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MEASUREMENTS OF RIEMANNIAN TWO-DISKS AND

TWO-SPHERES

F. BALACHEFF

Abstract. We prove that any Riemannian two-sphere with area at
most 1 can be continuously mapped onto a tree in such a way that the
topology of fibers is controlled and their length is less than 7.6. This
result improves previous estimates and relies on a similar statement for
Riemannian two-disks.

1. Introduction

In this article we are interested to describe the possible geometries of
Riemannian two-disks and two-spheres in the same way a tailor determines
the geometry of a body: by taking some relevant measurements. We denote
by A(·) the area functionnal and | · | the length functionnal. Our main result
deals with measurements of two-disks and states as follows.

Theorem 1.1. If D is a Riemannian two-disk, then for any ϵ > 0 we can
find a continuous map to a trivalent tree such that the preimage of a terminal
vertex is either an interior point or the boundary ∂D, the preimage of an
interior point of an edge is homeomorphic to a circle, the preimage of a
trivalent vertex is homeomorphic to the θ figure, and fibers have length at
most

(1 + ϵ) max

{
|∂D|+

√
A(D),

(
4 +

11
√
3

4

)
√
A(D)

}
.

This theorem should be compared to a result by Y. Liokumovich in [Li14]
which states that any Riemannian two-disk D admits a Morse function
f : D → R which is constant on the boundary and whose fibers have length
at most 52

√
A(D) + |∂D|.

Using Theorem 1.1, we are able to estimate the measurements of two-
spheres in terms of their area.

Theorem 1.2. If M is a Riemannian two-sphere with area less than 1, then
it admits a continuous map to a trivalent tree such that the preimage of a
terminal vertex is a point, the preimage of an interior point of an edge is
homeomorphic to a circle, the preimage of a trivalent vertex is homeomorphic
to the θ figure and fibers have length at most 2

√
3 + 33/8 ≃ 7.6.
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This improves a previous estimate by Y. Liokumovich proving such a
result with 8

√
3 + 12 ≃ 26 as upperbound on the length of the fibers, see

[Li14]. Note nevertheless that the main result of Y. Liokumovich is stronger:
he proved the existence of a Morse function f : M → R whose fibers have
length at most 52. Also remark that L. Guth proved in [Gu05] the existence
of maps such as in Theorem 1.2 with the upperbound 120/(2

√
π) ≃ 34 on the

length of the fibers under the weaker assumption that the 1-hypersphericity
is less than 1/(2

√
π). Finally we point out that the constant 7.6 in Theorem

1.2 is within a factor at most 6 from the optimal one, see Remark 2.1.

The interest in obtaining precise measurements for Riemannian two-spheres
is illustrated by the fact that we can derive upperbounds on the shortest
length of a closed geodesic, on the shortest length of a simple loop dividing
the sphere into two subdisks of area at least A/3, and on the maximal length
of a shortest pants decomposition for punctured spheres. More precisely, we
are first able to recover the result of C. Croke in [Cr88] on the existence
of short closed geodesics for Riemannian two-spheres: we will deduce from
Theorem 1.2 that any Riemannian two-sphere with unit area carries a closed
geodesic of length at most ≃ 10.1, see Theorem 2.2. This is not as good as
the actual best constant—which is 4

√
2 ≃ 5.7 and is due to R. Rotman (see

[Ro05])—but this is not too far. Moreover, using Theorem 1.2, we can also
recover Theorem VI of [ABT13] on the existence of a short closed geodesic
for Finsler (eventually non-reversible) two-spheres. The precise statement is
the following.

Theorem 1.3. Let M be a Finsler (eventually non-reversible) two-sphere
with Holmes-Thompson area less than 1. Then it carries a closed geodesic of
length at most 2

√
π (11

√
3 + 16) ≃ 31.1.

This result improves the actual best constant due to Y. Liokumovich, see
[Li14, Theorem 4]. We also easily deduce from Theorem 1.2 the following
result.

Theorem 1.4. Let M be a Riemannian two-sphere. Then there exists a
simple loop of length at most (2

√
3 + 33/8)

√
A(M) dividing M into two

subdisks of area at least A(M)/3.

