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ABSTRACT
The funnel-web spider Macrothele calpeiana is a charismatic Mygalomorph with
a great interest in basic, applied and translational research. Nevertheless, current
scarcity of genomic and transcriptomic data of this species clearly limits the
research in this non-model organism. To overcome this limitation, we launched
the first tissue-specific enriched RNA-seq analysis in this species using a subtractive
hybridization approach, with two main objectives, to characterize the specific tran-
scriptome of the putative chemosensory appendages (palps and first pair of legs), and
to provide a new set of DNA markers for further phylogenetic studies. We have char-
acterized the set of transcripts specifically expressed in putative chemosensory tissues
of this species, much of them showing features shared by chemosensory system
genes. Among specific candidates, we have identified some members of the iGluR and
NPC2 families. Moreover, we have demonstrated the utility of these newly generated
data as molecular markers by inferring the phylogenetic position M. calpeina in
the phylogenetic tree of Mygalomorphs. Our results provide novel resources for
researchers interested in spider molecular biology and systematics, which can help
to expand our knowledge on the evolutionary processes underlying fundamental
biological questions, as species invasion or biodiversity origin and maintenance.

Subjects Evolutionary Studies, Genetics, Genomics, Zoology
Keywords De novo transcriptome assembly, Molecular markers, Chemosensory system,
RNA-seq, Mygalomorphae Phylogeny

INTRODUCTION
The funnel-web spider Macrothele calpeiana (family Hexathelidae) is a charismatic

component of the European arthropod fauna. It belongs to the spider infraorder
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Mygalomorphae, which includes about 3,000 species of, among others, trap-door spiders,

funnel-web spiders, and tarantulas (Platnick, 2006). M. calpeiana is a hairy, large spider

that constructs extended and conspicuous funnel-web sheets close to the ground, and it is

the only spider protected under European legislation (Collins & Wells, 1987). This spider is

endemic to the southern Iberian Peninsula and was initially considered to be particularly

vulnerable due to its close association with the highly threatened cork-oak forests found

in the region (Collins & Wells, 1987). Subsequent studies, however, demonstrated that

the species has a much wider distribution and could be frequently found in highly

disturbed areas. In the last years, M. calpeiana has been introduced in European countries

outside its natural range, probably associated with the commercial export of Spanish

olive trees, raising some concerns about their possible impact on the invaded ecosystems

(Jiménez-Valverde, Decae & Arnedo, 2011).

M. calpeiana is also an organism of particular interest in biogeographic studies. The

Macrothele genus shows a highly disjointed distribution, with the bulk of its diversity in

South-East Asia (21 species), a few species inhabiting tropical Africa (4 species) and only

two known species in Europe, M. calpeiana itself and M. cretica, a Cretan endemic spider

that is also of conservation concern. A recent phylogenetic study (Opatova & Arnedo,

2014) has revealed that the two European Macrothele species are not sister taxa, and that

they most likely colonized independently Europe from Asia. Another interest in the genus

relates to the venom toxins of some Macrothele spiders, which can be strong enough to

cause envenomation, as in the case of some large Taiwanese Macrothele spiders (Hung &

Wang, 2004). In fact, studies on the molecular structure and chemical properties of venom

toxins (Zeng, Xiao & Liang, 2003; Corzo et al., 2003; Satake et al., 2004; Yamaji et al., 2009)

have established the utility of Macrothele venom as cell growth inhibitors in cancer research

(Gao et al., 2005; Liu et al., 2012).

The scarcity of genomic and transcriptomic data in chelicerates, which just cover a

few species (Grbić et al., 2011; Mattila et al., 2012; Cao et al., 2013; Clarke et al., 2014;

Sanggaard et al., 2014; Posnien et al., 2014) and the lack of tissue-specific transcript data in

mygalomorphs, clearly limit the research on the molecular determinants of fundamental

biological processes in this group of species. Within this context, with the aim of shedding

light on the composition of Mygalomorph transcriptomes, we conducted the first RNA-seq

study in one species of this group, M. calpeiana, including several tissues, and using a

454GS-FLX-based technology (Prosdocimi et al., 2011). The new sequence data will be

an important, initial contribution to further basic, applied, and translational research in

this non-model organism. Here we address two specific objectives: (i) to identify possible

candidate chemosensory transcripts for future studies, and (ii) to provide new markers for

further phylogenetic and evolutionary genomic-based studies in this group. As an example,

we used some of the new generated transcripts to clarify the phylogenetic position of

