,.

(iil) If T : X — X is a mapping of either C~class or C .-
class with lim,,_, [T, [k;(x, y)] = 0 for the given
x,y € X, then lim Fpneqn, () = 1, VE € R,.

n— 00
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(V) If T : X — X is a mapping of C,-class with B, =
[T o (e ) e =TT [k (2 ), Vi € Zy,, and

a=a(x,y) =liminfa,,

, (6)
B=pB(xy)= lim sup

are in cIlRy,, = Ry, U {+o0} (i.e, cIR,, is the closure
of Ry, i.e., the extended nonnegative real semiline) for
the given x, y € X, then

Fx,y (ﬁnt) 2 FT”x,T"y (t) 2 Fx,y (“nt) ;

VneZy, VteR,,

(7a)

Fx,y (ﬁt) 2 h’?lsolip FT"x,T”y (t) > llnl'l'_lylol'cl)f FT”x,T"y (t)
(7b)

>F,,(at); VteR,.

IfT : X — X is a mapping of Cy-class, then
lim infnﬁooFTnx’Tny(t) > Fx’y((xt), Vt € R,.

Proof. It follows recursively from (3) with x,,,; = Tx,;, ¥, =
Ty,,Vn € Z,,,with x, = x, y, = y for the given x, y € X that

Fe,(po' (x:9)t) 2 Froq, () 2 Fy, (ko' (x5, 9)1),
Fo,(po' (5 9)pr (% 9)t) = Frop, (b1 (% 9)1)
> Fraopay (0) 2 Fropy (K (%, 9)1)
>F,, (k' (x )k (%)),

(8)

n-1
Fx,y ( [Pl_l (x’ y)] t) > FT”x,T"y (t)
0

>F,, <n1 [k (x,9)] t>;

i

Il
(=]

Vx,y € X, Vt €R,, Vne€Z,,.

Property (i) has been proved and the proof of Property (ii)
follows directly by just using the lower-bounding part of the
recursion. Property (iii) follows since limn_wml_[?z_o1 (k" (x,
)] = +o0; then, lim, _, o ([T7y [k, (x, »)])t = +00, Vt €
R,, and the conditions that F, ,(f) is nondecreasing in the
argument f and sup,g F, ,(t) = limsup, _,  F, () = 1lead
from (8) to the existence of the limit lim,, _, o Fpnepm,(£) = 1,
Vt € R,. Property (iv) is proved closely to Property (iii) by
first getting (7a) and (7b) directly from the definitions of 3,
a,, Band o, Vn € Z,. O

The subsequent example illustrates that Lemma 3 is useful
for the characterization of probabilities which can be less than
one (i.e., the probabilistic certainty) through lower-bounds
and upper-bounds in probabilistic metric spaces.

Example 4. Let us consider the metric space (X, d) with F :
XxX — Apbeingdefinedby F, ,(t) = H(t-d(x, y)) forall
x, y € X for the distribution function H,, € A defined by:

a(), ift<o0,
Hub (t) = { (9)
b(t), ift>0

for some left-continuous nondecreasing functions a,b
Ry, — [0,1] with

b(x,y,t) >a(x,y,t)=a(x,y,-t); VteR,
Jdim a(x, y,£) =0, (10)

lim b(x,y,t) = 1.

t— —00
Assume also that a : Ry, — [0, 1] is everywhere lower-

semicontinuous and b : Ry, — [0, 1] is everywhere upper-
semicontinuous. Then,

Hy, (at = d (x, y))

alat—d(x,y)), ift< d(x,y)’
No(at-d ), ift>d(’;’y), "
Vx,ye X
with a(x,y,07) = a(x,y0") = bxy0) = 0
lim, , _a(x, y,t) = 0,and lim, , ,  b(x, y,t) = 1,Vx,y €

X. Assume following Lemma 3(iv) that f§ = pS(x, y)
limsup, _, B, and « = a(x, y) = liminf, _, e, with 3,
ﬂn(x’ y) = H::OI [P;I(x’ y)]’ o, = &, (x’y) = H::ol [kgl(x’
)], Vn € Z,,. Note that «, 3, «,,, and f3, are allowed to be
dependent on x, y. Then, if T': X — X is a mapping of C ;-
class so that (7a) and (7b) of Lemma 3 hold, one gets for any
givenx, y € X

b(B,t—d(x.y)) =F., (B.t)
= Hy, (Bt —d (x,))
> lirrlrl sotip Frpn oy (£)
= lif,rlsolip Hy, (t—d(T"x,T"y))
> lim inf Fpo, o, (¢) (122)
=liminf H,, (t - d (T"x,T"y))
>F, , (a,t) = b(a,t —d(x,y))

= Hap ((Xnt_d(x’y));
VneZy,,



b(Bt —d (x,y)) = Fy,, (Bt) = Hep (Bt = d (x, )
> lim sup Fpn n,, ()

=limsupHy, (t —d (T"x, T"y))

n—00

> lim inf Fpn o, () (12b)
= liminf H,, (t - d (T"x, T"y))

> F,, (at) =b(at —d(x, y))

= Hy (at = d (x, 7))

from (7a) and (7b). Thus, one gets for any given x, y € X the
following:

(a) If t,, > d(x, y)/e,, for some given n € Z,,, then, since
t, > d(x, y)/f3, as well, one gets

b(lgntn -d (x’ )/)) 2 FT"x,T”y (tn)

(13a)
> b(a,t, —d(x.y))
and if t > d(x, y)/a since t > d(x, y)/p, then
b(pt—d(x,y)) 2 limsup Fpnym, ()
2 lim inf Fpn i, (£) (13b)

>b(at-d(x,y))

and Ellimt_,wol'imn_,oo.Fm,?my(.t) = lifa > 0 sipce
the above superior and inferior limits equalize unity.

