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SOBOLEV EMBEDDING INTO BMO AND WEAK-L>* FOR
1-DIMENSIONAL LOG-CONCAVE PROBABILITY MEASURE

F. FEO, J. MARTIN, AND M. R. POSTERARO

ABSTRACT. We characterize rearrangement invariant spaces X with respect
to a one dimensional probability log-concave measure p such that the Sobolev
embedding
lull paro@,py < C v [l x + llull g1 g,

holds, for any function v € L'(R, i), whose real-valued weakly derivative u’
belongs to X, where BMO(R, ) is the space of functions with bounded mean
oscillation with respect to u. We investigate the embedding in weak-L>° (R, u),
too.

1. INTRODUCTION

Let 1 be an absolutely continuous symmetric log-concave probability measure
on the line, i.e. du = Ze~®® dzx, where ®(x) is a even convex function and Z is
the normalization constant in order to have u(R) = 1. Let X be a rearrangement-
invariant (r.1.) space’ on (R, i) (see Section 2 below). The Sobolev space Vi (R, i) :=
Vi is the space of functions u € L!(R, i) of those real-valued weakly differentiable
functions on R which first derivative belong to X.

Poincaré type inequalities of the form

(1.1)

u—/uduH <Oy, uweVy
R Y

where X, Y are r.i spaces on (R, ) was studied either for the Gauss measure or
for more general probability measures (see [7], [12] and [13]). These inequalities
are strictly related to the isoperimetric function I(¢) of the measure p (see Section
2 below for its definition). It was proved in [13, Theorem 6] that if X and Y are
rearrangement invariant spaces on (R, 1) then the inequality (1.1) holds if and only
if the isoperimetric Hardy operator Q7 defined on measurable functions on (0,1)

by
12 (s
Qru(t) = /t IESS ds,

is bounded from X to Y.
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1Loosely speaking, in an r.i. space the norm of a function depends only on the measure of its
level sets.
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An elementary consequence of (2.2) in Section 2 is that

1/2 dS
— = +00,
I

which implies that there is not any 7.7 space X such @; is bounded from X to L,
thus the Sobolev-Poincaré
u— / ud
R

never holds, in other words there is not any summability property of u’ which
guarantees u € L°°, in particular v’ € L® does not imply that u € L°°.

An appropriate substitute for L> when L* does not work is the space BMO(R, )
of functions having bounded mean oscillation, defined as the functions v € L' (R, )
such that

3l ! / ! / d’d <+
. u = su E— U — ——— U 0.
s R inter\gl cri(J) Sy u(J) J, H

It is clear that the functional in (1.3) is not a norm since it vanishes in constant

functions however it is easy to verify that BMO(R, 11) is a Banach space under the

norm?,

(1.2) < Cllu'llx,

[,

lull aro,wy = vl + 1wl -
Closely related to BMO(R, p) is the Bennett-DeVore-Sharpley space weak-L> (R, )3,
defined by (cf. [2]),

Lo (R, p) = {u: [ull oo = sup (uy*(t) — uf,(t)) < +oo}

0<t<1

where uy*(t) = 1 f(f uy,(s)ds, and uj, is the non increasing rearrangement of u with
respect to the measure y (see section 2 below).

Notice that L°> is not a linear space and |-||; .« is not a norm. The rela-
tion between the space weak-L>(R, p) and BMO(R, ) when p is a not doubling
absolutely continuos measure was obtained in [1] (see [2] and [3] for the Lebesgue

measure), where it was shown that there is a constant ¢ > 0 such that
(1.4) [ull oo = sup (ug*(8) — (1) < cllull prroe ).
0<t<1

The main objective of this paper is to establish criteria that ensure a function
belongs to BMO(R, p) or to weak-L> (R, 11) in terms of the summability properties
of its derivative (see [6] for Lebesgue measure). More precisely, we characterize
all r.i spaces X on (R, u) such that the corresponding Sobolev space Vi(R, p) is
embedded into BMO(R, i) or in weak-L> (R, ). Furthermore, we characterize the
largest 7.7 space X such that Vi (R, u) is continuously embedded into BMO(R, ).