M. calpeiana in the Mygalomorph phylogeny.

The chemosensory system plays a key role in fundamental vital processes, including

the localization of food, hosts, or predators and social communication; nevertheless,

there are very few studies focused in non-insect species results (Vieira & Rozas, 2011;
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Montagné et al., 2015), and almost unknown in mygalomorphs. In insects, the main

molecular components of the chemosensory system are encoded by two main groups of

gene families (Sánchez-Gracia, Vieira & Rozas, 2009; Vieira & Rozas, 2011; Almeida et al.,

2014) the chemoreceptors and the secreted ligand-binding proteins. The first include the

gustatory (GR), olfactory (OR), and ionotropic (IR) receptors, while the second group,

known as ligand-binding families, are the odorant-binding protein (OBP), chemosensory

protein (CSP), chemosensory type A and B (CheA/B), and probably some members of the

Niemann-Pick disease type C2-related (NPC2) family (Pelosi et al., 2014). The preliminary

analyses of the genomic sequences of the chelicerates I. scapularis (M Gulia-Nuss et al.,

2015, unpublished data), Stegodyphus mimosarum, Acanthoscurria geniculata, (Sanggaard

et al., 2014), Mesobuthus martensii (Cao et al., 2013), and Tetranychus urticae (Grbić et al.,

2011), as well as in other arthropods, like the centipede Strigamia maritima (Chipman et

al., 2014), revealed the absence of the typical insect OR and OBP gene families in these

species.

Several experimental studies of chelicerates have identified the presence of specialised

chemosensory hairs predominantly in the distal segment of the first pair of legs and in

palps (Foelix, 1970; Foelix & Chu-Wang, 1973; Kronestedt, 1979; Cerveira & Jackson, 2012).

In order to investigate the presence of transcripts related to the chemosensory system in

spiders, we sequenced the specific transcriptomes of these two structures in M. calpeiana.

To enrich our samples in tissue-specific transcripts, we built subtractive normalized cDNA

libraries for each of these tissues separately. Additionally, for comparative purposes, we also

analysed the ovary RNA-seq data. In this way, this study represents a starting-point to char-

acterize the gene expression in the putative chelicerate chemosensory system structures.

Because of their low vagility and restricted distributions, mygalomorph spiders

are well-suited for monitoring the ecological and evolutionary conservation status of

terrestrial ecosystems (Bond et al., 2006), while at the same time are also highly threatened

by habitat destruction (Harvey, 2002). To date, however, the lack of informative nuclear

markers has limited research on these organisms and has hampered the assessment of their

conservation or invasive species status. The method we employed here provides useful

data for developing nuclear molecular markers to be used in other evolutionary genomic,

phylogenetic, and phylogeographic studies of Mygalomorphae.

METHODS
Sample collection and preparation
Four adult females of the spider Macrothele calpeiana were collected (Junta de Andalucı́a,

Spain; permission: SGYB-AFR-CMM) in two different localities in the southern Iberian

Peninsula, namely Iznalloz (Granada, N37.36468 W3.47183, 1,011 m) (individuals

MAC-GR1, MAC-GR2, MAC-GR3) and Finca de los Helechales, rd. Cabeza la Vaca

(Huelva, N38.09032 W6.46621, 749 m) (individual CRBAMM000991). For each indi-

vidual, palps, distal segments of the first pair of legs (denoted as legs), ovaries, brains and

muscle tissues (from the rest of legs) were dissected and stabilized in RNA later (Applied

Biosystems/Ambion).
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Total RNA extraction and cDNA preparation
Each tissue was disrupted and homogenized separately using a rotor-stator homogenizer.

Total RNA was extracted with the RNeasy midi kit (Qiagen, Hilden, Germany). For all

dissected tissues, except the ovary, the protocol included a proteinase K digestion step in

order to digest contaminant proteins. All samples were enriched in poly(A) mRNA prior to

library preparation using the Oligotex RNA midi kit (Qiagen, Hilden, Germany).

The purified mRNA was used as a template for synthesizing the first cDNA strand

using the SMARter PCR cDNA Synthesis Kit (Clontech, Mountain View, California, USA).

In this protocol, a poly(A)-specific primer initiates the first strand synthesis of cDNA,

thus selecting for polyadenylated RNA while simultaneously keeping the concentration

of ribosomal RNA low. The resulting single stranded cDNA was amplified with the

Advantage2 PCR kit (Clontech, Mountain View, California, USA), using 23 (brain, leg and

muscle) and 20 (palp and ovary) amplification cycles. Double stranded cDNA was purified

using CHROMA SPIN-1000 columns (Clontech, Mountain View, California, USA) and

subsequently cleaved with Rsa1 to generate shorter, blunt-ended cDNA fragments, which

are necessary for adaptor ligation and subtraction. The digested cDNA were then purified

using a standard phenol:chloroform:isoamyl extraction.

