UAB
 Universitat Autònoma de Barcelona

Dipòsit digital de documents de la UAB

This is the accepted version of the journal article:
Feo, Filomena; Martín i Pedret, Joaquim; Posteraro, Maria Rosaria. «Sobolev embedding into BMO and weak- $\mathrm{L} \infty$ for 1-dimensional probability measure». Journal of mathematical analysis and applications, Vol. 422, Issue 1 (February 2015), p. 478-495. DOI 10.1016/j.jmaa.2014.08.045

This version is available at https://ddd.uab.cat/record/268338
under the terms of the (cc) BY-NC-ND license

SOBOLEV EMBEDDING INTO BMO AND WEAK- L^{∞} FOR 1-DIMENSIONAL LOG-CONCAVE PROBABILITY MEASURE

F. FEO, J. MARTIN, AND M. R. POSTERARO

Abstract

We characterize rearrangement invariant spaces X with respect to a one dimensional probability log-concave measure μ such that the Sobolev embedding $$
\|u\|_{B M O(\mathbb{R}, \mu)} \leq C\left\|u^{\prime}\right\|_{X}+\|u\|_{L^{1}(\mathbb{R}, \mu)}
$$ holds, for any function $u \in L^{1}(\mathbb{R}, \mu)$, whose real-valued weakly derivative u^{\prime} belongs to X, where $B M O(\mathbb{R}, \mu)$ is the space of functions with bounded mean oscillation with respect to μ. We investigate the embedding in weak- $L^{\infty}(\mathbb{R}, \mu)$, too.

1. Introduction

Let μ be an absolutely continuous symmetric log-concave probability measure on the line, i.e. $d \mu=Z e^{-\Phi(x)} d x$, where $\Phi(x)$ is a even convex function and Z is the normalization constant in order to have $\mu(\mathbb{R})=1$. Let X be a rearrangementinvariant (r.i.) space ${ }^{1}$ on (\mathbb{R}, μ) (see Section 2 below). The Sobolev space $V_{X}^{1}(\mathbb{R}, \mu):=$ V_{X}^{1} is the space of functions $u \in L^{1}(\mathbb{R}, \mu)$ of those real-valued weakly differentiable functions on \mathbb{R} which first derivative belong to X.

Poincaré type inequalities of the form

$$
\begin{equation*}
\left\|u-\int_{\mathbb{R}} u d \mu\right\|_{Y} \leq C\left\|u^{\prime}\right\|_{X}, \quad u \in V_{X}^{1} \tag{1.1}
\end{equation*}
$$

where X, Y are r.i spaces on (\mathbb{R}, μ) was studied either for the Gauss measure or for more general probability measures (see [7], [12] and [13]). These inequalities are strictly related to the isoperimetric function $I(t)$ of the measure μ (see Section 2 below for its definition). It was proved in [13, Theorem 6] that if X and Y are rearrangement invariant spaces on (\mathbb{R}, μ) then the inequality (1.1) holds if and only if the isoperimetric Hardy operator Q_{I} defined on measurable functions on $(0,1)$ by

$$
Q_{I} u(t)=\int_{t}^{1 / 2} \frac{u(s)}{I(s)} d s
$$

is bounded from X to Y.

[^0]An elementary consequence of (2.2) in Section 2 is that

$$
\int_{0}^{1 / 2} \frac{d s}{I(s)}=+\infty
$$

which implies that there is not any r.i space X such Q_{I} is bounded from X to L^{∞}, thus the Sobolev-Poincaré

$$
\begin{equation*}
\left\|u-\int_{\mathbb{R}} u d \mu\right\|_{L^{\infty}} \leq C\left\|u^{\prime}\right\|_{X} \tag{1.2}
\end{equation*}
$$

never holds, in other words there is not any summability property of u^{\prime} which guarantees $u \in L^{\infty}$, in particular $u^{\prime} \in L^{\infty}$ does not imply that $u \in L^{\infty}$.

An appropriate substitute for L^{∞} when L^{∞} does not work is the space $B M O(\mathbb{R}, \mu)$ of functions having bounded mean oscillation, defined as the functions $u \in L^{1}(\mathbb{R}, \mu)$ such that

$$
\begin{equation*}
\|u\|_{*,(\mathbb{R}, \mu)}=\sup _{J \text { interval } \subset \mathbb{R}} \frac{1}{\mu(J)} \int_{J}\left|u-\frac{1}{\mu(J)} \int_{J} u d \mu\right| d \mu<+\infty \tag{1.3}
\end{equation*}
$$

It is clear that the functional in (1.3) is not a norm since it vanishes in constant functions however it is easy to verify that $B M O(\mathbb{R}, \mu)$ is a Banach space under the norm ${ }^{2}$,

$$
\|u\|_{B M O(\mathbb{R}, \mu)}=\|u\|_{*,(\mathbb{R}, \mu)}+\|u\|_{L^{1}(\mathbb{R}, \mu)}
$$

Closely related to $B M O(\mathbb{R}, \mu)$ is the Bennett-DeVore-Sharpley space weak- $L^{\infty}(\mathbb{R}, \mu)^{3}$, defined by (cf. [2]),

$$
L^{\infty, \infty}(\mathbb{R}, \mu)=\left\{u:\|u\|_{L^{\infty}, \infty}=\sup _{0<t<1}\left(u_{\mu}^{* *}(t)-u_{\mu}^{*}(t)\right)<+\infty\right\}
$$

where $u_{\mu}^{* *}(t)=\frac{1}{t} \int_{0}^{t} u_{\mu}^{*}(s) d s$, and u_{μ}^{*} is the non increasing rearrangement of u with respect to the measure μ (see section 2 below).

Notice that $L^{\infty, \infty}$ is not a linear space and $\|\cdot\|_{L^{\infty}, \infty}$ is not a norm. The relation between the space weak- $L^{\infty}(\mathbb{R}, \mu)$ and $B M O(\mathbb{R}, \mu)$ when μ is a not doubling absolutely continuos measure was obtained in [1] (see [2] and [3] for the Lebesgue measure), where it was shown that there is a constant $c>0$ such that

$$
\begin{equation*}
\|u\|_{L^{\infty}, \infty}=\sup _{0<t<1}\left(u_{\mu}^{* *}(t)-u_{\mu}^{*}(t)\right) \leq c\|u\|_{B M O(\mathbb{R}, \mu)} \tag{1.4}
\end{equation*}
$$

The main objective of this paper is to establish criteria that ensure a function belongs to $B M O(\mathbb{R}, \mu)$ or to weak- $L^{\infty}(\mathbb{R}, \mu)$ in terms of the summability properties of its derivative (see [6] for Lebesgue measure). More precisely, we characterize all r.i spaces X on (\mathbb{R}, μ) such that the corresponding Sobolev space $V_{X}^{1}(\mathbb{R}, \mu)$ is embedded into $B M O(\mathbb{R}, \mu)$ or in weak- $L^{\infty}(\mathbb{R}, \mu)$. Furthermore, we characterize the largest r.i space X such that $V_{X}^{1}(\mathbb{R}, \mu)$ is continuously embedded into $B M O(\mathbb{R}, \mu)$.