2This definition of BMO(R, z1) is similar to the classical one, but here the measure y is not
doubling. It has shown in [11] that some of the properties that BMO satisfies when the measure
is doubling are satisfied also if is non doubling, for example, the John-Nirenberg inequality holds,
BMO(R, ) is the dual of H}, (R, ) and the operators which are bounded from H},(R, y) into
LY(R, i) and from L*° into BMO(R, 11) are bounded on LP(R, ) for 1 < p < oo.

3For 1 < p < oo, the weak-LP spaces satisfy (see [3])

sup tYP(f3(t) = f5(1) < sup VP () = (| fll ppoe s
0<t<1 0<t<1

thus the space L°*° is indeed the limit of the spaces weak-LP as p — oo.
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2. PRELIMINARIES

Let © be an absolutely continuous symmetric log-concave probability measure
on the line, i.e. du = Ze~®@) dx = f(x)dx, where ®(x) is a even convex function
and Z is the normalization constant in order to have u(R) = 1. We denote by

(2.1) F(x) = /_x f(x)dz VreRU{—o0,+o0}

its distribution function.
Let J be an interval. If A C J is a Borel set, then the relative perimeter of A
w.r.t. (with respect to) u is defined by

e o i(AR) — p(A)
P,(AJ) = hzn_:gf - ,
where Aj, = {z € J : d(z, A) < h}.
The isopemetric profile of u is defined by,

I(t) :=inf{P,(A,R) : p(A) =t}, (0<t<1)
Since p is a log-concave symmetric measure (see [5]), we have that

I(t) = f(F71(1)),

in particular [ is a continuous concave function symmetric with respect to 1/2, such
that 1(0) = I(1) = 0, moreover, for 0 < ¢ < 1

1

(2.2) F7Yt) = A ) ds.

In an analogue way the relative isoperimetric profile is defined by
hy(t) :==inf{P,(A,J): ACJ, p(A)=t}, (0<t<ul])).

We briefly recall the basic definitions and conventions we use about rearrange-
ment of functions and rearrangement invariant spaces. We refer the reader to [3]
and [16] for a complete treatment.

Let Q be a measurable subset of R and u be a real-valued measurable function
on . The non-increasing rearrangement of u w.r.t. u is given by

uy (t) = sup{s > 0: pp(s) >t} 0<t<p(Q)

and the signed non-increasing rearrangement of u w.r.t. p is given by

u,(t) =sup{s € R: p,(s) >t} 0<t<p(Q),

where p1,(s) = p{z € Q: u(z) > s}.

We say that a Banach function space X = X (R, 1) on (R, p) is a rearrangement-
invariant (r.4.) space, if v € X implies v € X for all y—measurable functions such
that uy, = v}, and, moreover, [|ul|x = [[v[|x. The functional |- | x will be called a
rearrangement invariant norm. Typical examples of r.7. spaces are the LP-spaces,
Orlicz spaces, Lorentz spaces, Marcinkiewicz spaces, etc.

Since p(R) =1, for any r.i. space X we have

(2.3) L*(R) C X C LY(R, p),

with continuous embedding.
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For rearrangement invariant norms ||.||y , we can compare the size of elements
by comparing their averages, as expressed by a majoration principle, sometimes
referred to as the Calderén-Hardy Lemma:

t t
(2.4) Suppose that /0 uy,(s)ds < /0 v, (s)ds, holds for all 0 <t <1

= Jlullx < llvllx -
The associate space X’ of X is the r.i. space of all measurable functions u in for
which the r.7. norm given by
1
u(z)v(x)|d, wk(s)vr(s)ds
upf]R|()()|M su fo u()u()

(2.5) ol =s
X u#0 ||UHX u#0 ”u”X

In particular, the following generalized Hélder’s inequality holds

(2.6) /R fu(@)o(@) | dp < Jlullx o]l

Given a function v € X and an interval J, from Holder inequality, it easily follows
that
(2.7)

s [ i [wan]| < mei-aruny <
—|luxs — —= [ vwdu| < inf|(u—a)xs|y <
2 /L(J) J X a€cR X

e
uxg — —— [ udpll .
! () J, X

Given a r.i. space X = X (R, z1), there exists a unique r.i. space X = X(0,1) on
((0,1),m), (m denotes the Lebesgue measure on the interval (0, 1)) such that

(2.8) lullx = llullx-

X is called the representation space of X (R, u) (a characterization of the norm
| - || ¢ is available in [3]). Moreover, we have [jul| y = [|u} || 5.