This result improves one by Y. Liokumovich, see [Li14, Theorem 1]. Finally
it is straightforward to see that Theorem 1.2 implies the following.

Theorem 1.5. Let M be a Riemannian punctured two-sphere with area less
than 1. Then there exists a decomposition of M into 3-holed spheres such
that each boundary curve has length at most 2

√
3 + 33/8 ≃ 7.6.

It improves the actual best bound, even for hyperbolic metrics, compare
with [BP12].

The paper is organized as follows. The first section presents Besicovich’s
lemma, and some of its useful corollaries : Papasoglu’s lemma which first
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appeared in [Pa10], and the disk subdivision lemma which can be found
in [LNR12]. We also define an invariant called the θ-width, reformulate
Theorem 1.1 in terms of this invariant and show how to prove Theorem 1.2
and Theorem 1.3 from Theorem 1.1. In the second section, we prove Theorem
1.1. Our strategy is inspired by the proof of [LNR12, Theorem 1.6] where
Y. Liokumovich, A. Nabutovsky and R. Rotman show that the boundary of
Riemannian two-disks with uniformly bounded diameter and area can always
be contracted through closed curves of bounded length. We show that it is
enough to consider the case where the length of the boundary is short in
comparison with the area. This step is performed using Besicovich’s lemma.
Then we use the disk subdivision lemma to argue by induction on the area.

Acknowledgements. The author gratefully thanks Y. Liokumovich, A.
Nabutovsky, R. Rotman and K. Tzanev for valuable discussions, and the
anonymous referee for useful comments. The author acknowledges partial
support for this work by the grant ANR12-BS01-0009 FINSLER. The paper
was mainly written during a visit at the CRM of Barcelona. The author
would like to thank the institute for its kind hospitality.

2. Preliminaries

As we deal only with surfaces, we will use the terms of disk and sphere
for two-disk and two-sphere. We denote by A(·) the area functionnal and | · |
the length functionnal.

2.1. Besicovich’s lemma and consequences. In order to prove our results,
we will use the following fundamental result of metric geometry as well as
some of its consequences.

Lemma 2.1 (Besicovich [Be52]). Let S be a Riemannian square. Then there
exists a simple geodesic path connecting two opposites sides of length at most√

A(S).

In particular, any Riemannian disk D whose boundary satisfies |∂D| >
4
√

A(D) can be subdivided into two subdisks of smaller perimeters (divide
its boundary into four equal parts and apply Besicovich’s lemma).

In [Pa10], P. Papasoglu used Besicovich’s lemma to derive the following
estimate.

Lemma 2.2 (Papasoglu). Let M be a Riemannian two-sphere. For any

δ > 0 there exists a simple closed curve of length at most 2
√
3
√

A(M) + δ
and subdviding M into two disks of area at least A(M)/4.

In [LNR12, Proposition 3.2], the authors apply Papasoglu’s result to
cut Riemannian disks into two parts of sufficiently big area by a curve of
controlled length. We reformulate their result as follows.
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Lemma 2.3 (Disk subdivision). Let D be a Riemannian two-disk. For any
λ < 1

4 and δ > 0 there exists a subdisk D′ ⊂ D such that λA(D) ≤ A(D′) ≤
(1− λ)A(D) and |∂D′ \ ∂D| ≤ 2

√
3
√

A(D) + δ.

2.2. Technical width. In this section we introduce our main tool, the
θ-width, reformulate Theorem 1.1 in terms of this invariant and show how
to derive Theorem 1.2 and Theorem 1.3.

Definition 2.1 (θ-width). Let M be a compact Riemannian surface (possibly
with non-empty boundary). We define the θ-width denoted by Wθ(M) as
the infimum of the L > 0 such that there exists a continuous map f from M
to a trivalent tree T satisfying the following conditions:

(W.1) f(∂M) ⊂ ∂T and the preimage of a terminal vertex is either an
interior point or a connected component of ∂M ,

(W.2) the preimage of an interior point of an edge is homeomorphic to a
circle,

(W.3) the preimage of a trivalent vertex is homeomorphic to the letter θ,
(W.4) the preimage of any point has length at most L.

Observe that in particular Wθ(M) ≥ |∂M |.