[^1]
2. Preliminaries

Let μ be an absolutely continuous symmetric log-concave probability measure on the line, i.e. $d \mu=Z e^{-\Phi(x)} d x=f(x) d x$, where $\Phi(x)$ is a even convex function and Z is the normalization constant in order to have $\mu(\mathbb{R})=1$. We denote by

$$
\begin{equation*}
F(x)=\int_{-\infty}^{x} f(x) d x \quad \forall x \in \mathbb{R} \cup\{-\infty,+\infty\} \tag{2.1}
\end{equation*}
$$

its distribution function.
Let J be an interval. If $A \subset J$ is a Borel set, then the relative perimeter of A w.r.t. (with respect to) μ is defined by

$$
P_{\mu}(A, J)=\liminf _{h \rightarrow 0} \frac{\mu\left(A_{h}\right)-\mu(A)}{h}
$$

where $A_{h}=\{x \in J: d(x, A)<h\}$.
The isopemetric profile of μ is defined by,

$$
I(t):=\inf \left\{P_{\mu}(A, \mathbb{R}): \mu(A)=t\right\}, \quad(0 \leq t \leq 1)
$$

Since μ is a log-concave symmetric measure (see [5]), we have that

$$
I(t)=f\left(F^{-1}(t)\right)
$$

in particular I is a continuous concave function symmetric with respect to $1 / 2$, such that $I(0)=I(1)=0$, moreover, for $0<t<1$

$$
\begin{equation*}
F^{-1}(t)=\int_{\frac{1}{2}}^{t} \frac{1}{I(s)} d s \tag{2.2}
\end{equation*}
$$

In an analogue way the relative isoperimetric profile is defined by

$$
h_{J}(t):=\inf \left\{P_{\mu}(A, J): A \subset J, \mu(A)=t\right\}, \quad(0 \leq t \leq \mu(J))
$$

We briefly recall the basic definitions and conventions we use about rearrangement of functions and rearrangement invariant spaces. We refer the reader to [3] and [16] for a complete treatment.

Let Ω be a measurable subset of \mathbb{R} and u be a real-valued measurable function on Ω. The non-increasing rearrangement of u w.r.t. μ is given by

$$
u_{\mu}^{*}(t)=\sup \left\{s \geq 0: \mu_{|u|}(s)>t\right\} \quad 0<t<\mu(\Omega)
$$

and the signed non-increasing rearrangement of u w.r.t. μ is given by

$$
u_{\mu}^{\circ}(t)=\sup \left\{s \in \mathbb{R}: \mu_{u}(s)>t\right\} \quad 0<t<\mu(\Omega)
$$

where $\mu_{u}(s)=\mu\{x \in \Omega: u(x)>s\}$.
We say that a Banach function space $X=X(\mathbb{R}, \mu)$ on (\mathbb{R}, μ) is a rearrangementinvariant (r.i.) space, if $v \in X$ implies $u \in X$ for all μ-measurable functions such that $u_{\mu}^{*}=v_{\mu}^{*}$ and, moreover, $\|u\|_{X}=\|v\|_{X}$. The functional $\|\cdot\|_{X}$ will be called a rearrangement invariant norm. Typical examples of r.i. spaces are the L^{p}-spaces, Orlicz spaces, Lorentz spaces, Marcinkiewicz spaces, etc.

Since $\mu(\mathbb{R})=1$, for any r.i. space X we have

$$
\begin{equation*}
L^{\infty}(\mathbb{R}) \subseteq X \subseteq L^{1}(\mathbb{R}, \mu) \tag{2.3}
\end{equation*}
$$

with continuous embedding.

For rearrangement invariant norms $\|\cdot\|_{X}$, we can compare the size of elements by comparing their averages, as expressed by a majoration principle, sometimes referred to as the Calderón-Hardy Lemma:

$$
\text { Suppose that } \begin{align*}
\int_{0}^{t} u_{\mu}^{*}(s) d s & \leq \int_{0}^{t} v_{\mu}^{*}(s) d s, \text { holds for all } 0<t<1 \tag{2.4}\\
& \Rightarrow\|u\|_{X} \leq\|v\|_{X}
\end{align*}
$$

The associate space X^{\prime} of X is the r.i. space of all measurable functions u in for which the r.i. norm given by

$$
\begin{equation*}
\|v\|_{X^{\prime}}=\sup _{u \neq 0} \frac{\int_{\mathbb{R}}|u(x) v(x)| d \mu}{\|u\|_{X}}=\sup _{u \neq 0} \frac{\int_{0}^{1} u_{\mu}^{*}(s) v_{\mu}^{*}(s) d s}{\|u\|_{X}} \tag{2.5}
\end{equation*}
$$

In particular, the following generalized Hölder's inequality holds

$$
\begin{equation*}
\int_{\mathbb{R}}|u(x) v(x)| d \mu \leq\|u\|_{X}\|v\|_{X^{\prime}} \tag{2.6}
\end{equation*}
$$

Given a function $u \in X$ and an interval J, from Hölder inequality, it easily follows that

$$
\begin{equation*}
\frac{1}{2}\left\|u \chi_{J}-\frac{1}{\mu(J)} \int_{J} u d \mu\right\|_{X} \leq \inf _{\alpha \in \mathbb{R}}\left\|(u-\alpha) \chi_{J}\right\|_{X} \leq\left\|u \chi_{J}-\frac{1}{\mu(J)} \int_{J} u d \mu\right\|_{X} \tag{2.7}
\end{equation*}
$$

Given a r.i. space $X=X(\mathbb{R}, \mu)$, there exists a unique r.i. space $\bar{X}=\bar{X}(0,1)$ on $((0,1), m),(m$ denotes the Lebesgue measure on the interval $(0,1))$ such that

$$
\begin{equation*}
\|u\|_{X}=\left\|u_{\mu}^{*}\right\|_{\bar{X}} \tag{2.8}
\end{equation*}
$$

\bar{X} is called the representation space of $X(\mathbb{R}, \mu)$ (a characterization of the norm $\|\cdot\|_{\bar{X}}$ is available in [3]). Moreover, we have $\|u\|_{X}=\left\|u_{\mu}^{\circ}\right\|_{\bar{X}}$.