(b) Ifd(x, y)/B, < t < d(x, y)/a,, then

Hy, (@t —d (x, ) = a(a,t —d (x, )

< hnnllo%f FT"x,T";v (t)
< limsup Fpny ), (£) (14)
n— 00

< Hy, (But = d(x.y))
=b (Bt —d(xy)).

If, furthermore, B = « > 0, then
Aim, _, , lim, , o Fpym, (t) = 1. If, in addition,
a = +00, then § = +00, a(t) = 0, and b(t) = 1,
vt € R then 3lim, _, o Frem (1) = 1, VE € R,
which is the basic convergence suitable property in
probabilistic metric spaces for probabilistic strictly
contractive mappings in the existing literature. Note
that this case includes the case under Lemma 3(iii)
when lim,, _, . [T%,[k;(x, )] = 0 leading to

nli_{%oFT"x,T"y (t) = nanoloHab (t - d (Tnx, Tny))

(15)
> Fx,y (+00) = H (+o0) = 1;
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that is, lim,,_, o Fpnny (f) = 1, VX, y € X, Vt € R,,
or, in other words, for any distance d(x, y) from a
given x € X toagiven y € X, lim d(T"x, T"y) =
0.

n— 00

() If t < d(x,y)/f, then liminf, ,  Fp m,(f) >
a(B,t —d(x, y)).

(d) Now, assume that T : X — X is a mapping of C -
class with 1 < inf, ,xp(x, y) < inf, cxk(x, y) and
then § = a = 0; that is, the mapping is expansive.
Then, if t — +oo implying that t > d(x, y)/B (and
also t > d(x, y)/B since « = § = 0), one concludes
from (13b) that

lnf F n n t) = 1,
dxy)p, Lol ®)

Sup FT")C,T"}/ (t) < 1;

t<d(x,y)/ B,
Vx, y(#x) € X,
(16)
li inf Fw ) =1,
i it x1my (£)
lim sup  Fp ) <1
n— +00 t<d(x,y)/B, T"xT"y
Vx, y(#x) € X

since {«,} — 0Oand {$,} — 0. The constraints (13a)
still hold for each n € Z;, such thatt, > d(x, y)/«,
but the sequence {t,} diverges to +co while {a,} — 0
and {8} — 0.

Example 5. Assume thata = f =, = 3, = 1,Vn € Z,,
independent of x, ¥ € X. Then, T : X — X is of C;;-class
and nonexpansive but also probabilistic noncontractive. If t >
d(x, y), then one gets from (13a) and (13b)

FT"x,T”y(t) = Fx,y (t) = b(t_d(x’y))’

B, i Py () = B b (2 = ()

17)
= lim Hy (t) = 1;
t — +00

Vx,y € X.

Assume instead that o, = f8, =1 for some sequence {n;} <
Z,,,Vk € Z,, . Then, ift, > d(x, y),onehasforanyx, y € X
that

Fpugpny (tnk) =b (tnk -d(x, y))
ift, >d(x y);
b(ayt—d (x,9)) < Fpugpny (1) < b(Bt - d (x.y)), 18

d(x, )
B.

vt € (tnk,t ], Vn € (m,my,, | ift >

Mty
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which simplifies as b(e,,t — d(x, y)) < FTnx’Twy(t) < bt -
d(x,y)),Vn e Z,,,ift > d(x, y)/B,:

Jim khm Fpmexmey () = hm b( -d (x,y))
(19)
= lim b (t-d(x,y) = lerréoHab (tnk) =1.

From Lemma 3(iii), one gets directly the subsequent
result.

Proposition 6. Let (X,F) be a PM-space and let T : X —
X be a mapping of either Cy-class or C,-class and there
is a strictly increasing sequence of nonnegative integers {n}
Sulfilling lim; _,  sup(ny,, — n,) < +00 such that, for some
given x,y € X, H""M"“ k;(x, )] < 1, Vk € Z,,; then
lim,,_, oo Fpngpny(t) = 1, VE € R,

Proof. It follows from Lemma3 that if H"”""” [k;(x,
y)] < 1,Vk € Z,,, then hmkﬁoonz’” [ki(x, )] =

limy o [T260" " ki 9)] = 0, hmk_mol_[z"’“"[ki (x,
y)] = oo, Vn € (m,m,), Yk € Z,,, and then

limn—)oon?:() [kfl(x) y)] = Q. D

Note that Proposition 6 includes as a particular case that
of probabilistic strict contractions T : X — X which are then
mappings of Cy-class with 0 < ™' = sup, exk(x, ) < 1.

Definition 7 (see [2]). Let (X,F) be a PM-space and A a
nonempty subset of X. The probabilistic diameter of A is
a mapping D, : Ry, — [0,1] defined by Dy(z) =
supt<zinfx,y€AFx,y(t).

Definition 8 (see [2, 4]). Let (X, F) be a PM-space and A a
nonempty subset of X. The nonempty set A is said to be
probabilistically bounded if sup, .y D4(2) = 1, that is, if the
supremum of its probabilistic diameter D, € D,.

We can define the set unboundedness as the concept
opposite to Definition 8 as follows.