Subtractive hybridization and RNA sequencing
Transcripts expressed specifically in the palps, legs, and ovaries were enriched using

the PCR-Select cDNA Subtraction Kit (Clontech, Mountain View, California, USA).

This technique is based on a method of selective amplification of differently expressed

sequences. We used leg, palp, and ovary cDNA as tester (samples of interest) and brain

and muscle cDNAs samples as driver (transcripts exclusively for subtraction purposes)

samples. According to the kit’s protocol, the tester samples are subdivided into two aliquots

that receive different adaptors. These aliquots are mixed to driver cDNA (in a higher

concentration), denatured, and allowed to reanneal to form double chain cDNA. The

process in repeated once, but with the two aliquots of tester cDNA mixed together and

some more tester cDNA added. Then a PCR is done in a way that only double chain cDNA

formed by fragments with different adaptors at each end will be amplified (i.e., cDNA

formed by the hybridization of single chain cDNA from different tester aliquots). In this

way, the sample is enriched with cDNA specific to the tester tissue since the tester cDNA

that hybridizes with driver cDNA does not get amplified. The subtraction process also

normalizes the library so that the frequencies of each unique cDNA became less unequal,

increasing the chances of sequencing a large number of unique cDNAs. The subtracted

cDNA products were treated with RNase (Qiagen, Hilden, Germany) and purified with

QIAquick PCR Purification Kit (Qiagen, Hilden, Germany).

Two micrograms of subtracted cDNA from each tester tissue was prepared for sequenc-

ing on a 454/ Roche GS-FLX Titanium sequencer using three different MID tags, one for

each tissue. Double-stranded cDNA was nebulized to generate 500-kb fragments and a

shotgun library prepared for GS-FLX sequencing as per the manufacturer’s instructions

(Roche, Basel, Switzerland), which was run on a 1/4 picotitre plate region.
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Read processing, handling, and de novo transcriptome assembly
We used sffinfo script (Roche’s Newbler package; 454 SFF Tools) to extract the DNA

sequences (FASTA format) and quality scores (FastQ format) independently for each

MID tag from the SFF file. We removed adapters and putative contaminant sequences

(upon the UniVec database and the E. coli genome sequence data) with SeqClean script

(http://compbio.dfci.harvard.edu/tgi/software/), with parameters: -v <sequence of
adapters> -c 8 -l 40 -x 95 -y 11 -M -L -s <database of contaminant sequences>.

We trimmed low-quality bases at the ends of the reads and removed those shorter

than 100bp or with a mean quality score (Q) below 20 using the NGS QC Toolkit

(Patel & Jain, 2012).

First, we conducted a complete de novo assembly using all reads from the three tissues

altogether in Newbler v2.6 GS (454 life Sciences, Roche Diagnostics) with parameters

-urt -cDNA -Denovo -mol 100 -moi 95 -url. Subsequently, we used the contigs and the

non-assembled reads (i.e., singletons) from this first step as input for a second assembly

round in CAP3 (Huang, 1999), with parameters –o 60 –p 95. Redundant transcripts

and putative isoforms were removed using cd-hit-est program, to generate a list of

unique transcripts (Fu et al., 2012). We then used the gsMapper program (included in

Newbler package) to map original (after filtering) reads (from the 3 tissues) to the unique

transcripts, discarding all reads exhibiting hard clipping (more than 10% of read length)

with an in-house Perl script.

Functional annotation
We carried out most of the functional annotation of the assembled transcripts with

blast (v. 2.2.29) (Altschul, 1997; Camacho et al., 2009), Blast2GO (Conesa et al., 2005),

InterProScan (Jones et al., 2014) and TRUFA (Kornobis et al., 2015). We first conducted

a series of similarity-based searches with blastx (E-value cut-off 10−3) against the NCBI

non-redundant (NCBI-nr) database, retrieving the 5 hits with the lowest E-value for

each query transcript. We then used Blast2GO and TRUFA to: (i) assign the Gene

Ontology (GO) terms to each of these transcripts and determine the involved KEGG

pathways (Kanehisa & Goto, 2000), (ii) identify particular protein domain structures in the

sequenced transcripts using the InterProScan search engine, and (iii) determine which GO

terms, InterPro domains, and KEGG pathways were significantly enriched in particular

tissues by applying the Fisher’s exact test and controlling by the False Discovery Rate (FDR)

(Benjamini & Hochberg, 1995).