In the framework of our paper we will use the Lorentz type space $\Lambda(\mu)$ associated to isoperimetric profile I defined by

$$
\begin{equation*}
\Lambda(\mu):=\left\{u:\|u\|_{\Lambda(\mathbb{R}, \mu)}:=\int_{0}^{1} u_{\mu}^{*}(t) \frac{I(t)}{t} d t<+\infty\right\} \tag{2.9}
\end{equation*}
$$

which is a r.i. space (see [8]) since by the concavity of I the function $\frac{I(t)}{t}$ is decreasing. Notice that

$$
\begin{equation*}
\int_{0}^{1 / 2} u_{\mu}^{*}(t) \frac{I(t)}{t} d t \leq\|u\|_{\Lambda(\mathbb{R}, \mu)} \leq 2 \int_{0}^{1 / 2} u_{\mu}^{*}(t) \frac{I(t)}{t} d t \tag{2.10}
\end{equation*}
$$

We shall finish this section with a Lemma in which we collect some results that relate isoperimetry, derivative and rearrangements.

Lemma 1. Let μ be an absolutely continuous symmetric log-concave probability measure on the line. Let $J \subseteq \mathbb{R}$ be an interval. Assume that the following relative isopemetric inequality holds:

$$
P_{\mu}(A, J) \geq \tilde{h}(\mu(A)) ; \quad(A \text { Borel set contained in } J),
$$

where $\tilde{h}:[0, \mu(J)] \rightarrow[0, \infty)$ is a continuos concave function symmetric around $\mu(J) / 2$, such that $\tilde{h}(0)=\tilde{h}(\mu(J))=0$. Let $u \in V_{L^{1}}^{1}(\mathbb{R}, \mu)$ and let $v=u \chi_{J}$. Then
(1) The rearrangements v_{μ}^{*} and v_{μ}° are locally absolutely continuous functions.
(2) Denote by $[\cdot]^{*}$ the rearrangement with respect to Lebesgue measure on $[0, \mu(J)]$, then

$$
\begin{equation*}
\int_{0}^{s}\left[\tilde{h}(\bullet)\left(-v_{\mu}^{*}\right)^{\prime}(\bullet)\right]^{*}(r) d r \leq \int_{0}^{s}\left(v^{\prime}\right)_{\mu}^{*}(r) d r \quad 0<s<\mu(J) \tag{2.11}
\end{equation*}
$$

and the same inequality holds for v_{μ}°.
Notice that the inequality (2.11), by (2.4), implies that for any r.i space X,

$$
\left\|\tilde{h}(\bullet)\left(-v_{\mu}^{*}\right)^{\prime}(\bullet)\right\|_{\bar{X}} \leq\left\|v^{\prime}\right\|_{X} \text { and }\left\|\tilde{h}(\bullet)\left(-v_{\mu}^{\circ}\right)^{\prime}(\bullet)\right\|_{\bar{X}} \leq\left\|v^{\prime}\right\|_{X}
$$

Proof. For v_{μ}^{*} this result was proved in [7] and [12] for Gauss measure and in [13] in the general context of metric spaces. It is easy to see that the same proof works for v_{μ}°.

3. Main Result

In this section we characterize the embedding of $V_{X}^{1}(\mathbb{R}, \mu)$ into $B M O(\mathbb{R}, \mu)$ or in weak- $L^{\infty}(\mathbb{R}, \mu)$.

To this end we will need the following technical result (whose proof will be given in the Appendix). If μ a log-concave symmetric probability measure and I is its isoperimetric profile, then there exist a constant $C>0$ such that

$$
\begin{equation*}
I(t) \leq \int_{0}^{t} \frac{I(s)}{s} d s \leq C I(t) \quad \text { for } 0 \leq t \leq \frac{1}{2} \tag{3.1}
\end{equation*}
$$

Theorem 1. Let X be a r.i. space. The following statements are equivalent:
i) $D=\sup _{0<s<\frac{1}{2}} \frac{1}{s}\left\|\frac{r}{I(r)} \chi_{(0, s)}(r)\right\|_{\bar{X}^{\prime}}<+\infty$;
ii) there exists a constant $C_{1}>0$ such that

$$
\|u\|_{*,(\mathbb{R}, \mu)} \leq C_{1}\left\|u^{\prime}\right\|_{X}
$$

for all $u \in V_{X}^{1}(\mathbb{R}, \mu)$;
iii) there exists a constant $C_{2}>0$ such that

$$
\|u\|_{L^{\infty, \infty}(\mathbb{R}, \mu)} \leq C_{2}\left(\left\|u^{\prime}\right\|_{X}+\|u\|_{L^{1}(\mathbb{R}, \mu)}\right)
$$

for all $u \in V_{X}^{1}(\mathbb{R}, \mu)$.
In order to prove Theorem 1 we follow arguments contained in [6]. We shall need three preliminary results.

Lemma 2. For every $u \in V_{L^{1}}^{1}(\mathbb{R}, \mu)$ the following inequality holds

$$
\begin{equation*}
\left\|u-\int_{\mathbb{R}} u d \mu\right\|_{\Lambda(\mu)} \leq 4 C\left\|u^{\prime}\right\|_{L^{1}(\mathbb{R}, \mu)} \tag{3.2}
\end{equation*}
$$

where C is the same constant that in (3.1) and $\Lambda(\mu)$ is the Lorentz space associated to isoperimetric profile of μ.

Proof. Let $u \in V_{L^{1}}^{1}(\mathbb{R}, \mu)$, we can assume that $\int_{\mathbb{R}} u=0$ (otherwise we consider $\left.u-\int_{\mathbb{R}} u d \mu\right)$. By Lemma $1, u_{\mu}^{*}$ is a locally absolutely continuos function, therefore we can write

$$
\begin{equation*}
u_{\mu}^{*}(t)=\int_{t}^{1 / 2}\left(-u_{\mu}^{*}\right)^{\prime}(s) d s+u_{\mu}^{*}(1 / 2) \tag{3.3}
\end{equation*}
$$

Using (3.3) and (2.10) we have that

$$
\begin{aligned}
\|u\|_{\Lambda(\mu)} & \leq 2\left(\int_{0}^{1 / 2}\left(\int_{t}^{1 / 2}\left(-u_{\mu}^{*}\right)^{\prime}(\tau)\right) \frac{I(t)}{t} d t+u_{\mu}^{*}(1 / 2) \int_{0}^{1 / 2} \frac{I(t)}{t} d t\right) \\
& \leq 2\left(\int_{0}^{1 / 2}\left(-u_{\mu}^{*}\right)^{\prime}(t)\left(\int_{t}^{1 / 2} \frac{I(\tau)}{\tau} d \tau\right) d t+u_{\mu}^{*}(1 / 2) \int_{0}^{1 / 2} \frac{I(t)}{t} d t\right) \\
& \leq 2 C\left(\int_{0}^{1 / 2}\left(-u_{\mu}^{*}\right)^{\prime}(t) I(t) d t+I\left(\frac{1}{2}\right) u_{\mu}^{*}(1 / 2)\right)(\mathrm{by}(3.1)) \\
& \leq 2 C\left(\int_{0}^{1 / 2}\left(-u_{\mu}^{*}\right)^{\prime}(t) I(t) d t+2 I\left(\frac{1}{2}\right) \int_{0}^{1 / 2} u_{\mu}^{*}(t) d t\right)
\end{aligned}
$$