Definition 9 (see [2, 4]). Let (X, F) be a PM-space and A a
nonempty subset of X. The nonempty set A is said to be
probabilistically unbounded if sup, g Da(z) < 1, that is, if
D, ¢D,.

The boundedness and unboundedness of sequences
{x,} € X can be easily defined as supported by Definitions
8 and 9 as follows.

Definition 10 (see [2, 4]). Let (X,F) be a PM-space. The
sequence {x,} € X is probabilistically bounded if sup, g

Supt<z fn,mezmlnfxn,xmex xn,xm(t) =L

Definition 11 (see [1]).
sequence {x,} € X is

Let (X, F) be a PM-space. Then, the

(1) probabilistically convergent to a point x € X, denoted
by {x,} — x,ifforeverye € R, and A € (0, 1) there
exists some N = N(g, A) € Z,, such that

F, . (e)>1-1 Vn(eZy,)=N; (20)

(2) Cauchy if for every ¢ € R, and A € (0, 1) there exists
some N = N(g, A) € Z, such that

E, . (&)>1-4 Vnm(eZy,)=N. (21)

A PM-space (X, F) is complete if every Cauchy sequence is
probabilistically convergent.

Proposition 12. Let (X, F) be a PM-space. Then,
D) {x,}(—= x) € X for some x € X if and only if the
following limit exists: lim, _, o+1lim,,_, . F, (&) = 1;

(2) {x,} <

lim, _, +lim

X is a Cauchy sequence if and only if
n—»ooxx (8)—1VH’IGZ0+
Proof. If {x,} — x, then there exists some N = N(g,A) €
Z,, such that F, () > 1 - A, Vn(e Zy,) > N, for every
e € R, and A € (0,1). Thus, since 0 < F, (&) < 1,Vn ¢
Z,., then, by taking A — 0", one gets lim,,_, ,F, .(0") =
lim, _, o+lim,, _, o F, .(e) = 1.
Conversely, 1f11mn_>OOFx X(0+) = 1,thenforeverye € R,
and A € (0,1) there exists some N = N(g, A) € Z;, such that
F, .(e) >1-A,Vn(€ Zy,) = N;thus {x,} — x. Assume that
this is not true. Thus, there is some subsequence {x,, } € {x,}
suchthatF, (&) <1-Aforsomee € R, and A € (0,1) while

limn_>00 v, x(s) = lim,_, ,F, .(0") = 1foranye € R, since
(&) 1s nondecreasmg in the argument ¢ and one gets the
following contradiction for some A € (0, 1):

L-Az lim F, (&) = lim Fy x (€)

(22)
. +
= lim F, . (07) =1.
Proposition 12(1) has been proved. The proof of
Proposition 12(2) is very close and it is omitted. O

Proposition 13. Let (X, F) be a PM-space. Then, the sequence
{x,} € X is probabilistically bounded if and only if Dgpy, =
1, where DaM ) = SUPer,, Da ix,)(2) with Dy, 1(2) =
sup,,inf, xF,. (t) for some a € X, that is, if and only if
Dapix,) € D for somea € X.

Proof. If X is bounded, then the result is direct for any
sequence S = {x,} < X. Assume that X is not bounded
and proceed by contradiction by assuming that S € X is
probabilistically bounded and D5 ¢ D, for some a € X.
On the other hand, since S € X is probabilistically bounded,
then, for all x;, x,, € S, there is t;, = t,(x;, x,,) € Ry, such
that F, , (t) = 1, Vt(e Ry,) > t,. Since Dyyyg ¢ D, there
is x; ¢ S "such that F, (t) < 1, Vt(e Ry,) > ty;, and some



to; = to1(xp-a) € Ry,. This implies from the contrapositive
equivalent logic proposition to the third property of (1) of
(X, F) being a PM-space that either F. F, (t/2) < 1, and then
the sequence S ¢ X is not probablhstlcally bounded, Vt(e
R,,) > t, (a contradiction), or F, m(t/Z) < 1, Vt(e Ry,) >
ty;, for any given x,, € S, and then limsup, , , . Fax (£/2) <
1 for some fixed a, x,,, € X. Now, assume that, for alla € X
such that a ¢ S, limsup, ,, F,. (t/2) < L. Thus, the
subset A, = {a,x,,} of X, Va € X, is unbounded since its
probab111st1c diameter is less than one; thatis, D, ¢ D,,Va €
X, and then the sequence S is probabilistically unbounded,
again a contradiction. It has been proved that if S ¢ X is
bounded, then D, € D, for some a € X NS, where S
is the complementary to S in X. It remains to prove that if
D,y € D, forsomea € XNS, then S ¢ X is probabilistically
bounded. Since D,y € D, then F, , (£) = 1,Vt(€ Ry,) > t,,
for some t, = ty(a,x;) € Ry, and all x; € S. It follows from
the third property of (1) that F, , (f) = 1, Vt(€ Ry,) > 2¢,,
Vx,, x,, € S. Thus, S ¢ X is probabilistically bounded. O

3. Switched Maps Defined by C, and C,
Classes of Primary Self-Mappings and
a Class of Dynamic Systems

Switching processes are a very important tool in some
applications of discrete-time and continuous-time dynamic
systems. The basic idea is how to switch in-between alterna-
tive parameterizations of a system by using either “ad hoc”
or even arbitrary switching laws while keeping or improving
essential suitable properties like global or asymptotic stability
or convergence to the equilibrium points. See [23-26] and
some references therein. The formalism can also rely on the
definitions of iteration-dependent maps in iterative schemes
of Mann or Jungck type or its generalizations so as to get
appropriate convergence properties [18, 19, 23]. Note that a
switching process in an iterative scheme can be interpreted
as the choice under a switching rule of certain primary self-
maps from an available collection of them at certain iteration
points; that is, the iterative scheme or the solution equation
of a dynamic system is being governed by a switching rule
[28]. Based on the above elementary idea, this section relies
on switching maps built with a prefixed number of either
C,i~class or Cy-class, self-mappings on PM-spaces subject
to switching rules which select the new selected mapping
and the points at which such new switching occurs. For
exposition simplicity, it is assumed that C,.-class, or Cy-
class, self-mappings are characterized by constants instead of
functions in Definitions 1 and 2.

