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SOBOLEV EMBEDDING INTO BMO AND WEAK-L∞ FOR

1-DIMENSIONAL LOG-CONCAVE PROBABILITY MEASURE

F. FEO, J. MARTIN, AND M. R. POSTERARO

Abstract. We characterize rearrangement invariant spaces X with respect

to a one dimensional probability log-concave measure µ such that the Sobolev
embedding

‖u‖BMO(R,µ) ≤ C
∥∥u′∥∥

X
+ ‖u‖L1(R,µ)

holds, for any function u ∈ L1(R, µ), whose real-valued weakly derivative u′

belongs to X, where BMO(R, µ) is the space of functions with bounded mean

oscillation with respect to µ. We investigate the embedding in weak-L∞(R, µ),

too.

1. Introduction

Let µ be an absolutely continuous symmetric log-concave probability measure
on the line, i.e. dµ = Ze−Φ(x) dx, where Φ(x) is a even convex function and Z is
the normalization constant in order to have µ(R) = 1. Let X be a rearrangement-
invariant (r.i.) space1 on (R, µ) (see Section 2 below). The Sobolev space V 1

X(R, µ) :=
V 1
X is the space of functions u ∈ L1(R, µ) of those real-valued weakly differentiable

functions on R which first derivative belong to X.
Poincaré type inequalities of the form

(1.1)

∥∥∥∥u− ∫
R
udµ

∥∥∥∥
Y

≤ C ‖u′‖X , u ∈ V 1
X

where X, Y are r.i spaces on (R, µ) was studied either for the Gauss measure or
for more general probability measures (see [7], [12] and [13]). These inequalities
are strictly related to the isoperimetric function I(t) of the measure µ (see Section
2 below for its definition). It was proved in [13, Theorem 6] that if X and Y are
rearrangement invariant spaces on (R, µ) then the inequality (1.1) holds if and only
if the isoperimetric Hardy operator QI defined on measurable functions on (0, 1)
by

QIu(t) =

∫ 1/2

t

u(s)

I(s)
ds,

is bounded from X to Y .

1991 Mathematics Subject Classification. 2000 Mathematics Subject Classification Primary:
46E30, 26D10.
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arrangement invariant space, embedding.

1Loosely speaking, in an r.i. space the norm of a function depends only on the measure of its
level sets.
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2 F. FEO, J. MARTIN, AND M. R. POSTERARO

An elementary consequence of (2.2) in Section 2 is that∫ 1/2

0

ds

I(s)
= +∞,

which implies that there is not any r.i space X such QI is bounded from X to L∞,
thus the Sobolev-Poincaré

(1.2)

∥∥∥∥u− ∫
R
udµ

∥∥∥∥
L∞
≤ C ‖u′‖X ,

never holds, in other words there is not any summability property of u′ which
guarantees u ∈ L∞, in particular u′ ∈ L∞ does not imply that u ∈ L∞.

An appropriate substitute for L∞ when L∞ does not work is the spaceBMO(R, µ)
of functions having bounded mean oscillation, defined as the functions u ∈ L1(R, µ)
such that

(1.3) ‖u‖∗,(R,µ) = sup
J interval ⊂R

1

µ(J)

∫
J

∣∣∣∣u− 1

µ(J)

∫
J

udµ

∣∣∣∣ dµ < +∞.

It is clear that the functional in (1.3) is not a norm since it vanishes in constant
functions however it is easy to verify that BMO(R, µ) is a Banach space under the
norm2,

‖u‖BMO(R,µ) = ‖u‖∗,(R,µ) + ‖u‖L1(R,µ) .

Closely related toBMO(R, µ) is the Bennett-DeVore-Sharpley space weak-L∞(R, µ)3,
defined by (cf. [2]),

L∞,∞(R, µ) =

{
u : ‖u‖L∞,∞ = sup

0<t<1

(
u∗∗µ (t)− u∗µ(t)

)
< +∞

}
where u∗∗µ (t) = 1

t

∫ t
0
u∗µ(s)ds, and u∗µ is the non increasing rearrangement of u with

respect to the measure µ (see section 2 below).
Notice that L∞,∞ is not a linear space and ‖·‖L∞,∞ is not a norm. The rela-

tion between the space weak-L∞(R, µ) and BMO(R, µ) when µ is a not doubling
absolutely continuos measure was obtained in [1] (see [2] and [3] for the Lebesgue
measure), where it was shown that there is a constant c > 0 such that

(1.4) ‖u‖L∞,∞ = sup
0<t<1

(
u∗∗µ (t)− u∗µ(t)

)
≤ c ‖u‖BMO(R,µ).