Using again Lemma 1, we get that

$$
\begin{aligned}
\int_{0}^{1 / 2}\left(-u_{\mu}^{*}\right)^{\prime}(t) I(t) d t & =\int_{0}^{1 / 2}\left[I(\bullet)\left(-u_{\mu}^{*}\right)^{\prime}(\bullet)\right]^{*}(r) d r \\
& \leq \int_{0}^{1 / 2}\left(u^{\prime}(\bullet)\right)_{\mu}^{*}(r) d r \\
& \leq\left\|u^{\prime}\right\|_{L^{1}(\mathbb{R}, \mu)}
\end{aligned}
$$

and, by the Poincaré inequality (see Proposition 1.4 of [4]), we have that

$$
2 I\left(\frac{1}{2}\right) \int_{0}^{1 / 2} u_{\mu}^{*}(t) d t \leq 2 I\left(\frac{1}{2}\right)\|u\|_{L^{1}(\mathbb{R}, \mu)} \leq\left\|u^{\prime}\right\|_{L^{1}(\mathbb{R}, \mu)}
$$

Therefore

$$
\|u\|_{\Lambda(\mu)} \leq 4 C\left\|u^{\prime}\right\|_{L^{1}(\mathbb{R}, \mu)}
$$

Remark 1. In the case of Gauss measure inequality (3.2) is well-known (see e.g. [17] and [9]).
Lemma 3. Let $J \subset \mathbb{R}$ be an interval. Then for all Borel set $A \subset J$ the following relative isoperimetric inequality holds:

$$
\begin{equation*}
P_{\mu}(A, J) \geq \widetilde{h}_{J}(\mu(A)) \tag{3.4}
\end{equation*}
$$

where

$$
\widetilde{h}_{J}(s)=\frac{1}{16 C} \min \{I(s), I(\mu(J)-s)\}
$$

here I is the siopemetric profile of μ and C is the same constant that appears in (3.1).

Proof. Let $J=(a, b)$ with $-\infty<a<b<+\infty$, and let u be a Lipschitz function on \mathbb{R}. Let us define

$$
U(x)= \begin{cases}u(a) & x \in(-\infty, a) \\ u(x) & x \in(a, b), \\ u(b) & x \in(b, \infty)\end{cases}
$$

Obviously $U \in V_{L^{1}}^{1}(\mathbb{R}, \mu)$ and

$$
U^{\prime}(x)=u^{\prime}(x) \text { on } J \text { and } U^{\prime}(x)=0 \text { outside } J
$$

Lemma 2 applied to the function U, gives

$$
\begin{equation*}
\left\|U-\int_{\mathbb{R}} U\right\|_{\Lambda(\mu)} \leq 4 C\left\|U^{\prime}\right\|_{L^{1}(\mathbb{R}, \mu)}=4 C\left\|u^{\prime} \chi_{J}\right\|_{L^{1}(\mathbb{R}, \mu)}=4 C\left\|u^{\prime}\right\|_{L^{1}(J, \mu)} . \tag{3.5}
\end{equation*}
$$

Obviously,

$$
\begin{align*}
\left\|U-\int_{\mathbb{R}} U\right\|_{\Lambda(\mu)} & \geq \inf _{\alpha \in \mathbb{R}}\|U-\alpha\|_{\Lambda(\mu)} \tag{3.6}\\
& \geq \inf _{\alpha \in \mathbb{R}}\left\|(U-\alpha) \chi_{J}\right\|_{\Lambda(\mu)} \\
& =\inf _{\alpha \in \mathbb{R}}\left\|(u-\alpha) \chi_{J}\right\|_{\Lambda(\mu)} \\
& \left.\geq \frac{1}{2}\left\|u \chi_{J}-\frac{1}{\mu(J)} \int_{J} u d \mu\right\|_{\Lambda(\mu)} \quad \text { (by }(2.7)\right) .
\end{align*}
$$

Combining (3.5) and (3.6) we obtain

$$
\left\|u \chi_{J}-\frac{1}{\mu(J)} \int_{J} u d \mu\right\|_{\Lambda(\mu)} \leq 8 C\left\|u^{\prime}\right\|_{L^{1}(J, \mu)}
$$

Suppose that $A \subset J$ is a Borel set. We may assume, without loss, that $P_{\mu}(A ; J)<$ ∞. By [4, Lemma 3.7] we can select a sequence $\left\{u_{n}\right\}_{n \in N}$ of Lipschitz functions such that $u_{n} \rightarrow \chi_{A}$ pointwise, and

$$
P_{\mu}(A ; J) \geq \lim \sup _{n \rightarrow \infty}\left\|\left(u_{n}\right)^{\prime}\right\|_{L^{1}(J, \mu)}
$$

Consequently, by Fatou lemma

$$
\begin{aligned}
8 C P_{\mu}(A ; J) & \geq 8 C \lim \sup _{n \rightarrow \infty}\left\|\left(u_{n}\right)^{\prime}\right\|_{L^{1}(J, \mu)} \geq \lim \sup _{n \rightarrow \infty}\left\|u_{n} \chi_{J}-\frac{1}{\mu(J)} \int_{J} u_{n} d \mu\right\|_{\Lambda(\mu)} \\
& \geq\left\|\chi_{A}-\frac{1}{\mu(J)} \int_{A} d \mu\right\|_{\Lambda(\mu)} \\
& =\left(1-\frac{\mu(A)}{\mu(J)}\right) \int_{0}^{\mu(A)} \frac{I(s)}{s} d s+\frac{\mu(A)}{\mu(J)} \int_{\mu(A)}^{\mu(J)} \frac{I(s)}{s} d s .
\end{aligned}
$$

If $\mu(A) \leq \frac{\mu(J)}{2}$, then

$$
\begin{aligned}
\left\|\chi_{A}-\frac{1}{\mu(J)} \int_{A} d \mu\right\|_{\Lambda(\mu)} & =\int_{0}^{\mu(J)}\left(\chi_{A}-\frac{\mu(A)}{\mu(J)}\right)_{\mu}^{*}(s) \frac{I(s)}{s} d s \\
& =\left(1-\frac{\mu(A)}{\mu(J)}\right) \int_{0}^{\mu(A)} \frac{I(s)}{s} d s+\frac{\mu(A)}{\mu(J)} \int_{\mu(A)}^{\mu(J)} \frac{I(s)}{s} d s \\
& \geq\left(1-\frac{\mu(A)}{\mu(J)}\right) I(\mu(A)) \geq \frac{1}{2} I(\mu(A)) .
\end{aligned}
$$