Let (X,F) be PM-space and let T; : X — X be a set
of (primary) self-mappings of C-class for some constants
pi(£ k), k; e R, fori e g ={1,2,...,q}. A switching map
T =T, (x) from Z,, x X to X with respect to the switching
lawo : Z,, x X — ¢q generates a sequence

Xn+1 = Txn = Tan (xn) Xn = Tixw Vn € Z0+’ (23)

for each given x,, € X for somei = i(n) € qand we informally
can say that the ith primary self-mapping T; : X — X is
“active” at the nth value (or sample) of the sequence {x,} [28].
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See also [23-27]. In other words, the switching map T = T,
on X is defined by one of the self-mappings T; : X — X
(i € q) for each n € Z,, and it has associated piecewise
constant functions p,, ,k, : Zy, xXxX — R, suchthatp =
Po, (%, y) € {p1> P> ..,pq} k=k, (x,9) € {kl,kz, .k }for
eachn € Z, andeach x, y € X. The set of sw1tch1ng samples
of a sequence {x,} < X is a (proper or improper) subset
Zgs = Zg({x,}, 0) of Z,,, so-called the switching set, defined
byZs={neZ :T,x, # T, x,} = {ngn,....m,...}1
Note that a switching set is a strictly ordered set for the
standard strict ordering relation “<”. Since T; : X — X,
Vi € g, are self-mappings of C, with constants p,(< k;),
k; € R,, then

Frox (p7't) 2 Pragp (8) 2 Fr (K't);

for any x € X so that one has recursively from (3) for a
sequence {x,} C X generated by x,.,, = T, x,,, Vn € Z,,,
for any given x,, € X

xl’%((H[p;l]) >
1 —Zk;é i("')n'+1)_ ;(” M +E)
:Fxl)xo<(g[pi j=0 Yil1jn; ¥i (g1 + ])t)
e+ 25
- Fxnk+€+1)xnk+€ (t) - xl »Xo << H [k;l] ) t) ( )
i=0
<( 1 o Vx(” M) =Y (Mot +€)
= xl »Xo 1_[ [ J ] t)s
i=1

Vk € Zy,, YVt €R,,
n,m € Zg,Vk € Zy,, is

q k-1 4
My =My + ZY;‘ (M1 mi) = Z Z%’ (nj’njﬂ) (26)

i=1 j=0i=1

vVt eR,, (24)

where £(€ Zy,) <nj,y -

and y,(nj,n; + £) € Z,, is the number of times that the ith
self-mapping T; : X — X for some i € g is “active” in the
interval [n,n; + €) foreachi € . If T, : X — X,Vi € g, are
self-mappings of C; -class, then one has instead of (25)

(t)

xnk+£+1’xnk+€

9
| | ; Zo Vi(mpn )= (mom+£) .

x1 »X0 <( 1 [ t > (27)
i=

Vk € Zy,, Vt € R,.

Theorem 14. Let (X, F) be a PM-space and let T; : X — X
be self-mappings of C-class for some constants k; € R, for
ie€q=11,2,...,q} Then, the following properties hold:

(i) Assume that there is (at least) a self-mapping T;
X — X for somei € q which is a probabilistic strict
contraction. Then, there are infinitely many switching
laws 0 : Z,. x X — q such that their associate
switching maps T : Z,, x X — X are probabilistic
strict contractions.
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(ii) Under the conditions of the above proposition, there are
infinitely many switching laws o : Z,, x X — qsuch
that their associate switching maps T : Z,, x X — X
are probabilistic strict contractions and, furthermore,
they consist of infinitely many alternate active switching
maps of the form (i, j) or (j,i) with j € g\ {i}.

(iii) If, in addition, (X, F) is complete, then any sequence
X1 = Ty Xy 1 € Zy, under any switching law o :
Z, x X 5 qfulﬁllmgeztherProperty (i) or Property
(ii) for any given initial point x, € X is Cauchy and
probabilistically convergent.

Proof. 1t follows from (27) that Property (i) is fulfilled for
sequences {x,} C X generated as x,,,; =T, x, forany x, € X
by any of the infinitely many switching maps T': Z, x X —
X built under switching laws o : Z,, x X — g which fulfil

lim Zy,( ]-+1):+00,

k~>oo
(28)
q 00
Z Z Ye (> Myey1) < +00
e(#i)=1 k=0
since there is a finite nonnegative integer n* = n"(0)

depending on the subsequence {x, : n < n*} which is a

terminal switching point such that g, = i fori > n* for any

such a sequence {x,}. Thus, one gets from (27) that
RL N )

n

= FTgoxo,xs (+00) =1,
(29)
VteR,, VmeZ,

since F : R — Ry, is nondecreasing and left-continuous
with sup,.gF (t) = 1 and then the sequence {x,} built as
Xp1 = Tx, = T, x,, x, € X is a Cauchy sequence and
T : Z,, x X — X is a probabilistic strict contraction.
Property (i) has been proved.