In the framework of our paper we will use the Lorentz type space A (1) associated
to isoperimetric profile I defined by

(2.9) Ap) = {u s lullag g ::/O u;(t)@dt < —|—oo}7

which is a r.i. space (see [8]) since by the concavity of I the function @ is

decreasing. Notice that
1/2 I(t) 1/2 I(t)
‘We shall finish this section with a Lemma in which we collect some results that

relate isoperimetry, derivative and rearrangements.

Lemma 1. Let p be an absolutely continuous symmetric log-concave probability
measure on the line. Let J C R be an interval. Assume that the following relative
isopemetric inequality holds:

P,(A,J) > h(u(A)); (A Borel set contained in J),

where h [07N(J)]~ — [0,~oo) is a continuos concave function symmetric around
w(J)/2, such that h(0) = h(u(J)) = 0. Let u € V1 (R, ) and let v =uy,. Then

(1) The rearrangements v}, and vy, are locally absolutely continuous functions.
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(2) Denote by [-]* the rearrangement with respect to Lebesgue measure on [0, u(J)],
then

(2.11) /0 [;}(.) (—vz)’ (.)]* (r)dr < /O (W5 (Fdr 0< s < u(J),

and the same inequality holds for vy,.
Notice that the inequality (2.11), by (2.4), implies that for any r.i space

) (=) @) <0/l and |[Bce) (o3 (o)

Proof. For v}, this result was proved in [7] and [12] for Gauss measure and in [13]
in the general context of metric spaces. It is easy to see that the same proof works

for vz. O

X

< V'lly .
L < Il

3. MAIN RESULT

In this section we characterize the embedding of Vi (R, i) into BMO(R, ) or
in weak-L>® (R, p).

To this end we will need the following technical result (whose proof will be given
in the Appendix). If p a log-concave symmetric probability measure and I is its
isoperimetric profile, then there exist a constant C' > 0 such that

t
1 1
(3.1) I(t) < / ) 45 < C1(t) for 0 <t < 5
0 S
Theorem 1. Let X be a r.i. space. The following statements are equivalent:
i) D = 1|l H < :
i) Oi}g%s T X0, (1) || < +00

it) there exists a constant Cy > 0 such that
lully gy < Crllv’llx

for all u € VL(R, p);
iii) there exists a constant Cy > 0 such that

el ey < Co (Il + 1l g1, 0)
for all u € V{(R, p).

In order to prove Theorem 1 we follow arguments contained in [6]. We shall need
three preliminary results.

Lemma 2. For every u € V1 (R, n) the following inequality holds
<AC[W Nl g1z g

uf/udu
R A(p)

where C' is the same constant that in (3.1) and A (u) is the Lorentz space associated
to isoperimetric profile of .

(3.2)

Proof. Let u € V5 (R, p), we can assume that [, u = 0 (otherwise we consider
U — fR udp). By Lemma 1, uy, is a locally absolutely continuos function, therefore
we can write

1/2 )
(3.3) () = /t (—u)’ (s)ds + uf(1/2).
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Using (3.3) and (2.10) we have that

1/2 1/2 1/2
lellagy <2 (/O (/t (—U,’i)'(r)> B0 4y g (1/2)/O [(tt)dt>
1/2 1/2 1/2
2 (/O (—u) (8) (/t H:%) dt+u;(1/2)/0 If)dt>
1/2
<20 (/0 (_u;)’(t)l(t)dt+l <;) u;(1/2)> (by (3.1))

<2C ( /O v (—us) (OI(t)dt + 2T (;) /0 v u;(t)dt) .