In case that $\mu(A) \geq \frac{\mu(J)}{2}$, then, since the measure μ has continuos density, the sets A and $J \backslash A$ has the same perimeter; since $\mu(J \backslash A) \leq \frac{\mu(J)}{2}$ we get

$$
8 C P_{\mu}(A ; J)=8 C P_{\mu}(J \backslash A ; J) \geq \frac{1}{2} I(\mu(J)-\mu(A)) .
$$

Lemma 4. Let $u \in V_{L^{1}}^{1}(\mathbb{R}, \mu)$ and J an interval. Then;

$$
\begin{equation*}
\int_{J}\left|u \chi_{J}-\left(u \chi_{J}\right)_{\mu}^{\circ}\left(\frac{\mu(J)}{2}\right)\right| d \mu=\int_{0}^{\mu(J)}-\left(\left(u \chi_{J}\right)_{\mu}^{\circ}\right)^{\prime}(s) \min \{s, \mu(J)-s\} d s \tag{3.7}
\end{equation*}
$$

Proof. By absolutely continuity of $\left(u_{\chi_{J}}\right)_{\mu}^{\circ}$ (Lemma 1) and Fubini's theorem, we have that

$$
\begin{gathered}
\int_{J}\left|u \chi_{J}-\left(u \chi_{J}\right)_{\mu}^{\circ}\left(\frac{\mu(J)}{2}\right)\right| d \mu=\int_{0}^{\mu(J)}\left|\left(u \chi_{J}-\left(u \chi_{J}\right)_{\mu}^{\circ}\left(\frac{\mu(J)}{2}\right)\right)_{\mu}^{\circ}\right| d s \\
=\int_{0}^{\frac{\mu(J)}{2}}\left[\left(u \chi_{J}\right)_{\mu}^{\circ}(s)-\left(u \chi_{J}\right)_{\mu}^{\circ}\left(\frac{\mu(J)}{2}\right)\right] d s+\int_{\frac{\mu(J)}{2}}^{\mu(J)}\left[\left(u \chi_{J}\right)_{\mu}^{\circ}(s)-\left(u \chi_{J}\right)_{\mu}^{\circ}\left(\frac{\mu(J)}{2}\right)\right] d s \\
=\int_{0}^{\frac{\mu(J)}{2}} \int_{s}^{\frac{\mu(J)}{2}}-\left(\left(u \chi_{J}\right)_{\mu}^{\circ}\right)^{\prime}(\tau) d \tau d s+\int_{\frac{\mu(J)}{2}}^{\mu(J)} \int_{\frac{\mu(J)}{2}}^{s}-\left(\left(u \chi_{J}\right)_{\mu}^{\circ}\right)^{\prime}(\tau) d \tau d s \\
=\int_{0}^{\mu(J)} \min \{s, \mu(J)-s\}\left(-\left(u \chi_{J}\right)_{\mu}^{\circ}\right)^{\prime}(s) d s
\end{gathered}
$$

Proof of Theorem 1.

$i) \Longrightarrow i i)$
Given $u \in V_{X}^{1}(\mathbb{R}, \mu)$ and an interval J with $\mu(J)=a$, we denote $v=u \chi_{J}$. Then,

$$
\begin{aligned}
V(a) & :=\frac{1}{2} \int_{0}^{a}\left|v_{\mu}^{\circ}(s)-\frac{1}{a} \int_{0}^{a} v_{\mu}^{\circ}(t) d t\right| d s \leq \inf _{\alpha} \int_{0}^{a}|v-\alpha|_{\mu}^{\circ}(s) d s \quad(\text { by }(2.7)) \\
& \leq \int_{J}\left|v-v_{\mu}^{\circ}\left(\frac{a}{2}\right)\right| d \mu=\frac{1}{a} \int_{0}^{a}-\left(v_{\mu}^{\circ}\right)^{\prime}(s) \min \{s, a-s\} d s \quad(\text { by }(3.7)) \\
& \leq\left\|\widetilde{h}_{I}(r)\left(-\left(v_{\mu}^{\circ}\right)^{\prime}\right) \chi_{(0, a)}(r)\right\|_{\bar{X}}\left\|\frac{\min \{r, a-r\}}{\widetilde{h}_{I}(r)} \chi_{(0, a)}(r)\right\|_{\bar{X}^{\prime}} \quad \text { (Hölder's inequality) } \\
& \leq\left\|u^{\prime}\right\|_{X}\left\|\frac{\min \{r, a-r\}}{\widetilde{h}_{I}(r)} \chi_{(0, a)}(r)\right\|_{\bar{X}^{\prime}} \quad \text { (by Lemma 1). }
\end{aligned}
$$

Using the symmetry of \widetilde{h}_{I} around the point $a / 2$ and the definition of \widetilde{h}_{I}, it follows that

$$
\begin{aligned}
\left\|\frac{\min \{r, a-r\}}{\widetilde{h}_{I}(r)} \chi_{(0, a)}(r)\right\|_{\bar{X}^{\prime}} & =2\left\|\frac{r}{\widetilde{h}_{I}(r)} \chi_{\left(0, \frac{a}{2}\right)}(r)\right\|_{\bar{X}^{\prime}} \\
& \leq 32 C\left\|\frac{r}{I(r)} \chi_{\left(0, \frac{a}{2}\right)}(r)\right\|_{\bar{X}^{\prime}}
\end{aligned}
$$

Therefore

$$
V(a) \leq 32 C\left\|u^{\prime}\right\|_{X}\left\|\frac{r}{I(r)} \chi_{\left(0, \frac{a}{2}\right)}(r)\right\|_{\bar{X}^{\prime}}
$$

By the definition of the rearrangements

$$
\begin{aligned}
\frac{1}{a} \int_{J}\left|v-\frac{1}{a} \int_{J} v d \mu\right| d \mu & =\frac{1}{a} \int_{0}^{a}\left(v-\frac{1}{a} \int_{J} v d \mu\right)_{\mu}^{*} d s \\
& =\frac{1}{a} \int_{0}^{a}\left|v_{\mu}^{\circ}(s)-\frac{1}{a} \int_{0}^{\alpha} v_{\mu}^{\circ}(t) d t\right| d s \\
& =\frac{2}{a} V(a)
\end{aligned}
$$

thus

$$
\frac{1}{a} \int_{J}\left|v-\frac{1}{a} \int_{J} v d \mu\right| d \mu \leq 64 C\left\|u^{\prime}\right\|_{X} \sup _{0<s<\frac{1}{2}} \frac{1}{s}\left\|\frac{r}{I(r)} \chi_{(0, s)}(r)\right\|_{\bar{X}^{\prime}},
$$

taking the supremum we get

$$
\|u\|_{*,(\mathbb{R}, \mu)} \leq 64 C\left\|u^{\prime}\right\|_{X} \sup _{0<s<\frac{1}{2}} \frac{1}{s}\left\|\frac{r}{I(r)} \chi_{(0, s)}(r)\right\|_{\bar{X}^{\prime}}
$$