Our results are consequences of the following estimate.

Theorem 2.1. Let D be a Riemannian two-disk. Then

Wθ(D) ≤ max

{
|∂D|+

√
A(D),

(
4 +

11
√
3

4

)
√
A(D)

}
.

We will prove this theorem in section 3. This is straightforward to check
that it implies Theorem 1.1. Observe that it also implies the following
statement, of which Theorem 1.2 is a direct consequence.

Corollary 2.1. Let M be a Riemannian two-sphere. Then

Wθ(M) ≤
(
2
√
3 +

33

8

) √
A(M).

Proof of Corollary 2.1. Let M be a Riemannian two-sphere. First divide M
into two disks D1 and D2 of area at least A(M)/4 by a simple closed curve

of length at most 3
√
3
√

A(M) by choosing δ =
√
3
√

A(M) in Papasoglu’s

result (Lemma 2.2). Observe that choosing a better constant that 3
√
3 does

not lead to any improvement in our final estimate. Now for each subdisk we
have the following bound according to Theorem 2.1:

Wθ(Di) ≤ max

{
|∂Di|+

√
A(Di),

(
4 +

11
√
3

4

)
√
A(Di)

}

≤
(
2
√
3 +

33

8

) √
A(M)
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as A(Di) ≤ 3
4 A(M) for i = 1, 2 and |∂D1| = |∂D2| ≤ 3

√
3
√
A(M). It is

straightforward to check that

Wθ(M) ≤ max {Wθ(D1),Wθ(D2)} ≤
(
2
√
3 +

33

8

) √
A(M).

□

2.3. Existence of short closed geodesics. It is classic to derive for
spheres the existence of short closed geodesics from bounds on the θ-width.
In particular,

Theorem 2.2.

1) Let M be a Riemannian two-sphere with area 1. Then it carries a closed
geodesic of length at most 8/

√
3 + 11/2 ≃ 10.1.

2) Let M be a Finsler reversible two-sphere with Holmes-Thompson area 1.

Then it carries a closed geodesic of length at most
√
π/2 (8/

√
3+11/2) ≃ 12.7.

3) Let M be a Finsler (eventually non-reversible) two-sphere with Holmes-
Thompson area 1. Then it carries a closed geodesic of length at most√
3π (8/

√
3 + 11/2) ≃ 31.1.

Proof. It follows from [ABT13, section 4.4] that

• if any Riemannian sphere M with unit area satisfies Wθ(M) ≤ C,
then any reversible Finsler sphere M ′ with unit Holmes-Thompson
area satisfies Wθ(M

′) ≤
√

π/2C;
• if any reversible Finsler sphere M with unit Holmes-Thompson area
satisfies Wθ(M) ≤ C, then any Finsler sphere M ′′ with unit Holmes-
Thompson area satisfies Wθ(M

′) ≤
√
6C.

Now fix a Finsler sphere M . We denote by sys(M) the systole of M defined
as the length of a shortest closed geodesic. According to Corollary 2.1 it
remains to prove that

(2.1) sys(M) ≤ 4

3
Wθ(M).

The existence of a closed geodesic on M can be proved through a minimax
argument on the one-cycle space Z1(M ;Z). We refer the reader to [BS10] and
the references therein for additional information. Loosely speaking, this space
arising from geometric measure theory is made of multiple curves (unions
of oriented loops) endowed with some special topology. This space permits
to define a minimax process on the Finsler sphere M using F. Almgren’s
isomorphism between the relative fundamental group π1(Z1(M ;Z), {0}) and
the second homology group H2(M ;Z) ≃ Z. From a result of J. Pitts, the
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minimax quantity

inf
(zt)

sup
0≤t≤1

|zt|

where (zt) runs over the families of one-cycles inducing a non-trivial element of
π1(Z1(M ;Z), {0}) bounds from above the systole.