To determine the efficiency of the subtractive approach employed here to enrich samples

with tissue specific transcripts, we estimated the fraction of assembled transcripts encoding

for putative housekeeping (HK) genes (i.e., transcripts expected to be expressed across

different tissues). For the analysis, we considered that a M. calpeiana transcript encodes a

HK gene if we obtained a significant blastx hit (E-value cut-off 10−3) against a database

that includes all HK genes shared between humans (data set from Eisenberg & Levanon,

2013) and Drosophila melanogaster (data set from Lam et al., 2012) (which correspond

to the 80% and 94% of the human and Drosophila HK genes, respectively; Table S1A).
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Furthermore, we also estimated the number of transcripts that encode genes included

in the CEG (Cluster of Essential Genes) database (a set of 458 Eukaryotic Orthologous

Groups proteins identified by the Core Eukaryotic Genes Mapping Approach, CEGMA)

(Parra, Bradnam & Korf, 2007; Parra et al., 2009). CEG proteins are highly conserved and

present in a wide range of eukaryotic organisms, being therefore a good dataset to assess

the reliability of our RNA sequencing and transcript annotation. VennDiagram R package

was used to obtain all graphic representations of the logical relations (http://cran.r-project.

org/web/packages/VennDiagram/index.html).

In order to identify putative M. calpeiana chemosensory related transcripts, we carried

out an additional specific and customized search. We first built a protein database (CheDB)

with vertebrate and insect sequences that match against the InterPro protein family

signatures associated with chemosensory function (Table S1B). Then, we conducted a

blastx search (E-value of 10−3) using the assembled contigs as query against the CheDB

database. To minimize the percentage of false positive results, we checked whether the

candidate chemosensory transcripts from the blast searches truly encoded the Pfam

HMM core profiles corresponding to chemosensory protein domains, using the programs

HMMER (Eddy, 2009) (E-value of 10−3) and InterProScan. Only M. calpeiana transcripts

with positive hits in this second search step were unequivocally annotated as putative

chemosensory genes. Finally, we also ran an additional tblastn search (E-value of 10−3) of a

set of proteins annotated as chemosensory in currently available chelicerate genomes—the

common house spider Parasteatoda tepidariorum (https://www.hgsc.bcm.edu/arthropods/

common-house-spider-genome-project), the social spider Stegodyphus mimosarum (Sang-

gaard et al., 2014), the mygalomorph spider Acanthoscurria geniculate (Sanggaard et al.,

2014), the scorpion Mesobuthus martensii (Cao et al., 2013), and the tick Ixodes scapularis

(https://www.vectorbase.org/) against M. calpeiana transcripts. In this last search, we also

included as queries the translated sequences of the transcripts already identified as candi-

date M. calpeiana chemosensory genes in the first searches. In order to exclude spurious

homologs caused by short-length false-positive hits, we only considered for further analy-

ses those transcripts whose blast alignments span either at least 2/3 of the total number of

amino acids of the query proteins or those covering at least 80% of the transcript length.

Phylogenetic analysis
To determine the utility of the newly sequenced transcripts as markers for molecular

phylogenetics, we applied them to study the phylogenetic position of M. calpeiana in

the tree of Mygalomorphs, a currently unresolved question. As a starting point, we used

the phylogenetic analysis reported in Bond et al. (2014). In particular, we first retrieved

the amino acid data of all 16 mygalomorph and 3 non-mygalomorph outgroup species

(Stegodyphus, Hypochilus and Liphistius) from the matrix d327 (44 taxa; 327 genes; 110,808

amino acid positions). Then, we searched for putative homologs of these 327 genes in

M. calpeiana transcripts using the blastp program. For this analysis, we obtained the

conceptual translation of the transcript sequences (in all six frames) using TransDecoder

(version r20140704) as implemented in the Trinity software (Haas et al., 2013). We selected
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all Macrothele translated amino acid sequences that produced a positive blast hit with

an E-value < 10−15 and with local alignment length >80 amino acids (i.e., in order

to maximize the probability of using 1:1 orthologues). Then, we aligned each of these

selected translated sequences of M. calpeiana with their corresponding homologs in the

19 chosen species (a single multiple sequence alignment, MSA, per gene) using MAFFT

(option–merge) (Katoh & Standley, 2013). Finally, we concatenated all individual MSA

with amino acid data in at least 50% of the species.