The main objective of this paper is to establish criteria that ensure a function
belongs to BMO(R, µ) or to weak-L∞(R, µ) in terms of the summability properties
of its derivative (see [6] for Lebesgue measure). More precisely, we characterize
all r.i spaces X on (R, µ) such that the corresponding Sobolev space V 1

X(R, µ) is
embedded into BMO(R, µ) or in weak-L∞(R, µ). Furthermore, we characterize the
largest r.i space X such that V 1

X(R, µ) is continuously embedded into BMO(R, µ).

2This definition of BMO(R, µ) is similar to the classical one, but here the measure µ is not

doubling. It has shown in [11] that some of the properties that BMO satisfies when the measure

is doubling are satisfied also if is non doubling, for example, the John-Nirenberg inequality holds,
BMO(R, µ) is the dual of H1

at(R, µ) and the operators which are bounded from H1
at(R, µ) into

L1(R, µ) and from L∞ into BMO(R, µ) are bounded on Lp(R, µ) for 1 < p <∞.
3For 1 < p <∞, the weak-Lp spaces satisfy (see [3])

sup
0<t<1

t1/p(f∗∗µ (t)− f∗µ(t)) ≤ sup
0<t<1

t1/pf∗∗µ (t) = ‖f‖Lp,∞ ,

thus the space L∞,∞ is indeed the limit of the spaces weak-Lp as p→∞.
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2. Preliminaries

Let µ be an absolutely continuous symmetric log-concave probability measure
on the line, i.e. dµ = Ze−Φ(x) dx = f(x)dx, where Φ(x) is a even convex function
and Z is the normalization constant in order to have µ(R) = 1. We denote by

(2.1) F (x) =

∫ x

−∞
f(x)dx ∀x ∈ R∪{−∞,+∞}

its distribution function.
Let J be an interval. If A ⊂ J is a Borel set, then the relative perimeter of A

w.r.t. ( with respect to) µ is defined by

Pµ(A, J) = lim inf
h→0

µ(Ah)− µ(A)

h
,

where Ah = {x ∈ J : d(x,A) < h}.
The isopemetric profile of µ is defined by,

I(t) := inf{Pµ(A,R) : µ(A) = t}, (0 ≤ t ≤ 1)

Since µ is a log-concave symmetric measure (see [5]), we have that

I(t) = f(F−1(t)),

in particular I is a continuous concave function symmetric with respect to 1/2, such
that I(0) = I(1) = 0, moreover, for 0 < t < 1

(2.2) F−1(t) =

∫ t

1
2

1

I(s)
ds.

In an analogue way the relative isoperimetric profile is defined by

hJ(t) := inf{Pµ(A, J) : A ⊂ J, µ(A) = t}, (0 ≤ t ≤ µ(J)) .

We briefly recall the basic definitions and conventions we use about rearrange-
ment of functions and rearrangement invariant spaces. We refer the reader to [3]
and [16] for a complete treatment.

Let Ω be a measurable subset of R and u be a real-valued measurable function
on Ω. The non-increasing rearrangement of u w.r.t. µ is given by

u∗µ(t) = sup{s ≥ 0 : µ|u|(s) > t} 0 < t < µ(Ω)

and the signed non-increasing rearrangement of u w.r.t. µ is given by

u◦µ(t) = sup{s ∈ R : µu(s) > t} 0 < t < µ(Ω),

where µu(s) = µ{x ∈ Ω : u(x) > s}.
We say that a Banach function space X = X(R, µ) on (R, µ) is a rearrangement-

invariant (r.i.) space, if v ∈ X implies u ∈ X for all µ−measurable functions such
that u∗µ = v∗µ and, moreover, ‖u‖X = ‖v‖X . The functional ‖ · ‖X will be called a
rearrangement invariant norm. Typical examples of r.i. spaces are the Lp-spaces,
Orlicz spaces, Lorentz spaces, Marcinkiewicz spaces, etc.