$i i) \Rightarrow i i i)$
As was pointed in the introduction (inequality (1.4)) there is a positive constant c such that

$$
\begin{aligned}
\|u\|_{L^{\infty}, \infty} & =\sup _{0<t<1}\left(u_{\mu}^{* *}(t)-u_{\mu}^{*}(t)\right) \leq c\|u\|_{B M O(\mathbb{R}, \mu)} \\
& =c\left(\|u\|_{*,(\mathbb{R}, \mu)}+\|u\|_{L^{1}(\mathbb{R}, \mu)}\right)
\end{aligned}
$$

By hypothesis ii) it follows that

$$
\|u\|_{L^{\infty}, \infty} \leq C_{2}\left(\left\|u^{\prime}\right\|_{(\mathbb{R}, \mu)}+\|u\|_{L^{1}(\mathbb{R}, \mu)}\right)
$$

for some positive constant $C_{2}>0$.
$i i i) \Rightarrow i$)
Given a positive measurable function $g \in \bar{X}$, with $\operatorname{supp} g \subset(0,1 / 2)$ we consider

$$
G(t)=\int_{t}^{1} g(s) \frac{d s}{I(s)}, \quad t \in(0,1)
$$

and define

$$
u(x)=G(F(x)) \quad x \in \mathbb{R}
$$

where F is the distribution function of μ defined by (2.1). Then

$$
\left|u^{\prime}(x)\right|=\left|-g(F(x)) \frac{F^{\prime}(x)}{I(F(x))}\right|=g(F(x))
$$

Moreover (see [13, Secction 5]),

$$
\begin{equation*}
\left(u^{\prime}\right)_{\mu}^{*}(t)=g_{\mu}^{*}(t) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{\mu}^{*}(t)=\int_{t}^{1} g(s) \frac{d s}{I(s)} \tag{3.9}
\end{equation*}
$$

From (3.8) we get that $u \in V_{X}^{1}(\mathbb{R}, \mu)$, and from (3.9) and Fubini's theorem, we obtain

$$
\frac{1}{s} \int_{0}^{s}\left[u_{\mu}^{*}(r)-u_{\mu}^{*}(s)\right] d r=\frac{1}{s} \int_{0}^{s} \frac{\tau}{I(\tau)} g(\tau) d \tau
$$

By hypothesis iii) it follows

$$
\frac{1}{s} \int_{0}^{s} \frac{\tau}{I(\tau)} g(\tau) d \tau \leq C_{2}\left(\left\|u^{\prime}\right\|_{X}+\|u\|_{L^{1}(\mathbb{R}, \mu)}\right)
$$

Obviously, $u_{\mu}^{\circ}(1 / 2)=0$ (since suppg $\left.\subset(0,1 / 2)\right)$, then by Lemma 4 (with $\left.J=\mathbb{R}\right)$ we obtain

$$
\begin{aligned}
\|u\|_{L^{1}(\mathbb{R}, \mu)} & =\int_{\mathbb{R}}|u| d \mu=\int_{0}^{1 / 2}-\left(u_{\mu}^{\circ}\right)^{\prime}(s) s d s=\int_{0}^{1 / 2}-\left(u_{\mu}^{\circ}\right)^{\prime}(s) I(s) \frac{s}{I(s)} \\
& \leq \frac{2}{I(1 / 2)} \int_{0}^{1 / 2}-\left(u_{\mu}^{\circ}\right)^{\prime}(s) I(s) d s \quad(\text { by Lemma1 }) \\
& \leq \frac{2}{I(1 / 2)}\left\|u^{\prime}\right\|_{L^{1}(\mathbb{R}, \mu)} \\
& \leq \frac{2}{I(1 / 2)}\left\|u^{\prime}\right\|_{X}
\end{aligned}
$$

i.e. there is a constant c such that

$$
\frac{1}{s} \int_{0}^{s} \frac{\tau}{I(\tau)} g(\tau) d \tau \leq c\left\|u^{\prime}\right\|_{X}=c\|g\|_{\bar{X}} \quad(\text { by }(3.8))
$$

Therefore

$$
\sup _{g \in \bar{X}, \text { suppg } \subset(0,1 / 2)} \frac{\frac{1}{s} \int_{0}^{s} \frac{\tau}{I(\tau)} g(\tau) d \tau}{\|g\|_{\bar{X}}} \leq c .
$$

By (2.5) the left-hand side equals to $\frac{1}{s}\left\|\frac{r}{I(r)} \chi_{(0, s)}(r)\right\|_{\bar{X}^{\prime}}$ for $0<s<1 / 2$ and then

$$
\sup _{0<s<1 / 2} \frac{1}{s}\left\|\frac{r}{I(r)} \chi_{(0, s)}(r)\right\|_{\bar{X}^{\prime}} \leq c
$$

In the next proposition we are able to identify (depending on μ) the largest r.i. space such that embedding of $V_{X}^{1}(\mathbb{R}, \mu)$ into $B M O(\mathbb{R}, \mu)$ holds.

Proposition 1. The space

$$
M(\mu)=\left\{u: \sup _{t \in(0,1 / 2)} \frac{1}{I(t)} \int_{0}^{t} u_{\mu}^{*}(s) d s<+\infty\right\}
$$

is the largest r.i. space such that ii) or iii) of Theorem 1 holds, i.e. for any X r.i. space such that ii) or iii) of Theorem 1 holds, then we have

$$
X \subseteq M(\mu)
$$

Proof. We have to check that if $X=M(\mu)$ then D is finite. By (3.1) it follows that $(M(\mu))^{\prime}=\Lambda(\mu)$ (see e.g. [15]). Then, using the monotonicity of function $\frac{r}{I(r)}$ and (3.1), we have

$$
\sup _{0<s<\frac{1}{2}} \frac{1}{s}\left\|\frac{r}{I(r)} \chi_{(0, s)}(r)\right\|_{\Lambda(\mu)} \leq \frac{1}{2 I(s)}\left\|\chi_{(0, s)}(r)\right\|_{\Lambda(\mu)}=\frac{1}{2 I(s)} \int_{0}^{s} \frac{I(t)}{t} d t \leq \frac{1}{2} C
$$