We also built family specific MSA with amino acid sequences of NMDA-ionotropic

glutamate receptors (NMDA-iGluR) and with members of the Niemann-Pick C disease

2 (NPC2) family, to investigate the phylogenetic relationships between the candidate

M. calpeiana transcripts and some representatives of these two families in arthropods.

We included in these MSA the proteins already annotated in D. melanogaster (hexapod),

S. maritima (myriapod) and I. scapularis (chelicerate), as well as the NPC2 genes expressed

in Apis melifera and Camponotus japonicus antenna (Pelosi et al., 2014). For iGluR

(including IR8a/IR25a proteins) we prepared two different MSA, one for each functional

domain. We used HMMER and the Pfam profiles of these two domains (PF01094

“ANF receptor,” and PF00060 “Lig chan”) to identify and trim separately the extracellular

amino-terminal and the ligand-gated ion channel domains, which were used to build two

separate MSA (and separate trees) with HMMERALIGN.

We conducted all phylogenetic reconstructions by maximum likelihood (ML) using

the PROTGAMMAWAG model in the program RAxML version 8 (Stamatakis, 2014). We

carried out a multiple non-parametric bootstrap analysis (500 bootstrap runs) to obtain

node support values.

RESULTS AND DISCUSSION
RNA-seq of Macrothele calpeiana
We sequenced a total of 164,111 raw reads across the three tester samples (i.e., leg, palp,

and ovary), with a N50 value of 409bp (Table 1). After trimming, cleaning and removing

very short reads (less than 100bp), we obtained a final set of 128,816 reads, which was used

for further analyses. Our two-step de novo assembly strategy (applying Newbler v 2.6, and

subsequently CAP3) yielded a total of 3,705 contigs (N50 of 647bp), composed by more

than one read, plus 3,560 singletons. After running the cd-hit-est and gsMapper software

these contigs clustered into 6,696 unique sequences (i.e., putative M. calpeiana individual

coding genes), of which 3,467 corresponds to contigs assembled by more than one read

(i.e., excluding singletons) (Table 1; Table S2). Table 2 and Table S3 show the distribution

of these 6,696 (and also the 3,467) unique sequences across tissues. M. calpeiana reads

data are available at the Sequence Read Archive (SRA) database under the accession

numbers SRA: SRS951615, SRA: SRS951616 and SRA: SRS951618 (Bioproject number:

PRJNA285862).

RNA-seq quality and functional annotation
We investigated the quality of our tissue specific transcriptome by a series of similarity-

based searches of our transcripts against sequences in the NCBI-nr database. As expected,
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Table 1 Summary of RNA-seq data and assembly.

Raw number of reads 164,111

N50 409

Reads used in the Newbler assemblya 128,818

Assembled reads 122,183

Isotigs (number of singletons) 3,635 (6,614)

N50 (Isotigs) 601

CAP3 assembly

Contigs (number of singletons >100nuc) 3,705 (3,560)

N50 (Contigs) 647

Unique sequencesb

Total number of sequences (transcripts) 6,696

N50 455

Coverage 14.33X

Reads mapped 95,250

Sequences (excluding singletons) 3,467

N50 613

Coverage 22.94X

Reads mapped 90,267

Notes.
a Number of reads after trimming, cleaning and excluding short reads.
b Number of reads after clustering and mapping filtering.

Table 2 Summary of RNA-seq data and assembly per tissue.

Leg Palp Ovary Total

Drivera Muscle Muscle Brain

Raw number of reads 59,232 54,321 50,558 164,111

N50 404 405 419 409

Reads used in assemblyb 46,474 41,545 40,799 128,818

N50 362 364 378 368

Unique sequences (transcripts)c 2,705 3,798 1,796 6,696

Longest transcript (in nucleotides) 3,053 3,057 4,116 4,116

HK, housekeeping sequences 426 638 328 1,005

CEG sequences 385 547 236 789

Sequences excluding HK-CEG genes 2,139 2,952 1,369 5,390

Sequences with GO annotation 1,147 1,612 816 2,619

Sequences within Interpro 1,464 1,966 988 3,353

Sequences within KEGG 389 509 173 776

Sequences with functional annotationd 1,704 2,363 1,152 3,970

Sequences with annotatione 2,060 2,915 1,428 4,978

Notes.
a Driver of subtractive cDNA library.
b Number of reads after trimming, cleaning and excluding short reads.
c Considering the total (n = 6,696) data set.
d GO, Interpro or KEGG hits.
e GO, Interpro, KEGG or blast hits.
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Figure 1 Macrothele taxonomic distribution. Taxonomic distribution of the 6,696 transcripts with
significant blast hits against the NCBI-nr data base (using the top-hit; cut-off E-value of 10−3) by
means of the Blast2GO package (4,399 transcripts with blast hit). (A) Distribution of the top-hits across
arthropod groups (29.4% of the transcripts with blast hit). (B) Top-hit species distribution.

the single largest category of top blast hits (blastx E-value cut-off 10−3), corresponding to

25.3% of top blast hits, was to chelicerate protein coding genes, followed by hits to other

arthropod species (4.1%). Within the Arthropoda, hits within Hexapoda represents about

12% (Fig. 1A), while Ixodes scapularis is the species receiving the majority of hits (Fig. 1B).