Since µ(R) = 1, for any r.i. space X we have

(2.3) L∞(R) ⊆ X ⊆ L1(R, µ),

with continuous embedding.
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For rearrangement invariant norms ‖.‖X , we can compare the size of elements
by comparing their averages, as expressed by a majoration principle, sometimes
referred to as the Calderón-Hardy Lemma:

Suppose that

∫ t

0

u∗µ(s)ds ≤
∫ t

0

v∗µ(s)ds, holds for all 0 < t < 1(2.4)

⇒ ‖u‖X ≤ ‖v‖X .

The associate space X ′ of X is the r.i. space of all measurable functions u in for
which the r.i. norm given by

(2.5) ‖v‖X′ = sup
u6=0

∫
R |u(x)v(x)| dµ
‖u‖X

= sup
u6=0

∫ 1

0
u∗µ(s)v∗µ(s)ds

‖u‖X
.

In particular, the following generalized Hölder’s inequality holds

(2.6)

∫
R
|u(x)v(x)| dµ ≤ ‖u‖X ‖v‖X′ .

Given a function u ∈ X and an interval J, from Hölder inequality, it easily follows
that
(2.7)

1

2

∥∥∥∥uχJ − 1

µ(J)

∫
J

u dµ

∥∥∥∥
X

≤ inf
α∈R
‖(u− α)χJ‖X ≤

∥∥∥∥uχJ − 1

µ(J)

∫
J

u dµ

∥∥∥∥
X

.

Given a r.i. space X = X(R, µ), there exists a unique r.i. space X̄ = X̄(0, 1) on
((0, 1),m), (m denotes the Lebesgue measure on the interval (0, 1)) such that

(2.8) ‖u‖X = ‖u∗µ‖X̄ .

X̄ is called the representation space of X(R, µ) (a characterization of the norm
‖ · ‖X̄ is available in [3]). Moreover, we have ‖u‖X = ‖u◦µ‖X̄ .

In the framework of our paper we will use the Lorentz type space Λ (µ) associated
to isoperimetric profile I defined by

(2.9) Λ (µ) :=

{
u : ‖u‖Λ(R,µ) :=

∫ 1

0

u∗µ(t)
I(t)

t
dt < +∞

}
,

which is a r.i. space (see [8]) since by the concavity of I the function I(t)
t is

decreasing. Notice that

(2.10)

∫ 1/2

0

u∗µ(t)
I(t)

t
dt ≤ ‖u‖Λ(R,µ) ≤ 2

∫ 1/2

0

u∗µ(t)
I(t)

t
dt.

We shall finish this section with a Lemma in which we collect some results that
relate isoperimetry, derivative and rearrangements.

Lemma 1. Let µ be an absolutely continuous symmetric log-concave probability
measure on the line. Let J ⊆ R be an interval. Assume that the following relative
isopemetric inequality holds:

Pµ(A, J) ≥ h̃(µ(A)); (A Borel set contained in J),

where h̃ : [0, µ(J)] → [0,∞) is a continuos concave function symmetric around

µ(J)/2, such that h̃(0) = h̃(µ(J)) = 0. Let u ∈ V 1
L1(R, µ) and let v = uχJ . Then

(1) The rearrangements v∗µ and v◦µ are locally absolutely continuous functions.
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(2) Denote by [·]∗ the rearrangement with respect to Lebesgue measure on [0, µ(J)] ,
then

(2.11)

∫ s

0

[
h̃(•)

(
−v∗µ

)′
(•)
]∗

(r)dr ≤
∫ s

0

(v′)
∗
µ (r)dr 0 < s < µ(J),

and the same inequality holds for v◦µ.
Notice that the inequality (2.11), by (2.4), implies that for any r.i space

X,∥∥∥h̃(•)
(
−v∗µ

)′
(•)
∥∥∥
X̄
≤ ‖v′‖X and

∥∥∥h̃(•)
(
−v◦µ

)′
(•)
∥∥∥
X̄
≤ ‖v′‖X .