We argue by contradiction. Suppose that sys(M) > 4
3 Wθ(M). Fix ϵ > 0

such that sys(M) > 4
3 Wθ(M)+ϵ. By definition there exists a continuous map

f from M to a trivalent tree T satisfying (W.1-4) with length L = Wθ(M)+ϵ.
Let v be a trivalent vertex. Its preimage denoted by θ(v) is made of three

disjoint oriented arcs α1, α2 and α3 with the same endpoints ordered such
that |α1| ≤ |α2| ≤ |α3|. Denote by βij for 1 ≤ i < j ≤ 3 the concatenation
of the oriented arcs αi with −αj . As sys(M) > |βij | we can continuously
contract each of the βij to a point curve through a length decreasing homotopy
by using a Birkhoff process, see [Cr88, pp.4-5]. We denote by {βt

ij}t∈[0,1]
this homotopy with the convention that β0

ij = βij . We define an element of

π1(Z1(M ;Z), {0}) by

fv : t ∈ [0, 1] →





−β1−2t
12 + β1−2t

13 for t ∈ [0, 1/2];

β2t−1
23 for t ∈ [1/2, 1].

This gives rise to an element [fv] ∈ H2(M,Z) such that |fv(t)| ≤ 4
3 Wθ(M)+ϵ

for any t ∈ [0, 1].
Now fix an edge e = [v0, v1] ≃ [0, 1] which is not terminal. We denote by

αt the preimage of an interior point of e corresponding to the parameter
t ∈]0, 1[ and orient them in a coherent way. For i = 0, 1 denote by αi the
oriented curve obtained as the limit of the curves αt when t → i. The curve
αi is a simple closed curve contained in θ(vi). As before we can contract
αi to a point through an homotopy {αt

i}t∈[0,1]. We define an element of
π1(Z1(M ;Z), {0}) by

fe : t ∈ [0, 1] →





α1−3t
0 for t ∈ [0, 1/3];

α3t−1 for t ∈ [1/3, 2/3];

α3t−2
1 for t ∈ [2/3, 1].

This gives rise to an element [fe] ∈ H2(M,Z) such that |fe(t)| ≤ Wθ(M) + ϵ
for any t ∈ [0, 1].

Finally fix a terminal edge e = [v0, v1] ≃ [0, 1] with the terminal vertex
corresponding to 0. With the same notations as above, the curve α0 is
reduced to a point curve. We define an element of π1(Z1(M ;Z), {0}) by

fe : t ∈ [0, 1] →





α2t for t ∈ [0, 1/2];

α2t−1
1 for t ∈ [1/2, 1].
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This gives rise to an element [fe] ∈ H2(M,Z) such that |fe(t)| ≤ Wθ(M) + ϵ
for any t ∈ [0, 1].

It is straightforward to see—compare with [Ba04, Section 1.3]—that

[S2] =
∑

e∈E(T )

εe · [fe] +
∑

v∈V (T )

εv · [fv]

for some choice of coefficients εv and εe in {−1, 1}. Here E(T ) and V (T )
denote respectively the set of edges and the set of vertices of T . It implies
that there exists an edge e such that [fe] ̸= 0 or a vertex v such that [fv] ̸= 0.
According to the minimax principle on the one-cycle space, we conclude that

sys(M) ≤ 4

3
Wθ(M) + ϵ

which is a contradiction. □

Remark 2.1. Using the estimate (2.1) we observe that the flat metric with
three conical singularities of angle 2π/3 on the two-sphere obtained by gluing
two flat equilateral triangles of side 1 along their boundary satisfies

Wθ√
A

≥ 3

4
· 2

1
2 3

1
4 ≥ 1.39.

It proves that the constant in Theorem 1.2 is within a factor at most 6 from
the optimal one.

3. θ-width of a Riemannian disk

In this section we prove Theorem 2.1. For this we adapt the strategy of
the proof of [LNR12, Theorem 1.6] to control our invariant Wθ.

3.1. Reduction to the short boundary case.

Lemma 3.1. Let D be a Riemannian two-disk and C ≥ 0. Suppose that
there exists η > 0 such that for any subdisk D′ ⊂ D for which

|∂D′| < (4 + η)
√
A(D′)

we have

Wθ(D
′) ≤ (1 + η) max

{
|∂D′|+

√
A(D′), C

√
A(D′)

}
.

Then for any subdisk D′ ⊂ D we have that

Wθ(D
′) ≤ (1 + η) max

{
|∂D′|+

√
A(D′), C

√
A(D′)

}
.