Property (ii) follows with alternate (probabilistic strict
contraction versus remaining self-mapping) switching laws
0:Z,, x X — qdefined by a switching set Z fulfilling the
fact that if, forany k € Z,,, m,; € Zgfor j=0,1,...,6 -2
has active (perhaps nonprobabilistic strict contractions) self-
mappings T; : X — X for j(# i) € g, thenm,, € Zgis
defined such that T; : X — X is active on [my,q 1, M |;
thatis, x,,,, = T, x, = Tix, forn € {m, 1, } Withmy,p
being defined with ¢, large enough such that

9 ket zk
< H [kZ Yj(ne»"e+1):| (30)
j@#)=1

k”k+€k Ty -1
i

which lead to

lim zy,( ) = Jim > S )

0 p(#i)=1 k=0 31)
= +00

so that we get again (29) and a similar conclusion. Property
(iii) is obvious from the fact that (X, F) is complete and {x,,}

is Cauchy under switching laws fulfilling either Property (i)
or Property (ii). O

The following result is a direct consequence of
Tlheorem 14 since mappings of C,-class are also of C-
class.

Corollary 15. Let (X,F) be a PM-space and let T; : X — X
be self-mappings of C -class for some constants p,(< k;), k; €
R,, fori e q={1,2,...,q}. Then, Theorem 14 still holds.

Theorem 16. Let (X, F,A) be a complete Menger space with
A(a,b) = min(a,b) and let T; : X — X be self-mappings
of Cy-class for some constants k; € R, forall j € q =
{1,2,...,q} with at least T, : X — X being a probabilistic
strict contraction for somei € q. Leto : Zy, x X — g
be a switching law and let {x,} < X be a sequence generated
as x,. = T, x,, n € Z,, for any given x, € X such that
their associate switchingmap T : Zy, x X — X is defined by
Tx, =T, x, = T;x, for j € gand alln > n™ and some finite
n* €Z,,. Then, {x,} — z; which is the unique fixed point of
the strict contraction T; : X — X.

Proof. Since T; : X — X is a strict probabilistic contraction,
lim, , oFy . () =Fry. . (+00)=1,Vt eR,,VmeZ,
from (29) since Tx, =T, nx = T;x, forn > n". Then {x,} is
probabilistically convergent to z; € X which is a fixed point of
the probabilistic strict contraction T; : X — X as proved by
contradiction. Assume that this is false so that z; # T;z; and
then since {x,} is Cauchy, {x,} — z;, F: R — R, which
is nondecreasing and left-continuous, and T; : X — Xisa
probabilistic strict contraction, one gets, for any givent € R,
and A € (0,1) and alln (€ Z;,) > N and some N = N(t,A) €
ZO+’

1_/‘ (t) > F z;,T;z; (t)
t t t
28(8(Fs (3): P (5)) P (3)
t t t
288 (B () P (5)) P (5))
(32)
28(8 (R (5) o (5) Fos (575))
>n 4 i*nn 4 n><i 4
28(8 (P (5) Frnn () s (3))
n 4 i*n>in 4 n><i 4

>1-A

for some Ay, = Ay(t) > 0, Vt € R,, which implies that A €
(Ag> 1) but since A € (0, 1) can be chosen arbitrarily, it suffices
to take A € (0,A,] to get a contradiction. Then, z; = Tz;
which is proved to be unique again by contradiction. Assume
that this is not the case so that there exist z;; = T"z;, and
zp = Tz # 23y, Yn € Z,, which are fixed points of the
probabilistic strict contraction T; : X — X. Thus, one gets
the contradiction

1>Fz zz(o) lez(t)_FT"lezz(t)
E, ., (k"t)=F, . (+00)=1, (33)

VteR,, VneZ,y,,



so that z;, = z;; = z; = Tjz;. Since Tx,, = T, x,, = T;x, for

n > n" for some finiten* € Z,,, we can write x,. = T, , e
o

T,,%, and x,, = Ti"_”* x,- for n(e Zy,) > n" to get that {x,}
generated by x,,.,, = T, x,, Vn € Z,,, for any given arbitrary
X, € X is probabilistically convergent to z; = Tz;. O

The above result is a direct consequence of Theorem 14
which is also valid if T; X — X is of Cy-class.
However, note that, under the alternate switching laws
in Theorem 14(ii), the limit points of sequences generated
through the switching maps T : Z,, xX — X are, in general,
dependent on the initial points of the sequences and on the
switching law.

The following result generalizes Theorem 16 without
assuming any special contractive condition on at least one of
T, : X — X, Vi € g, with the only condition on the operators
being that all of them are either of C . -class or C;-class.