Using again Lemma 1, we get that

/01/2 (—u;)’(t)l(t)dt=/01/2 [1(.) (—u/t)/(o)} (r)dr
< / 7 o)

<l g »

IA

and, by the Poincaré inequality (see Proposition 1.4 of [4]), we have that

21 (5) [ un a2 (3) lulsqe < 10lnce-

ullagey < AC 1 L1 gy -

Therefore

O

Remark 1. In the case of Gauss measure inequality (3.2) is well-known (see e.g.
[17] and [9]).

Lemma 3. Let J C R be an interval. Then for all Borel set A C J the following
relative isoperimetric inequality holds:

where

R (s) = g min (1(5), I(u() ~ )},
here I is the siopemetric profile of p and C is the same constant that appears in
(5.1).

Proof. Let J = (a,b) with —co < a < b < 400, and let u be a Lipschitz function
on R. Let us define

u(a) x € (—o0,a),
Ux) =4 u(x) ze€(ab),
u(b) =z € (b,00).

Obviously U € VA (R, p) and
U'(z) = u/(z) on J and U'(x) = 0 outside J.
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Lemma 2 applied to the function U, gives

(3.5) HU o T P e O PR o T PR
R A
Obviously,
(3.6) HU—/U > inf [|U — |
R AGw) a€ER Ap)

> inf (U= a) xollag

= Clyfel% [(u—a) XJHA(H)

1 1
> 5 oo = o [ (by (2.7)).
2 H n(J) J s Aw)
Combining (3.5) and (3.6) we obtain
1 / ,
uxg — —— [ udp| < 8C |||y, -
H w(J) J Alp) L

Suppose that A C J is a Borel set. We may assume, without loss, that P,(4;J) <
00. By [4, Lemma 3.7] we can select a sequence {u, }nen of Lipschitz functions such
that u,, — xa pointwise, and

P,(A;J) > lim sup ||(un)/HL1(J7#) .
n— oo

Consequently, by Fatou lemma

8CP,(A;J) > 8Clim sup ||(u,)’
n—oo

> ‘ — 71 / d
Z ||XA
! (J) A(p)

(o) [ a3 [ 0

If u(A) < #, then

> lim sup ||unXx 1 /u du
= nXJ = T\ n
n—00 M(J) J

[ »

XA—ﬁ/ A(M)Z/OHJ)<XA ?)
H(A) s wu(J)
(-5 [ et / o
> (1 253 rutan > §I<M<A>>.

In case that pu(A4) > @, then, since the measure p has continuos density, the
sets A and J\A has the same perimeter; since pu(J\A) < # we get
8CP,(A;J) =8CP,(J\A;J) >

S T((T) — u(A))
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Lemma 4. Let u € V' (R, p) and J an interval. Then;

1) [ Juws = (“(j))\duz /O’L(J)—(<uxJ>:)'<s>min{s,M<J>—s}ds.

Proof. By absolutely continuity of (uy J); (Lemma 1) and Fubini’s theorem, we

have that
(UXJ - (UXJ)Z <'u(2j)>>:

/J ux.s — (uxs),, <M(2J)>’du _ /OM(J)

n(J)

= oo oo (S52) e+ [, " [<ux]>°< )~ )y () ] s

u(J) w(J)

p] p) .U‘(J) /
= / - ((UXJ) 7)drds + / / UXJ (T)des
0 s

/0“(‘]) min{s, u(J )*5}< (UXJ)M> (s)ds.

ds

Proof of Theorem 1.
i)=> ii)
Given u € VL (R, u) and an interval J with pu(J) = a, we denote v = uy ;. Then,

o 1 “ o
vy (s) — 5/0 v#(t)adt
/ ‘v -, ‘ dp = - /0 - (UZ)/ (s)min{s,a — s}ds (by (3.7))

ds < ilgf /Oa v — a|Z (s)ds (by (2.7))

min{r,a —r}

< HiNLI(T) (— (’U;)/) X(O,a)(T)Hf ~ X(0,a)(T) (Holder’s inequality)
X hr(r) <
, min{r,a —r}
< x |—=——X0,a) (") (by Lemma 1).
hr(r) <