Proof. For v∗µ this result was proved in [7] and [12] for Gauss measure and in [13]
in the general context of metric spaces. It is easy to see that the same proof works
for v◦µ. �

3. Main result

In this section we characterize the embedding of V 1
X(R, µ) into BMO(R, µ) or

in weak-L∞(R, µ).
To this end we will need the following technical result (whose proof will be given

in the Appendix). If µ a log-concave symmetric probability measure and I is its
isoperimetric profile, then there exist a constant C > 0 such that

(3.1) I(t) ≤
∫ t

0

I(s)

s
ds ≤ CI(t) for 0 ≤ t ≤ 1

2
.

Theorem 1. Let X be a r.i. space. The following statements are equivalent:

i) D = sup
0<s< 1

2

1
s

∥∥∥ r
I(r)χ(0,s)(r)

∥∥∥
X
′ < +∞;

ii) there exists a constant C1 > 0 such that

‖u‖∗,(R,µ) ≤ C1 ‖u′‖X
for all u ∈ V 1

X(R, µ);
iii) there exists a constant C2 > 0 such that

‖u‖L∞,∞(R,µ) ≤ C2

(
‖u′‖X + ‖u‖L1(R,µ)

)
for all u ∈ V 1

X(R, µ).

In order to prove Theorem 1 we follow arguments contained in [6]. We shall need
three preliminary results.

Lemma 2. For every u ∈ V 1
L1(R, µ) the following inequality holds

(3.2)

∥∥∥∥u− ∫
R
udµ

∥∥∥∥
Λ(µ)

≤ 4C ‖u′‖L1(R,µ) ,

where C is the same constant that in (3.1) and Λ (µ) is the Lorentz space associated
to isoperimetric profile of µ.

Proof. Let u ∈ V 1
L1(R, µ), we can assume that

∫
R u = 0 (otherwise we consider

u−
∫
R udµ). By Lemma 1, u∗µ is a locally absolutely continuos function, therefore

we can write

(3.3) u∗µ(t) =

∫ 1/2

t

(
−u∗µ

)′
(s)ds+ u∗µ(1/2).
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Using (3.3) and (2.10) we have that

‖u‖Λ(µ) ≤ 2

(∫ 1/2

0

(∫ 1/2

t

(
−u∗µ

)′
(τ)

)
I(t)

t
dt+ u∗µ(1/2)

∫ 1/2

0

I(t)

t
dt

)

≤ 2

(∫ 1/2

0

(
−u∗µ

)′
(t)

(∫ 1/2

t

I(τ)

τ
dτ

)
dt+ u∗µ(1/2)

∫ 1/2

0

I(t)

t
dt

)

≤ 2C

(∫ 1/2

0

(
−u∗µ

)′
(t)I(t)dt+ I

(
1

2

)
u∗µ(1/2)

)
(by (3.1))

≤ 2C

(∫ 1/2

0

(
−u∗µ

)′
(t)I(t)dt+ 2I

(
1

2

)∫ 1/2

0

u∗µ(t)dt

)
.

Using again Lemma 1, we get that∫ 1/2

0

(
−u∗µ

)′
(t)I(t)dt =

∫ 1/2

0

[
I(•)

(
−u∗µ

)′
(•)
]∗

(r)dr

≤
∫ 1/2

0

(u′(•))∗µ (r)dr

≤ ‖u′‖L1(R,µ) ,

and, by the Poincaré inequality (see Proposition 1.4 of [4]), we have that

2I

(
1

2

)∫ 1/2

0

u∗µ (t) dt ≤ 2I

(
1

2

)
‖u‖L1(R,µ) ≤ ‖u

′‖L1(R,µ) .

Therefore

‖u‖Λ(µ) ≤ 4C ‖u′‖L1(R,µ) .

�

Remark 1. In the case of Gauss measure inequality (3.2) is well-known (see e.g.
[17] and [9]).

Lemma 3. Let J ⊂ R be an interval. Then for all Borel set A ⊂ J the following
relative isoperimetric inequality holds:

(3.4) Pµ(A, J) ≥ h̃J(µ(A)),

where

h̃J(s) =
1

16C
min {I(s), I(µ(J)− s)} ,

here I is the siopemetric profile of µ and C is the same constant that appears in
(3.1).

Proof. Let J = (a, b) with −∞ < a < b < +∞, and let u be a Lipschitz function
on R. Let us define

U(x) =

 u(a) x ∈ (−∞, a),
u(x) x ∈ (a, b) ,
u(b) x ∈ (b,∞).