Theorem 17. Let (X, F) be a PM-space, let T; : X — X be
self-mappings of C ,.-class for some constants p,(< k;), k; € R,
Viegqg andletT : Z,, x X — X be a switching mapping
associated with a switching law o : Z,, x X — q which
generates a sequence {x,} C X as x,,, = T, x,, Vn € Z,,
for some given x, € X. Let Zg C Z,, be the set of switching
points, that is, for any given n, € Zg, Vk € Z,, provided that
My € Zg, ifandonlyifo, # o0, _, =0, . Then, thefollowing
properties hold:

(i)
FTxo,x0 (ﬁnt) = Fx,,“,xn (t) = FTxo,x0 (?nt);

foralln € [m,n +€) N Zy,, €(€ Zy,) < My — Mg
n, € Zg, Yk € Z,,, where

Vt€R,, (34)

q k-1

— 1—[*-—1">‘+*i,€

7, = [ki Y=o Vi(njmjn)=yi(mem+ )] ’ (35)
i=1

_ 1 *Z’J:(; Yi(mjonj)=yi(meom+£)

Pn = | | Pi ’ (36)

i=1
where y,(nj,n; + £) € Z,, is the number of times that

the ith self-mapping T; : X — X foreachi € qis
“active” in the interval [n;,n; + £) for some i € q.

(ii) If F : R — [0, 1] is upper-semicontinuous at pt for
some givent € R,, where p = limsup,_, p,, then
{x,,} has the following property:

hrl;rlsolip Fxn+l)xn (t) < FTXO)xo (ﬁt) ' (37)

IfF : R — [0,1] is lower-semicontinuous at pt for

some given t € R,, where y = liminf,  y,, then
{x,} has the following property:
liminf F, . (8) > Fr ., (vt)- (38)

(iii) If T; : X — X are of Cy-class for some constants k; €
R,, Vi € g, then {x,,} has the following property:

Fx,,ﬂ,xn (t) = FTxo,x0 ()_/nt); vt € R+' (39)
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And alln € [n,n + €) N Zy,, (e Zy,) < ny —
n, n, € Zg, Yk € Zy,. If F : R — [0,1] is lower-
semicontinuous at pt for a givent € R,, wherey =
liminf,_, 7, then (38) holds. B
Proof. Property (i) follows since (34), subject to (35)-(36), is
obtained directly from (25)-(26). If F : R — [0, 1] is upper-
semicontinuous at pt, then

limsup F, . (t) <limsupFr, . (p,t)
n—oo R

< Frye s, ( (lim sup ﬁn> t> (40)
PP
= FTxO,xo (ﬁt) .

In the same way, if F : R — [0, 1] is lower-semicontinuous
at yt, we get liminf, , F, () > Fp () =
Fry, x,((liminfy _,,y,)t). This proves Property (ii). Property
(iii) is a restriction of Properties (i)-(ii) for the case when
T, : X — X are of Cy-class for some constants k; € R,,

Vi € q. O

Note thatalthough F: R — [0, 1] isassumed to be every-
where left-continuous in the probabilistic metric framework,
this does not mean that it is everywhere lower- and/or upper-
semicontinuous. Therefore, some extra related conditions
are imposed in Theorem 17(ii)-(iii) allowing obtaining limit
upper- and lower-bounds of F, . (t) asn — oo via the
limit superior and the limit inferior.

The following two results related to bounded and
unbounded sequences follow from Theorem 17.

Corollary 18. Let (X, F) be a PM-space, let T; : X — X be
self-mappings of Cy-class for some constants k; € R,, Vi € g,
andletT : Zy, x X — X be a switching mapping associated
with a switching law o : Z,, x X — q which generates a
sequence {x,} C X as x,,, = T, x,, Vn € Z,, Vn € Z,,, for
some given x, € X with switching points in the switching set
Zs. Assume also that F : R — [0,1] is everywhere lower-
semicontinuous with y = liminf, |y, > 0 for such a

sequence {x,}. Then, the following properties hold:

(i) {x,} is probabilistically bounded.

(ii) If Fy 1o () = H(t - d(x,Tx)), Vx, € X, Vt € R,
then im, _, JH(t — d(T™ ' x,, T"x,)) = 1ift ¢
(d(x9, Tx)/y +00).

Proof. From (39), one concludes (38); that is,
liminf, , F, . (f) > Fr, . (yt),Vt € R,.Sincey > 0,
then sup,.y Fry »,(yH) = 1 and {x,} is probabili_stically
bounded since a norTempty set A = A({xnk}) c X which
contains all the points of some subsequence {x,, } < {x,} has
the property that D, € D,. Property (i) has been proved.
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On the other hand, it follows from (25) and Property (i) that
if Fy 1y, (£) = H(t — d(x, Tx)), Vx, € X, Vt € R, then

lim H (t=d (1" %0, T"x, )

>H (Xt -d (xO,TxO)) =1

d(x,y,T:
te <—(xo xO),+oo>
4

and Property (ii) is proved. O

Since mappings of Cy-class are also of C . -class, then
Corollary 18 also holds if some of T; : X — X are self-
mappings of C,-class for some constants p;(< k;), k; € R,
Vi € q.

Corollary 19. Let (X, F) be a PM-space, let T; : X — X be
self-mappings of Cy-class for some constants k; € R, Vi € g,
andletT : Zy, x X — X be a switching mapping associated
with a switching law o : Z,, x X — q which generates a
sequence {x,} C X as x,,, = T, x,, Vn € Z,, Vn € Z,,, for
some given x, € X with switching points in the switching set
Zs. Assume also that F : R — [0,1] is everywhere upper-
semicontinuous with p = limsup,_, p, = 0 for such a
sequence {x,}. Then, the following properties hold:

(i) {x,} is probabilistically unbounded.