Overall, 2,619, 3,353 and 776 out of the 6,696 identified transcripts have a GO, InterPro,

or KEGG associated term, respectively (Table 2); in total 4,978 of them (74.3%) have some

functional annotation information. We analysed the distribution of GO terms (at GO level

2) across the 2,619 M. calpeiana transcripts sequences with GO annotation. We found that
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the most frequent GO terms present in this sample are “metabolic” and “cellular processes”

within the biological process domain (BP), and “binding” and “catalytic activities” within

molecular function domain (MF). The distribution of GO terms in the complete data

set (2,619 GO terms; Fig. 2) and in the data set excluding singleton sequences (1,734 GO

terms; Fig. S1) is not significantly different (two tailed FET, P-value = 0.592 and 0.757

for BP and MF, respectively). Hence, we used the complete dataset for further functional

annotation analyses.

Tissue-specific expression
With our subtractive approach we aimed to enrich a number of tissue-specific transcripts.

We detected 1,005 transcripts annotated as housekeeping genes (Table 2) and 789

transcripts with putative homology to 290 of 458 CEG members of the CEGs dataset.

Out of the 789 transcripts with CEG homologs, 488 are also annotated as HK genes (Fig. S2

and Tables S3–S5). Despite the finding of about 15% of HK and CEG genes, the largest

proportion of them are located at the intersection of the Venn diagram (Figs. 3C and

3D), indicating that tissue-specific transcripts should reliably represent tissue-specific

functions. After excluding these likely ubiquitously expressed genes, the remaining sample

(n = 5,390 transcripts; 1,523 with GO annotation) exhibits the desired tissue-specific

expression profile. In fact, the distributions of GO terms including (2,619 transcripts) or

not (1,523 transcripts) HK/CEG genes are significantly different from each other (two

tailed P-value < 0.018 for the most frequent GO categories within BP and MP) (Fig. 2).

To gain further insight into transcript function, we compared transcript expression

across legs, palps, and ovaries (Fig. 3; Fig. S3). We found a high proportion of transcripts

shared between leg and palp (1,112 and 848, including or not HK and CEG genes,

respectively), and a few between these tissues and ovary (Figs. 3A and 3B). This result

was expected given the ontogenetic similarities of legs and palps.

The overrepresentation analysis of the GO terms across the different Venn diagram

sections (Table S3; see also Fig. 3E) detected 26 significant overrepresented GO terms in

legs-palps (sections I, II and IV) or ovary transcripts (sections III, V, VI and VII) after

the FDR (Fig. 4; Table S6A and Fig. S4). For instance, the GO terms “cation binding,”

“metal ion binding,” and “oxidation–reduction process” are clearly overrepresented in

legs-palps specific transcripts (P-value < 6.9 × 10−8). These significant differences are

also found in comparisons involving only section III (i.e., considering only ovary-specific

transcripts instead of all ovary-transcripts), or only section IV (considering only specific

transcripts shared between leg and palp) (results not shown). Indeed, the major over- or

underrepresentation effect appears in individual sections III and IV (Table S6).

To investigate the biological pathways that are differently expressed among the studied

tissues, we analysed the distribution of transcripts associated with different KEGG terms

(Tables S3 and S7). Again, we found significant differences between transcripts expressed

exclusively in legs and/or palps (sections I, II, and IV) and the ovary-expressed transcripts

(sections III, V, VI, and VII) (two tailed FET, P-value of 2.6 × 10−3). For instance, we

detected 3 KEGG pathways (Tropane, piperidine and pyridine alkaloid biosynthesis;
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Figure 2 Distribution of the Gene Ontology (GO) terms associated with the complete set of M.
calpeiana transcripts (2,619 transcripts with GO annotations over 6,696 sequences). (A) MF, molec-
ular function. (B) BP, Biological process. Distribution GO terms excluding transcripts encoding HK or
CEG genes (1,523 transcripts with GO annotations over 5,390 sequences). (C) MF, molecular function.
(D) BP, Biological process.
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Figure 3 Transcript distribution across tissues. Venn diagrams showing the number of sequences
expressed specifically in each tissue or in their intersections (blue, ochre and yellow indicate leg, palp
and ovary, respectively). (A) All transcripts (n = 6,696). (B) Transcripts excluding putative housekeeping
or CEG genes (n = 5,390). (C) Number and percentage of transcripts encoded by housekeeping genes
(n = 1,005). (D) Number and percentage of transcripts with homologs included in the CEG database
(n = 789). The area of each Venn diagram section is approximately proportional to the number of
transcripts (A and B), or to the particular fraction value (C and D). (E) Roman numerals used to designate
the different sections.