Using the symmetry of h; around the point a/2 and the definition of h 1, it follows
that

X(0,a) (7")

H minir, a—r}
h[(’l")

X

Therefore

V(a) < 320 ||| HI(:)X(Qa)(T)H
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By the definition of the rearrangements

1 1 I 1 :

/v—/vdu‘du:/ (U—/vdu) ds

aJy aJy aJo aJy u
1 a

I

!
S
—

IS
:—/

thus
— /
a J

taking the supremum we get

1 1] r
— = [ vdp| dp < 64C ||/ |
v /Jv u‘ p < 640 |u'llx sup — HI(T)X(O,S)(T)HX,,

a 0<s<3

1y r
full ey < S4C T sup 27 ®)]
s ¥ocacys 11070 ke
i) =i
As was pointed in the introduction (inequality (1.4)) there is a positive constant
¢ such that
*

U000 = sup (u*(t) —u(t)) <cllu
il e = 0 (0570 = 39) < el pasoge,

= ¢ (el gy + Nl o ) -
By hypothesis ) it follows that

ol e < Co (I gy + el )
for some positive constant Cs > 0.
iii)= 1) i
Given a positive measurable function g € X, with suppg C (0,1/2) we consider
1
ds
G(t) = —) t€(0,1
0= [ a5 te@)
and define
u(z) = G(F(x)) r eR,
where F' is the distribution function of p defined by (2.1). Then

@) = |-a(F @) 7| = 9P @)
Moreover (see [13, Secction 5]),
(3.8) (), (1) = g (1),
and

1
(39) wi) = [ o

From (3.8) we get that u € V&(R, ), and from (3.9) and Fubini’s theorem, we
obtain

Ly . N
g/o [uu(r)—uu(s)]dr—s/o I(T)g( )dr.
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By hypothesis i) it follows

1/ 7 ,
5 | e < (1l + el e,

Obviously, uj,(1/2) = 0 (since suppg C (0,1/2)), then by Lemma 4 (with J = R)
we obtain

1/2 ) 1/2 ) s
wmwmaémw=é 4@Mww=A - () ()77

9 1/2 N
< 1(1/2)/0 —(uu) (s)I(s)ds (by Lemmal)
2 /
< 1(1/2) ]| L1 ()
2

S 1(1/2) ||ul||Xa

i.e. there is a constant ¢ such that

1 S T
;/0 *I(T)W)dfécllwllx =clgllx (by (3.8)).
Therefore
Lfs i 9(r)dr
sup 20 W77 <
g€X ,suppgC(0,1/2) lall %

By (2.5) the left-hand side equals to & Hﬁx(oﬁs) (T)HY’ for 0 < s < 1/2 and then

1
sup L><(o (1)
I(r)™ x

0<s<1/2 S

O

In the next proposition we are able to identify (depending on u) the largest r.i.
space such that embedding of Vi (R, i) into BMO(R, p1) holds.

Proposition 1. The space

1 t
M(p)=<u: sup —/u*sd8<+oo
) { te,1/2)1(t) Jo n(®) }

is the largest r.i. space such that i) or iii) of Theorem 1 holds, i.e. for any X r.i.
space such that ii) or i) of Theorem 1 holds, then we have

X C M(w).
Proof. We have to check that if X = M (u) then D is finite. By (3.1) it follows that

T

(M(p))" = A(p) (see e.g. [15]). Then,using the monotonicity of function ) and
(3.1), we have

1 LI, 1
< = — < =,
< 273y X0 ™llag 21(5)/0 ;= 5¢

sup -

0<s<i$

" X0.5)(r)
7~ X(0,s
I(r) 5
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Let us assume that X ¢ M (u). Then there exists a function g € X with ||g[|y =
1 such that g ¢ M(u) and there exists a sequence {tx}, oy C (0,3) such that
ﬁ f(f g, (tx)ds — +oo. Moreover by (2.5) and monotonicity of function G)