Obviously U ∈ V 1
L1(R, µ) and

U ′(x) = u′(x) on J and U ′(x) = 0 outside J.
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Lemma 2 applied to the function U, gives

(3.5)

∥∥∥∥U − ∫
R
U

∥∥∥∥
Λ(µ)

≤ 4C ‖U ′‖L1(R,µ) = 4C ‖u′χJ‖L1(R,µ) = 4C ‖u′‖L1(J,µ) .

Obviously, ∥∥∥∥U − ∫
R
U

∥∥∥∥
Λ(µ)

≥ inf
α∈R
‖U − α‖Λ(µ)(3.6)

≥ inf
α∈R
‖(U − α)χJ‖Λ(µ)

= inf
α∈R
‖(u− α)χJ‖Λ(µ)

≥ 1

2

∥∥∥∥uχJ − 1

µ(J)

∫
J

udµ

∥∥∥∥
Λ(µ)

(by (2.7)).

Combining (3.5) and (3.6) we obtain∥∥∥∥uχJ − 1

µ(J)

∫
J

udµ

∥∥∥∥
Λ(µ)

≤ 8C ‖u′‖L1(J,µ) .

Suppose thatA ⊂ J is a Borel set. We may assume, without loss, that Pµ(A; J) <
∞. By [4, Lemma 3.7] we can select a sequence {un}n∈N of Lipschitz functions such
that un → χA pointwise, and

Pµ(A; J) ≥ lim sup
n→∞

∥∥(un)
′∥∥
L1(J,µ)

.

Consequently, by Fatou lemma

8CPµ(A; J) ≥ 8C lim sup
n→∞

∥∥(un)
′∥∥
L1(J,µ)

≥ lim sup
n→∞

∥∥∥∥unχJ − 1

µ(J)

∫
J

undµ

∥∥∥∥
Λ(µ)

≥
∥∥∥∥χA − 1

µ(J)

∫
A

dµ

∥∥∥∥
Λ(µ)

=

(
1− µ(A)

µ(J)

)∫ µ(A)

0

I(s)

s
ds+

µ(A)

µ(J)

∫ µ(J)

µ(A)

I(s)

s
ds.

If µ(A) ≤ µ(J)
2 , then∥∥∥∥χA − 1

µ(J)

∫
A

dµ

∥∥∥∥
Λ(µ)

=

∫ µ(J)

0

(
χA −

µ(A)

µ(J)

)∗
µ

(s)
I(s)

s
ds

=

(
1− µ(A)

µ(J)

)∫ µ(A)

0

I(s)

s
ds+

µ(A)

µ(J)

∫ µ(J)

µ(A)

I(s)

s
ds

≥
(

1− µ(A)

µ(J)

)
I(µ(A)) ≥ 1

2
I(µ(A)).

In case that µ(A) ≥ µ(J)
2 , then, since the measure µ has continuos density, the

sets A and J\A has the same perimeter; since µ(J\A) ≤ µ(J)
2 we get

8CPµ(A; J) = 8CPµ(J\A; J) ≥ 1

2
I(µ(J)− µ(A)).

�
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Lemma 4. Let u ∈ V 1
L1(R, µ) and J an interval. Then;

(3.7)

∫
J

∣∣∣∣uχJ − (uχJ)
◦
µ

(
µ(J)

2

)∣∣∣∣ dµ =

∫ µ(J)

0

−
(

(uχJ)
◦
µ

)′
(s) min{s, µ(J)− s}ds.

Proof. By absolutely continuity of (uχJ)
◦
µ (Lemma 1) and Fubini’s theorem, we

have that∫
J

∣∣∣∣uχJ − (uχJ)
◦
µ

(
µ(J)

2

)∣∣∣∣ dµ =

∫ µ(J)

0

∣∣∣∣∣
(
uχJ − (uχJ)

◦
µ

(
µ(J)

2

))◦
µ

∣∣∣∣∣ ds
=

∫ µ(J)
2

0

[
(uχJ)

◦
µ (s)− (uχJ)

◦
µ

(
µ(J)

2

)]
ds+

∫ µ(J)

µ(J)
2

[
(uχJ)

◦
µ (s)− (uχJ)

◦
µ

(
µ(J)

2

)]
ds

=

∫ µ(J)
2

0

∫ µ(J)
2

s

−
(

(uχJ)
◦
µ

)′
(τ)dτds+

∫ µ(J)

µ(J)
2

∫ s

µ(J)
2

−
(

(uχJ)
◦
µ

)′
(τ)dτds

=

∫ µ(J)

0

min{s, µ(J)− s}
(
− (uχJ)

◦
µ

)′
(s)ds.