Tryptophan metabolism; and Tyrosine metabolism) specifically expressed in sections I,

II and IV; none of the 11 detected transcripts of these three pathways had ovary expression

(Table S7). Actually, these pathways are not directly related to chemosensory function. It

has been shown that the golden orb web spider Nephila antipodiana (Walckenaer) coats

its web with an alkaloid (2-pyrrolidinone), which apparently provides protection against

ant invasion (Zhang et al., 2012). Macrothele large funnel-webs are equally exposed to

predators, both insects and small vertebrates, and hence the use of a chemical defense

against invaders would be highly advantageous. Further studies on the presence of these

chemical clues on the funnel-webs are needed to confirm this hypothesis.

Chemosensory-related genes
As a starting point for the identification of chemosensory organs in M. calpeiana, we

studied two features commonly present in the chemosensory-related proteins, the

existence of a signal peptide (characteristic of soluble binding proteins such as insect and

vertebrate OBP, and the NPC2, CSP, and CheA/B), and the presence of a transmembrane

domain (characteristic of all chemosensory receptors, such as insect and vertebrate ORs,
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Figure 4 Differential distribution of GO terms across tissues. Differential distribution of the GO terms
of the transcripts from leg and palp (Venn sections I, II and IV; in blue) and ovary (sections III, V, VI and
VII; in red). Analysis conducted excluding HK and CEG encoding genes (1,523 transcripts over 5,390).

GRs and IRs). For that, we searched for a putative tissue-specific overrepresentation of such

features in legs and palps (the candidate chemosensory structures in spiders) among the

3,353 transcripts with InterPro annotation. We found a significant over-representation of

the signal peptide-encoding transcripts in legs-palps specific transcripts (Venn sections I,

II and IV against the rest) (two tailed FET, P-value of 6.9 × 10−3), being especially evident

for transcripts shared between palps and legs tissues (Venn section IV; two tailed FET,

P-value of 9.7 × 10−7). Remarkably, the percentage of transcripts with signal peptide in

section IV of the Venn diagram (transcripts expressed in both legs and palps, but not in

ovary) is 27.8% (Fig. 5A), while the 40.6% of leg-specific transcripts have at least one

transmembrane domain (Fig. 5B). Given that these features are not completely exclusive of

chemosensory genes it is difficult to clearly assess whether these differences may reflect true

differences in the chemosensory role of these tissues (see also Fig. S5).

The specific blast searches for chemosensory genes against the CheDB database detected

several candidate transcripts. Nevertheless, the examination of the conceptual translation

of these transcripts using HMM profiles showed that only seven candidates (two IR and

five NPC2; Table S3) have the specific molecular signature of a chemosensory protein do-

main. Almost all the other candidates either exhibit non-chemosensory domain signatures

or yielded no significant results in the search against HMM profiles. The two putative IR

transcripts are specifically expressed in palps and each of them encodes a different Pfam

domain characteristic of these receptors (Croset et al., 2010), the extracellular amino-

terminal domain (PF01094; transcript Mcal 4794) and the ligand-gated ion channel

domain (PF00060; transcript Mcal 5646). The closest related proteins of the M. calpeiana

transcripts in the CheDB database correspond with two S. mimosarum predicted proteins

annotated as “Glutamate receptor, ionotropic kainate 2” products (GenBank accessions

Frı́as-López et al. (2015), PeerJ, DOI 10.7717/peerj.1064 13/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.1064/supp-9
http://dx.doi.org/10.7717/peerj.1064/supp-9
http://dx.doi.org/10.7717/peerj.1064/supp-3
http://dx.doi.org/10.7717/peerj.1064/supp-3
http://dx.doi.org/10.7717/peerj.1064


Figure 5 Distribution of specific interpro domains across tissues. Venn diagrams showing the per-
centage of specific interpro domains across tissues (the different Venn sections are indicated in roman
numbers). Analysis conducted excluding HK and CEG encoding genes (2,364 transcripts with Interpro
annotation over 5,390). (A) Signal peptide domain. (B) Transmembrane domain.
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KFM81344 and KFM59881, 48% and 67% of identity, with Mcal 4794 and Mcal 5646,

respectively). Nevertheless, we cannot rule out that the two M. calpeiana transcripts were

in fact two fragments of the same iGluR gene since KFM59881 is also a partial product

that only includes the “Lig chan” domain. Besides, the rest of best-hits in blast searches

using these two M. calpeiana transcripts as queries correspond to kainate (KA) receptors

followed by α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) members in

other arthropod species. The phylogenetic trees of the members of these subfamilies in

arthropods (built separately for each protein domain; see ‘Methods’) show that the trans-

lated proteins of Mcal 4794 and Mcal 5646 group in the same clade with some KA recep-

tors of insects, centipedes or ticks (Figs. S6A and S6B), again suggesting their putative role

in synaptic transmission and regulation (i.e., it would not be a chemosensory receptor).