1/2 *
T T
s 3 xon]| 2o [ 60 (1xeam) (s
0osers [T O W e =hente Jo - NI YOO )
'k
1 2 tk — S
> sup—/ *(8) ——ds
keNlk Jo 9l )I(tk —s)
"
> supi/ g (s)ds — +oo.
ken2I (%) Jo n(®)
This gives a contradiction and the assert follows. ]

Remark 2. We point out that if a measure p is non doubling, Calderén-Zygmund
operators may be bounded on L?(u) but not from L* into BMO(R, i1). To over-
come this difficulty some new BMO-type spaces have been introduced (see [19],
[14] and references quoted there in, and in the case of the gaussian measure see also
[10]). This new BMO-type spaces are imbedded into BMO(R, i), therefore our
Theorem 1 also works.

We finish the paper with some examples of the largest r.i. space

1 t
M =<Ju: su —/u*sds<+oo
W) { te(O,F/z)I(t) 0 n(®) }

for which embedding of Vi (R, 1) into BMO(R, 1) holds. We have to consider the
asymptotic behavior of the isoperimetric profile for different measure (see e.g. [18]).

2
o Gauss measure dy = \/% exp (7@) dz.

We know that lim —~®_ — 1
t‘)Ot(Qlog %)5
3])

e FExponetial-type measure dy = ————
2T (1+3)
For this kind of measure, lim I®)

exp (—% dx for p > 1.
1
tﬁot(plog%)k%

and M (p) is the Zygmund

space
1_
M(p) = L (log L)» (R, pr).
e Two-sided exponential dju = 3 exp (—|z|) dz.
It is well-known that I(t) = min{¢,1 —t}, then M (u) is the Lebesgue space

M(p) = L*(R).

o du=Lexp (7 |z|” log (exp (22_—0‘1)) + |x\°‘)> dr, « > 0and p € [1,2].
In this case M (u) is the generalized Lorentz-Zygmund space

1 ¢
M(p)=qu: sup T Q/
te(0,1)t (1 —logt)' ~ 7 (1 +log (1 —log (¢)))* Jo

s 1)
since lim T
t—0 t(log %) P (log log(eJr%)) 1

uy,(s)ds < +oo} ,

=/(€ (0,+0).

SR
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o du= Z% exp (—®(|z|)) dz with ®(t) is conver and /P (t) concave on (0, +00).

For these measure it is possible to prove that limm =/ €

t—0t®’
(0, +00).

4. APPENDIX: PROOF OF INEQUALITY (3.1)
We organize the proof in 3 steps.
Step 1. For every 0 < a < 1, we claim that liltn iélf t—>I(t) = 0.
—
Indeed, if there exists 0 < a < 1 such that lirtn i(I)lf t=*I(t) = £ >0, then
—

e

sup AN c>0
o<t<1/21(t) ’

ATy
o I(t) = Jo t¢ ’

1
but by (2.2) we known |[? % = +oo.
Step 2. For every 0 < a < 1, the function t~*I(¢) is increasing near zero.
We have to prove the derivative of this function is non negative near zero. Since

I't) _ «
W=t

thus

(tI(t)) = —at™ 7 () + 17T (1) > 0 &
integrating the last inequality between r and 1/2; and after a straightforward com-
putation we obtain

(1) s 100
2) 7 2ap«

which is positive if r is small enough by Step 1.
Step 3. Proof of (3.1).

Fix 0 < a < 1, by the previous step, we know that there exists € > 0 such that
t~*I(t) is increasing in (0,¢). For 0 <t <,

/ot s = /ot () /Ot so-1gs < L0

S S (0%

Otherwise when £ <t < 1/2, we have

/tl(s)ds:/sl(s)ds—k/tl(s)ds
o S o S e S

= %I(e) /OE t*tdt + @(t —€)

<o),

for some positive constant C, since I is an increasing function.
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