�

Proof of Theorem 1.
i)=⇒ ii)
Given u ∈ V 1

X(R, µ) and an interval J with µ(J) = a, we denote v = uχJ . Then,

V (a) :=
1

2

∫ a

0

∣∣∣∣v◦µ(s)− 1

a

∫ a

0

v◦µ(t)dt

∣∣∣∣ ds ≤ inf
α

∫ a

0

|v − α|◦µ (s)ds (by (2.7))

≤
∫
J

∣∣∣v − v◦µ (a2)∣∣∣ dµ =
1

a

∫ a

0

−
(
v◦µ
)′

(s) min{s, a− s}ds (by (3.7))

≤
∥∥∥h̃I(r)(− (v◦µ)′)χ(0,a)(r)

∥∥∥
X

∥∥∥∥∥min{r, a− r}
h̃I(r)

χ(0,a)(r)

∥∥∥∥∥
X
′

(Hölder’s inequality)

≤ ‖u′‖X

∥∥∥∥∥min{r, a− r}
h̃I(r)

χ(0,a)(r)

∥∥∥∥∥
X
′

(by Lemma 1).

Using the symmetry of h̃I around the point a/2 and the definition of h̃I , it follows
that ∥∥∥∥∥min{r, a− r}

h̃I(r)
χ(0,a)(r)

∥∥∥∥∥
X
′

= 2

∥∥∥∥∥ r

h̃I(r)
χ(0, a2 )(r)

∥∥∥∥∥
X
′

≤ 32C

∥∥∥∥ r

I(r)
χ(0, a2 )(r)

∥∥∥∥
X
′
.

Therefore

V (a) ≤ 32C ‖u′‖X

∥∥∥∥ r

I(r)
χ(0, a2 )(r)

∥∥∥∥
X
′
.
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By the definition of the rearrangements

1

a

∫
J

∣∣∣∣v − 1

a

∫
J

vdµ

∣∣∣∣ dµ =
1

a

∫ a

0

(
v − 1

a

∫
J

vdµ

)∗
µ

ds

=
1

a

∫ a

0

∣∣∣∣v◦µ(s)− 1

a

∫ α

0

v◦µ(t)dt

∣∣∣∣ ds
=

2

a
V (a),

thus
1

a

∫
J

∣∣∣∣v − 1

a

∫
J

vdµ

∣∣∣∣ dµ ≤ 64C ‖u′‖X sup
0<s< 1

2

1

s

∥∥∥∥ r

I(r)
χ(0,s)(r)

∥∥∥∥
X
′
,

taking the supremum we get

‖u‖∗,(R,µ) ≤ 64C ‖u′‖X sup
0<s< 1

2

1

s

∥∥∥∥ r

I(r)
χ(0,s)(r)

∥∥∥∥
X
′
.

ii)⇒iii)
As was pointed in the introduction (inequality (1.4)) there is a positive constant

c such that

‖u‖L∞,∞ = sup
0<t<1

(
u∗∗µ (t)− u∗µ(t)

)
≤ c ‖u‖BMO(R,µ)

= c
(
‖u‖∗,(R,µ) + ‖u‖L1(R,µ)

)
.

By hypothesis ii) it follows that

‖u‖L∞,∞ ≤ C2

(
‖u′‖(R,µ) + ‖u‖L1(R,µ)

)
for some positive constant C2 > 0.
iii)⇒ i)
Given a positive measurable function g ∈ X̄, with suppg ⊂ (0, 1/2) we consider

G(t) =

∫ 1

t

g(s)
ds

I(s)
, t ∈ (0, 1)

and define
u(x) = G(F (x)) x ∈ R,

where F is the distribution function of µ defined by (2.1). Then

|u′(x)| =
∣∣∣∣−g(F (x))

F ′(x)

I(F (x))

∣∣∣∣ = g(F (x)).