(il) If Fy, 1y, (8) = H(t — d(x,Tx)), ¥xo € X, Vt € R, then

Jlim, _, ,  lim,, _, JH(t — d(T" " xy, T"x,)) = 1.
Proof. From (39), one concludes (38); that is,
limsup, , Fy . (6) < Fr . (pt) = Fp, . (0) = 0,
Vvt € R,. Consider a nonempty set A = A({x,, }) ¢ X which
contains all the points of some subsequence {x,, } < {x,}.
It is obvious that D, ¢ D,. Then {x,} is probabilistically
unbounded since it has a probabilistically unbounded
subsequence. Property (i) has been proved. On the
other hand, it follows from (25) and Property (i) that if
FxO)Txo(t) = H(t - d(x,Tx)), Vx, € X, Vt € R, then

lim lim H(t - d (T""x), T"x,))

t—+oon—00

< lim H (pt —d(x0,Tx,)) = H(=d (x4, Txp)) (42)
=H(0)=0
and Property (ii) is proved. O

Remarks. (1) Note that Corollary 18 is fulfilled, in particular,
by switched sequences with switching set of finite cardinal
with a terminal point of switching to some nonexpansive C
(or Cp) self-mapping T; : X — X;thatis, k; € (0, 1] for some
i € g. Note also that Corollary 18 is not fulfilled for terminal
switching to an expansive self-mapping.

(2) Note that Corollary 19 for C ;. self-mappings can also
be applied to self-mappings T; : X — X, i € g, which are

only subject to the upper-bounding rule of the probability
density function (say self-mappings “of C,-class”); that is,

Frox (P'1) 2 Fryop, (5 VEER,,  (43)

while leading to a similar conclusion about probabilistic
unboundedness. Note that the result applies, in particular, to
switched sequences with switching set of finite cardinal with
a terminal point of switching to some expansive C (or C,)
self-mapping T; : X — X for somei € g; thatis, p; > 1 for
somei € q.

(3) Note that Corollary 18 is also fulfilled by switched
sequences with switching set of infinite cardinal if y > 0.

Corollary 18 excludes switching laws o : Z,, x X — gbeing
built under some expansive self-mapping T; : X — X for
some i € g being used so infinitely often such that y = 0 with
either finite terminal switching point or not. This includes,
in particular, the case when the switched map is built with a
finite terminal switching point to an expansive self-mapping.
Then, the probabilistic unboundedness result of Corollary 19
applies.

Note that an expansive mapping can give a fixed point
which unbounded sequences do not converge to as the next
example visualizes.

Example 20. Assume that (X, F) is a PM-space with 0 € X
and consider a self-map T': X — X such that T0 = 0. Thus,
z = 0 is trivially a fixed point of T : X — X. Assume the
following cases:

(@) Fy,(t) = Fyre(pt), Vt € Ry, and all x(# 0) € X
for some real constant p > 1sothatT : X — X
is expansive. Then, F, . (t) < F, (p"t), Vt € R,
Vn € Z,,, so thatlim,, , , Fym (t) =0,Vt € R,,Vn €
Z,,, and the sequence {T"x} is unbounded and does
not converge in probability to the fixed point z = 0.
There is an analogy with the expansive deterministic
counterpart examples. For instance, consider a scalar
difference equation x,,;, = px,, Vn € Z;,, with
|pl > 1 and x,, # 0. Then, z = 0 is a fixed point of the
self-mapping on R defining the sequence trajectory
solution which is clearly expansive for the metric
space (R, d) with d being any metric, for instance, the
Euclidean norm. However, |x,| — +ocoasn — ©0so
that the unique fixed point is an unstable equilibrium
point.

(b) For,e(t) > Fy o (k7't),Vt € R,, and all x(# 0) € X for
some real constant k € (0,1] sothatT : X — X is
nonexpansive. Then, if furthermore k € (0, 1), then
T : X — X is strictly contractive and Fy () 2
Fy(k™t), Vn € Z,,, so that lim, ,  Fymm (t) = 1
and {T"x} — z = 0, which is a fixed point, with
probability one, is also Cauchy and probabilistically
bounded. The deterministic counterpart can be the
example x,., = kx, with x, # 0, Vn € Z,,
with |k| < 1 in a metric space (R,d), where
z = 0 is the unique fixed point (and a globally
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asymptotically stable equilibrium point) of the self-
mapping defining the sequence trajectory solution for
any initial condition.

(c) Intheabove case, assuming k = 1, then, forany x € X,
Fruayqn () 2 Fop (), Vt € R, Vn € Zy, . If Tx =
x, then Fruay i (t) = 1, T"x = x,Vn € Z,; the
mapping T : X — X defining the solution is not
expansive but not contractive and any point is a fixed
point. A deterministic counterpart can be visualized
with the example x,,,, = x,,, Vn € Z,,, for any x, € X
which has infinitely many fixed points which are also
(nonasymptotically) stable equilibrium points.

(d) The above discussion can be directly extended to the
case of switching maps built under switching laws
with finite terminal switching point to an expansive
primary self-mapping or for appropriate switching
laws with no terminal switching point in the presence
of at least one expansive primary self-mapping.

A worked numerical example follows.