Let us assume that $X \nsubseteq M(\mu)$. Then there exists a function $g \in X$ with $\|g\|_{X}=$ 1 such that $g \notin M(\mu)$ and there exists a sequence $\left\{t_{k}\right\}_{k \in \mathbb{N}} \subset\left(0, \frac{1}{2}\right)$ such that $\frac{1}{I\left(t_{k}\right)} \int_{0}^{t} g_{\mu}^{*}\left(t_{k}\right) d s \rightarrow+\infty$. Moreover by (2.5) and monotonicity of function $\frac{r}{I(r)}$

$$
\begin{aligned}
\sup _{0<s<\frac{1}{2}} \frac{1}{s}\left\|\frac{r}{I(r)} \chi_{(0, s)}(r)\right\|_{\bar{X}^{\prime}} & \geq \sup _{k \in \mathbb{N}} \frac{1}{t_{k}} \int_{0}^{1 / 2} g_{\mu}^{*}(s)\left(\frac{r}{I(r)} \chi_{(0, s)}(r)\right)_{\mu}^{*}(s) d s \\
& \geq \sup _{k \in \mathbb{N}} \frac{1}{t_{k}} \int_{0}^{\frac{t_{k}}{2}} g_{\mu}^{*}(s) \frac{t_{k}-s}{I\left(t_{k}-s\right)} d s \\
& \geq \sup _{k \in \mathbb{N}} \frac{1}{2 I\left(\frac{t_{k}}{2}\right)} \int_{0}^{\frac{t_{k}}{2}} g_{\mu}^{*}(s) d s \rightarrow+\infty .
\end{aligned}
$$

This gives a contradiction and the assert follows.
Remark 2. We point out that if a measure μ is non doubling, Calderón-Zygmund operators may be bounded on $L^{2}(\mu)$ but not from L^{∞} into $B M O(\mathbb{R}, \mu)$. To overcome this difficulty some new $B M O$-type spaces have been introduced (see [19], [14] and references quoted there in, and in the case of the gaussian measure see also [10]). This new $B M O$-type spaces are imbedded into $B M O(\mathbb{R}, \mu)$, therefore our Theorem 1 also works.

We finish the paper with some examples of the largest r.i. space

$$
M(\mu)=\left\{u: \sup _{t \in(0,1 / 2)} \frac{1}{I(t)} \int_{0}^{t} u_{\mu}^{*}(s) d s<+\infty\right\}
$$

for which embedding of $V_{X}^{1}(\mathbb{R}, \mu)$ into $\operatorname{BMO}(\mathbb{R}, \mu)$ holds. We have to consider the asymptotic behavior of the isoperimetric profile for different measure (see e.g. [18]).

- Gauss measure $d \mu=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{|x|^{2}}{2}\right) d x$.

We know that $\lim _{t \rightarrow 0} \frac{I(t)}{t\left(2 \log \frac{1}{t}\right)^{\frac{1}{2}}}=1$, then $M(\mu)$ is the Zygmund space (see e.g. [3])

$$
M(\mu)=L^{\infty}(\log L)^{-\frac{1}{2}}(\mathbb{R}, \mu)
$$

- Exponetial-type measure $d \mu=\frac{1}{2 p^{\frac{1}{p}} \Gamma\left(1+\frac{1}{p}\right)} \exp \left(-\frac{|x|^{p}}{p}\right) d x$ for $p>1$.

For this kind of measure, $\lim _{t \rightarrow 0} \frac{I(t)}{t\left(p \log \frac{1}{t}\right)^{1-\frac{1}{p}}}=1$ and $M(\mu)$ is the Zygmund space

$$
M(\mu)=L^{\infty}(\log L)^{\frac{1}{p}-1}(\mathbb{R}, \mu)
$$

- Two-sided exponential $d \mu=\frac{1}{2} \exp (-|x|) d x$.

It is well-known that $I(t)=\min \{t, 1-t\}$, then $M(\mu)$ is the Lebesgue space

$$
M(\mu)=L^{\infty}(\mathbb{R})
$$

- $d \mu=\frac{1}{Z} \exp \left(-|x|^{p} \log \left(\exp \left(\frac{2 \alpha}{2-p}\right)+|x|^{\alpha}\right)\right) d x, \alpha \geq 0$ and $p \in[1,2]$.

In this case $M(\mu)$ is the generalized Lorentz-Zygmund space

$$
\begin{aligned}
M(\mu) & =\left\{u: \sup _{t \in(0,1) t(1-\log t)^{1-\frac{1}{p}}(1+\log (1-\log (t)))^{\frac{\alpha}{p}}} \int_{0}^{t} u_{\mu}^{*}(s) d s<+\infty\right\} \\
& \text { since } \lim _{t \rightarrow 0} \frac{1}{t\left(\log \frac{1}{t}\right)^{1-\frac{1}{p}}\left(\log \log \left(e+\frac{1}{t}\right)\right)^{\frac{\alpha}{p}}}=\ell \in(0,+\infty)
\end{aligned}
$$

- $d \mu=\frac{1}{Z_{\Phi}} \exp (-\Phi(|x|)) d x$ with $\Phi(t)$ is convex and $\sqrt{\Phi(t)}$ concave on $(0,+\infty)$. For these measure it is possible to prove that $\lim _{t \rightarrow 0} \frac{I(t)}{t \Phi^{\prime}\left(\Phi^{-1}\left(\log \frac{1}{t}\right)\right)}=\ell \in$ $(0,+\infty)$.

4. Appendix: proof of inequality (3.1)

We organize the proof in 3 steps.
Step 1. For every $0<\alpha<1$, we claim that $\liminf _{t \rightarrow 0} t^{-\alpha} I(t)=0$.
Indeed, if there exists $0<\alpha<1$ such that $\liminf _{t \rightarrow 0} t^{-\alpha} I(t)=\ell>0$, then

$$
\sup _{0<t<1 / 2} \frac{t^{\alpha}}{I(t)}=c>0
$$

thus

$$
\int_{0}^{\frac{1}{2}} \frac{d t}{I(t)} \leq c \int_{0}^{\frac{1}{2}} \frac{d t}{t^{\alpha}}<+\infty
$$

but by (2.2) we known $\int_{0}^{\frac{1}{2}} \frac{d t}{I(t)}=+\infty$.
Step 2. For every $0<\alpha<1$, the function $t^{-\alpha} I(t)$ is increasing near zero.
We have to prove the derivative of this function is non negative near zero. Since

$$
\left(t^{-\alpha} I(t)\right)^{\prime}=-\alpha t^{-\alpha-1} I(t)+t^{-\alpha} I^{\prime}(t) \geq 0 \Leftrightarrow \frac{I^{\prime}(t)}{I(t)} \geq \frac{\alpha}{t},
$$

integrating the last inequality between r and $1 / 2$, and after a straightforward computation we obtain

$$
I\left(\frac{1}{2}\right) \geq \frac{I(r)}{2^{\alpha} r^{\alpha}}
$$

which is positive if r is small enough by Step 1 .
Step 3. Proof of (3.1).
Fix $0<\alpha<1$, by the previous step, we know that there exists $\varepsilon>0$ such that $t^{-\alpha} I(t)$ is increasing in $(0, \varepsilon)$. For $0<t \leq \varepsilon$,

$$
\int_{0}^{t} \frac{I(s)}{s} d s=\int_{0}^{t} \frac{I(s)}{s^{\alpha}} s^{\alpha-1} d s \leq t^{-\alpha} I(t) \int_{0}^{t} s^{\alpha-1} d s \leq \frac{I(t)}{\alpha} .
$$