Moreover (see [13, Secction 5]),

(3.8) (u′)
∗
µ (t) = g∗µ(t),

and

(3.9) u∗µ(t) =

∫ 1

t

g(s)
ds

I(s)
.

From (3.8) we get that u ∈ V 1
X(R, µ), and from (3.9) and Fubini’s theorem, we

obtain

1

s

∫ s

0

[
u∗µ(r)− u∗µ(s)

]
dr =

1

s

∫ s

0

τ

I(τ)
g(τ)dτ.
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By hypothesis iii) it follows

1

s

∫ s

0

τ

I(τ)
g(τ)dτ ≤ C2

(
‖u′‖X + ‖u‖L1(R,µ)

)
Obviously, u◦µ(1/2) = 0 (since suppg ⊂ (0, 1/2)), then by Lemma 4 (with J = R)
we obtain

‖u‖L1(R,µ) =

∫
R
|u| dµ =

∫ 1/2

0

−
(
u◦µ
)′

(s)sds =

∫ 1/2

0

−
(
u◦µ
)′

(s)I(s)
s

I(s)

≤ 2

I(1/2)

∫ 1/2

0

−
(
u◦µ
)′

(s)I(s)ds (by Lemma1)

≤ 2

I(1/2)
‖u′‖L1(R,µ)

≤ 2

I(1/2)
‖u′‖X ,

i.e. there is a constant c such that

1

s

∫ s

0

τ

I(τ)
g(τ)dτ ≤ c ‖u′‖X = c ‖g‖X̄ (by (3.8)).

Therefore

sup
g∈X̄,suppg⊂(0,1/2)

1
s

∫ s
0

τ
I(τ)g(τ)dτ

‖g‖X̄
≤ c.

By (2.5) the left-hand side equals to 1
s

∥∥∥ r
I(r)χ(0,s)(r)

∥∥∥
X
′ for 0 < s < 1/2 and then

sup
0<s<1/2

1

s

∥∥∥∥ r

I(r)
χ(0,s)(r)

∥∥∥∥
X
′
≤ c.

�

In the next proposition we are able to identify (depending on µ) the largest r.i.
space such that embedding of V 1

X(R, µ) into BMO(R, µ) holds.

Proposition 1. The space

M(µ) =

{
u : sup

t∈(0,1/2)

1

I(t)

∫ t

0

u∗µ(s)ds< +∞

}
is the largest r.i. space such that ii) or iii) of Theorem 1 holds, i.e. for any X r.i.
space such that ii) or iii) of Theorem 1 holds, then we have

X ⊆M(µ).

Proof. We have to check that if X = M(µ) then D is finite. By (3.1) it follows that
(M(µ))

′
= Λ(µ) (see e.g. [15]). Then,using the monotonicity of function r

I(r) and

(3.1), we have

sup
0<s< 1

2

1

s

∥∥∥∥ r

I(r)
χ(0,s)(r)

∥∥∥∥
Λ(µ)

≤ 1

2I(s)

∥∥χ(0,s)(r)
∥∥

Λ(µ)
=

1

2I(s)

∫ s

0

I(t)

t
dt ≤ 1

2
C.



SOBOLEV EMBEDDING INTO BMO 11

Let us assume that X *M(µ). Then there exists a function g ∈ X with ‖g‖X =

1 such that g /∈ M(µ) and there exists a sequence {tk}k∈N ⊂
(
0, 1

2

)
such that

1
I(tk)

∫ t
0
g∗µ(tk)ds→ +∞. Moreover by (2.5) and monotonicity of function r

I(r)

sup
0<s< 1

2

1

s

∥∥∥∥ r

I(r)
χ(0,s)(r)

∥∥∥∥
X
′
≥ sup

k∈N

1

tk

∫ 1/2

0

g∗µ(s)

(
r

I(r)
χ(0,s)(r)

)∗
µ

(s)ds

≥ sup
k∈N

1

tk

∫ tk
2

0

g∗µ(s)
tk − s
I(tk − s)

ds

≥ sup
k∈N

1

2I( tk2 )

∫ tk
2

0

g∗µ(s)ds→ +∞.

This gives a contradiction and the assert follows. �

Remark 2. We point out that if a measure µ is non doubling, Calderón-Zygmund
operators may be bounded on L2(µ) but not from L∞ into BMO(R, µ). To over-
come this difficulty some new BMO-type spaces have been introduced (see [19],
[14] and references quoted there in, and in the case of the gaussian measure see also
[10]). This new BMO-type spaces are imbedded into BMO(R, µ), therefore our
Theorem 1 also works.