Example 21. This example aims at numerically illustrating
the main results stated and proved in Section 3 through
Theorem 17 (as a generalization of Theorem 16). For this
purpose, consider

R0 =H-d(y) =" 5y
t) = t— S =
i w L, t>d(xy),

where d(x, y) is the distance induced by the 2-norm,
d(x, y) = |lx = yl,. Consider also the switched self-mapping
described by the discrete dynamical system x,,,, = T, x,, with
T, =A, +F,, A, €{A;,A) As}band F, € {F,F,, Fs}.
This way, A matrices can be regarded as dynamics matrices
while F matrices can be understood as perturbation ones.
The dynamics matrices are selected in such a way that in
conjunction with the perturbation ones the switched map
exhibits different characters (contractive, nonexpansive, and
expansive) for each i = 1,2,3 so that the effect of switching
can be positively noticed. Thus, the dynamics matrices are
given by

0.1 0.3 0.2
0.1 0.2 0.2 |,
0.1 0.2 0.1

02 0.3 04
0.425 02 0.3 |, (45)
0.1 03 0.1

=
[

12 03 14
05 02 13 |,
0.1 0.3 1.1
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FIGURE 1: Periodic switching map for the first experiment.

whose eigenvalues are, respectively, given by

spec(A,) = {0.741,-0.17 + 0.1537,-0.17 — 0.153},

spec (A,)

= {0.7722,-0.1361 + 0.1191,-0.1361 — 0.11915} ,

(46)

spec (A;) = {1.8691,0.7381,-0.1073} .

The constants characterizing each one of these matrices,
interpreted as operators, are calculated from (2) Fr, 1, (t) >

Fx)y(kflt), which in this particular case takes the form

H(t-d(Ax,A;y))>H (k_lt -d(x, y))

=H (_t - kdk(x> y) ) 47)

for each one of the matrices, i = 1,2, 3. The latter condition
is satisfied if d(A;x, A;y) < k;d(x, y) which results in the
considered metric in [|A;x — A;yll, < k;llx — yll,. Therefore,
for the first matrix, we have

|Aix = Ayl < A, e =y, = 0.534 % = ],

(48)
<0.54|x -y,

so that k; = 0.54. The 2-norms of the remaining matrices are
lA,l, = 0.8 and [|A5]l, = 2.528. As it can be seen, A; and
A, are contractive operators while A is expansive. However,
the perturbation matrices F will shape the behavior of the
operator T, = A, +F, in a different way. To this end, fix
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FIGURE 2: Evolution of the state variables for the first experiment.
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FIGURE 3: Evolution of the norm of the state for the first experiment.
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FIGURE 5: Switching map for the second experiment.
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FIGURE 6: Evolution of the state variables in the second experiment.

e = 0.2 and set the perturbation matrices in such way that
\Amax (FTF) < efori = 1,2, 3. Thus, let them be

0.01 0.02 -0.01
F,=( 002 -0.08 -0.01 |,
-0.01 0.18 -0.01
-0.01 0.18 -0.01
F,=( 001 0.01 0.02 |, (49)
0.02 -0.08 -0.01
0.02 -0.08 -0.01
F,=| -0.01 0.18 -0.01
0.01 0.02 -0.01
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FIGURE 7: Evolution of the norm of the state in the second
experiment.
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experiment.

The perturbation matrices are generated by swapping a file for
each subsystem. Therefore, ||F,[l, = [|F,ll, = [|F;ll, = 0.1987
near the upper bounding value of ¢ = 0.2. Under these
circumstances, the worst-case operator A; + &I is still con-
tractive, A, + €I is nearly nonexpansive and noncontractive,
and A, — el is always expansive providing different dynamics
to each of the subsystems. With this setup, we will perform
three simulation experiments to illustrate the diversity of
dynamical behaviours that can be achieved by modifying the
switching law. The initial condition in all experiments is x, =

[1 -1 2]".

Experiment 1. The switching law never stops and the first
subsystem prevails over the other two. The switching law is
selected to be periodic, with a period of 8 samples according
to the pattern displayed in Figure 1. This means that in one
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FIGURE 9: Switching patterns for the third experiment.
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FIGURE 10: Evolution of the state variables for the third experiment.

period we have 5 = y; > y, + y; = 2 + 1; that is, the time
interval within which the first subsystem is active is larger
than the sum of the intervals corresponding to the other
subsystems. Thus, Theorem 17 ensures that the sequence of
iterates is probabilistically bounded and converges to the
fixed point x = 0 as Figure 2 displays for the state components
and Figure 3 for the norm of the state. Moreover, Figure 4
showshow F, . ) converges to the Heaviside function H (t)
as the iteration variable » increases.

Experiment 2. The switching map converges in finite time to
the second subsystem, which is nearly to be nonexpansive
and noncontractive. Thus, the switching map is depicted in
Figure 5. Figures 6 and 7 show, respectively, the evolution
of the state variables and their norm as #n increases. As
Theorem 17 states, the sequence of iterates is bounded and
converges to the fixed point because, due to numerical round-
off errors, the operator T, is slightly contractive. However,
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FIGURE 12: Evolution of F

. (t) as n increases for the third
. n+1l>*n
experiment.

it converges at a lower rate than in Experimentl since
the operator T, is very nearly to be noncontractive and
nonexpansive. In this case, F, . (f) also converges to the
Heaviside function H(t) as the iteration variable # increases,
as it can be noticed in Figure 8.

Experiment 3. The switching law never stops and the third
subsystem prevails over the other two. A periodic switching
signal is considered again with y; > ¥, + y, in a period.
Figure 9 gives the switching law. In addition, Figures 10 and
11, respectively, display the evolution of the state variables and
their norm as 7 increases. As we could have expected from
Theorem 17, they are not bounded and diverge asymptotically
since the expansive operator dominates the period of the
switching pattern. Contrarily to the previous experiments,
(t) converges now to the identically null function,

Xn1>Xn
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since, as n increases, the Heaviside function H(¢) is displaced
to the right, as it is represented in Figure 12.
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