Otherwise when $\varepsilon \leq t \leq 1 / 2$, we have

$$
\begin{aligned}
\int_{0}^{t} \frac{I(s)}{s} d s & =\int_{0}^{\varepsilon} \frac{I(s)}{s} d s+\int_{\varepsilon}^{t} \frac{I(s)}{s} d s \\
& =\varepsilon^{-\alpha} I(\varepsilon) \int_{0}^{\varepsilon} t^{\alpha-1} d t+\frac{I(\varepsilon)}{\varepsilon}(t-\varepsilon) \\
& \leq C I(t),
\end{aligned}
$$

for some positive constant C, since I is an increasing function.
Acknowledgement. The first and the third author have been partially by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The second author is supported in part by Grants MTM2010-14946, MTM-2010-16232.

References

[1] D. Aalto, Weak L^{∞} and BMO in metric spaces. Boll. Unione Mat. Ital. (9) 5 (2012), n. 2, 369-385.
[2] C. Bennett, R. De Vore and R. Sharpley, Weak-L ${ }^{\infty}$ and BMO, Annals of Math. 113 (1981), 601-611.
[3] C. Bennett, R.C. Sharpley, Interpolation of Operators, Pure and Applied Mathematics, 129, Academic Press, Orlando (1988).
[4] S. Bobkov, C. Houdré, Some connections between isoperimetric and Sobolev-type inequalities. Mem. Amer. Math. Soc. 129 (1997), n. 616, viii+111 pp.
[5] S. Bobkov, Extremal properties of half-spaces for log-concave distributions. Ann. Probab. 24 (1996), n. 1, 35-48.
[6] A. Cianchi, L. Pick, Sobolev embeddings into BMO, VMO and L ${ }^{\infty}$, Ark. Mat. 36 (1998), n. 2, 317-340.
[7] Cianchi, Andrea; Pick, Luboš, Optimal Gaussian Sobolev embeddings, J. Funct. Anal. 256 (2009), n. 11, 3588-3642.
[8] G.G. Lorentz, On the theory of spaces Λ, Pacific J. Math. 49 (1951), 411-429.
[9] F. Feo, M.R. Posteraro, Logarithmic Sobolev trace inequalities, Asian J. Math. 17 (2013), n. 3, 569-582.
[10] G. Mauceri, S. Meda, BMO and H^{1} for the Ornstein-Uhlenbeck operator, J. Funct. Anal. 252 (2007), n. 1, 278-313.
[11] Mateu, J.; Mattila, P.; Nicolau, A.; Orobitg, J. BMO for nondoubling measures. Duke Math. J. 102 (2000), n. 3, 533-565.
[12] J. Martín and M. Milman, Isoperimetry and symmetrization for logarithmic Sobolev inequalities, J. Funct. Anal. 256 (2009) 149-178.
[13] J. Martin and M. Milman, Pointwise symmetrization inequalities for Sobolev functions and applications, Adv. Math 225 (2010), 121-199.
[14] F. Nazarov,S. Treil,A. Volberg, The Tb-theorem on non-homogeneous spaces. Acta Math. 190 (2003), no. 2, 151-239.
[15] A. Gogatishivili, L. Pick, Embeddings and duality theorems for weak classical Lorentz spaces, Canad. Math. Bull. 49 (2006), n. 1, 82-95.
[16] S. G. Krein, Yu I. Petunin, E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr. Amer. Math, Soc. 54, Providence, (1982).
[17] E. Pelliccia, G. Talenti, A proof of a logarithmic Sobolev inequality, Calc. Var. Partial Differential Equations 1 (1993), no. 3, 237-242.
[18] C, Roberto, Isoperimetry for product probability measures, Markov Processes and Related Fields, 16, n. 4, 617-634 (2010).
[19] X. Tolsa, BMO, H 1 , and Calderón-Zygmund operators for non doubling measures. Math. Ann. 319 (2001), n. 1, 89-149.

Dipartimento di Ingegneria, Università degli Studi di Napoli Parthenope, Centro Direzionale, Isola C4, 80143 Napoli, Italy

E-mail address: filomena.feo@uniparthenope.it
Current address: UNIVERSITAT AUTÒNOMA DE BARCELONA, Department of Mathematics, Bellaterra (Barcelona), Spain

E-mail address: jmartin@mat.uab.cat
Università degli Studi di Napoli "Federico II", Dipartimento di Matematica "R. CacCioppoli", Complesso Monte S. Angelo, Napoli, Italy

E-mail address: posterar@uniparthenope.it

[^0]: 1991 Mathematics Subject Classification. 2000 Mathematics Subject Classification Primary: 46E30, 26D10.

 Key words and phrases. 1-dimensional log-concave probability measure, BMO space, rearrangement invariant space, embedding.
 ${ }^{1}$ Loosely speaking, in an r.i. space the norm of a function depends only on the measure of its level sets.

[^1]: ${ }^{2}$ This definition of $\operatorname{BMO}(\mathbb{R}, \mu)$ is similar to the classical one, but here the measure μ is not doubling. It has shown in [11] that some of the properties that $B M O$ satisfies when the measure is doubling are satisfied also if is non doubling, for example, the John-Nirenberg inequality holds, $B M O(\mathbb{R}, \mu)$ is the dual of $H_{a t}^{1}(\mathbb{R}, \mu)$ and the operators which are bounded from $H_{a t}^{1}(\mathbb{R}, \mu)$ into $L^{1}(\mathbb{R}, \mu)$ and from L^{∞} into $B M O(\mathbb{R}, \mu)$ are bounded on $L^{p}(\mathbb{R}, \mu)$ for $1<p<\infty$.
 ${ }^{3}$ For $1<p<\infty$, the weak- L^{p} spaces satisfy (see [3])

 $$
 \sup _{0<t<1} t^{1 / p}\left(f_{\mu}^{* *}(t)-f_{\mu}^{*}(t)\right) \leq \sup _{0<t<1} t^{1 / p} f_{\mu}^{* *}(t)=\|f\|_{L^{p, \infty}}
 $$

 thus the space $L^{\infty, \infty}$ is indeed the limit of the spaces weak- L^{p} as $p \rightarrow \infty$.