We finish the paper with some examples of the largest r.i. space

M(µ) =

{
u : sup

t∈(0,1/2)

1

I(t)

∫ t

0

u∗µ(s)ds< +∞

}
for which embedding of V 1

X(R, µ) into BMO(R, µ) holds. We have to consider the
asymptotic behavior of the isoperimetric profile for different measure (see e.g. [18]).

• Gauss measure dµ = 1√
2π

exp
(
− |x|

2

2

)
dx.

We know that lim
t→0

I(t)

t(2 log 1
t )

1
2

= 1, then M(µ) is the Zygmund space (see e.g.

[3])

M(µ) = L∞(logL)−
1
2 (R, µ).

• Exponetial-type measure dµ = 1

2p
1
p Γ(1+ 1

p )
exp

(
− |x|

p

p

)
dx for p > 1.

For this kind of measure, lim
t→0

I(t)

t(p log 1
t )

1− 1
p

= 1 and M(µ) is the Zygmund

space

M(µ) = L∞(logL)
1
p−1(R, µ).

• Two-sided exponential dµ = 1
2 exp (− |x|) dx.

It is well-known that I(t) = min{t, 1− t}, then M(µ) is the Lebesgue space

M(µ) = L∞(R).

• dµ = 1
Z exp

(
− |x|p log

(
exp

(
2α

2−p

)
+ |x|α

))
dx, α ≥ 0 and p ∈ [1, 2] .

In this case M(µ) is the generalized Lorentz-Zygmund space

M(µ) =

{
u : sup

t∈(0,1)

1

t (1− log t)
1− 1

p (1 + log (1− log (t)))
α
p

∫ t

0

u∗µ(s)ds< +∞

}
,

since lim
t→0

I(t)

t(log 1
t )

1− 1
p (log log(e+ 1

t ))
α
p

= ` ∈ (0,+∞).



12 F. FEO, J. MARTIN, AND M. R. POSTERARO

• dµ = 1
ZΦ

exp (−Φ(|x|)) dx with Φ(t) is convex and
√

Φ(t) concave on (0,+∞).

For these measure it is possible to prove that lim
t→0

I(t)

tΦ′(Φ−1(log 1
t ))

= ` ∈
(0,+∞).

4. Appendix: proof of inequality (3.1)

We organize the proof in 3 steps.
Step 1. For every 0 < α < 1, we claim that lim inf

t→0
t−αI(t) = 0.

Indeed, if there exists 0 < α < 1 such that lim inf
t→0

t−αI(t) = ` > 0, then

sup
0<t<1/2

tα

I(t)
= c > 0,

thus ∫ 1
2

0

dt

I(t)
≤ c

∫ 1
2

0

dt

tα
< +∞,

but by (2.2) we known
∫ 1

2

0
dt
I(t) = +∞.

Step 2. For every 0 < α < 1, the function t−αI(t) is increasing near zero.
We have to prove the derivative of this function is non negative near zero. Since(

t−αI(t)
)′

= −αt−α−1I(t) + t−αI ′(t) ≥ 0⇔ I ′(t)

I(t)
≥ α

t
,

integrating the last inequality between r and 1/2, and after a straightforward com-
putation we obtain

I

(
1

2

)
≥ I(r)

2αrα
,

which is positive if r is small enough by Step 1.
Step 3. Proof of (3.1).

Fix 0 < α < 1, by the previous step, we know that there exists ε > 0 such that
t−αI(t) is increasing in (0, ε). For 0 < t ≤ ε,∫ t

0

I(s)

s
ds =

∫ t

0

I(s)

sα
sα−1ds ≤ t−αI(t)

∫ t

0

sα−1ds ≤ I(t)

α
.

Otherwise when ε ≤ t ≤ 1/2, we have∫ t

0

I(s)

s
ds =

∫ ε

0

I(s)

s
ds+

∫ t

ε

I(s)

s
ds

= ε−αI(ε)

∫ ε

0

tα−1dt+
I(ε)

ε
(t− ε)

≤ CI(t),

for some positive constant C, since I is an increasing function.
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