The products of three of the five putative NPC2 encoding transcripts constitute a

M. calpeiana specific monophyletic clade in the NPC2 family tree (Fig. S6C) and are

specifically expressed in ovary, which is suggestive of a non-chemosensory function. The

other two NPC2 are expressed in palp and legs (Mcal 1484) or palp-specific (Mcal 6333).

Both encoding proteins are relatively distant to the Apis mellifera and Camponotus

japonicus antennal expressed NPC2, being more related to some I. scapularis and S.

maritima members as well as with the ovarian clade of NPC2. In light of these results,

the possible chemosensory function of these proteins in palps and legs remains to be

elucidated. These results strongly encourage further functional analyses to determine the

putative chemosensory role of these NPC2 genes specifically expressed in palps and legs.

Recent genome sequencing projects have revealed that chelicerate genomes contain

numerous copies of ionotropic (IR) and insect-like gustatory (GR) receptors, which

are the principal candidates to perform chemoreceptor functions in these species.

The apparent absence of genes belonging to these families specifically expressed in M.

calpeiana palp/leg tissues might be explained by low sequence coverage. Many of these

receptors are probably encoded by low expressed genes, and their detection might need

more extensive sequencing. However, to date, there is no other study of the specific

expression of either these receptors or other chemosensory family members in different

tissues of a chelicerate. Given the life-style of M. calpeiana, i.e., it builds funnel-shaped

webs, which it uses to trap prey, we cannot rule out the possibility of a residual role

of a chemoreceptor system in favour of mechanoreception in this species. New deep

sequencing transcriptomic data from other spider species are needed to answer this

question. In fact, our preliminary results from tissue specific transcriptomes in Dysdera

silvatica (Araneae, Haplogynae) (J Vizueta et al., 2015, unpublished data) indicate that

members IRs and GRs families are specifically expressed in leg and palp tissues, suggesting

their putative role in chemoreception in nocturnal running hunter spiders.

Mygalomorph phylogeny
From the data matrix d327 of Bond et al. (2014), we built a new MSA with information of

M. calpeiana obtained from our transcriptome analysis. We have filtered the data in order

to include high quality homologous data with high coverage per taxon. Our final MSA
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Figure 6 Phylogenetic relationships of major Mygalomorphae lineages sampled. ML tree showing the
phylogenetic relationships of major Mygalomorphae lineages sampled. The analysis is based on a super-
matrix of 35 putative orthologs (4,531 amino acids). Numbers indicate bootstrap support values >50%.

comprises 17 Mygalomorph species (including M. calpeiana) and 3 non-mygalomorph

outgroups (20 taxa; 35 genes; 4,531 amino acids; Table S8), with an average taxa coverage

of 17.1. Our ML phylogenetic tree, rooted using Liphistus as an outgroup, mirrors those

reported in Bond et al. (2014) and shows M. calpeiana as the sister lineage of the genus

Paratropis (Fig. 6), albeit with low node support (57%), as part of the non-Bipectina
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Avicularioidea. Interestingly, in a recent study focused on the phylogenetic relationship

and biogeographic origins of the genus Macrothele (Opatova & Arnedo, 2014) based on

a denser taxonomic sampling but lower gene coverage (3 genes), a similar position of

Macrothele, within the Aviculariodea but outside the Bipectina lineage, was also recovered.

CONCLUSIONS
The tissue specific transcriptome presented here provides a novel resource for Macrothele

researchers, and for people interested in spider systematics and molecular biology. Having

ovary and non-ovary expressed transcripts-based markers, which may potentially differ in

their evolutionary rates, can become instrumental for further studies aiming to understand

the evolutionary processes acting at different time-scales, such as biological invasions,

secondary gene flow or speciation, and to implement successful conservation polices; in

particular, we have demonstrated the utility of these newly generated data by inferring

the phylogenetic position of M. calpeiana in the Mygalomorphae tree. Moreover, our

tissue-specific gene expression study represents a starting point to understanding the

chemosensory system in spiders and, in general, in chelicerates.
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