We will use in the sequel this lemma with the constant C = 0 (small area
case) and C = Cλ,η := 4 + 2η + 2

√
3 + 1−λ√

3(1−2η)
+
√
1− λ for 0 < λ < 1

4 and

η > 0 (general case).
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Proof. For any subdisk D′ ⊂ D we define n(D′) to be the smallest integer n
such that

|∂D′| <
(
4 + η

(
4

3

)n)√
A(D′).

Let D′ be a subdisk such that n(D′) = 0. Equivalently we have that

|∂D′| < (4 + η)
√

A(D′) and so we are done by assumption.

Now fix an integer n and suppose that for any subdisk D′ ⊂ D such that
n(D′) ≤ n− 1 we have proven that

Wθ(D
′) ≤ (1 + η) max

{
|∂D′|+

√
A(D′), C

√
A(D′)

}
.

Let D′ ⊂ D be a subdisk with n(D′) = n. In particular |∂D′| > 4
√
A(D′)

so we can subdivide D′ into two subdisks D′
1 and D′

2 of smaller perimeters

using a Besicovich’s cut α of length
√

A(D′) (Lemma 2.1). More precisely,

|∂D′
i| ≤ 3

4
|∂D′|+

√
A(D′)

<
3

4

(
η

(
4

3

)n

+ 4

)√
A(D′) +

√
A(D′)

<

(
η

(
4

3

)n−1

+ 4

)
√
A(D′)

so n(D′
i) ≤ n− 1.

Let ϵ > 0 be small enough so that all points of D′ at a distance at
least ϵ from ∂D′ form a subdisk denoted by D′′ ⊂ D′. The subdisk D′′ is
itself subdivided by the Besicovich’s cut α into two subdisks D′′

i ⊂ D′
i for

i = 1, 2. By considering ϵ smaller if necessary, we can suppose that ∂D′′
i

is sufficiently closed to ∂D′
i so that |∂D′′

i | < |∂D′| and n(D′′
i ) ≤ n − 1. In

particularWθ(D
′′
i ) ≤ (1+η) max

{
|∂D′′

i |+
√
A(D′′

i ), C
√

A(D′′
i )
}
for i = 1, 2

according to the induction assumption, which implies that

Wθ(D
′′
i ) ≤ (1 + η) max

{
|∂D′|+

√
A(D′), C

√
A(D′)

}
.

Claim 3.1.

Wθ(D
′) ≤ max

{
|∂D′|+

√
A(D′) + o(ϵ),Wθ(D

′′
1),Wθ(D

′′
2)
}
.

� Indeed for any δ > 0 and i = 1, 2 let fi : D
′′
i → Ti be a continuous map to

a trivalent tree Ti satisfying conditions (W.1-4) with length strictly less than
Wθ(D

′′
i ) + δ. Denote by vi the terminal vertex of Ti corresponding to the

boundary ∂D′′
i . Consider a new edge e ≃ [0, 1] and define a new trivalent

tree T obtained from T1, T2 and e by identifiying v1, v2 and the vertex of e
corresponding to {1} into the same vertex denoted by v. The trees T1 and T2

can be thought as subgraphs of T . Denote by {γt}t∈[0,1] a monotone isotopy
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from ∂D′ to ∂D′′ formed by level sets of the distance function to ∂D′. It
satisfies

|γt| ≤ |∂D′|+ o(ϵ).

We define a new map f : D′ → T as follows:

• f(x) = fi(x) if x ∈ D′′
i \ ∂D′′

i ;
• f(x) = v if x ∈ ∂D′′

1 ∪ ∂D′′
2 ;

• f(x) = t if x ∈ γt for t ∈ [0, 1].

By construction we have that the length of the preimages is always strictly
less than

max
{
|∂D′|+

√
A(D′) + o(ϵ),Wθ(D

′′
1) + δ,Wθ(D

′′
2) + δ

}
.

It is easy to check that f : D′ → T satisfies the conditions (W.1-3) which
concludes the proof by letting δ → 0. �

Claim 3.1 implies

Wθ(D
′) ≤ (1 + η) max

{
|∂D′|+

√
A(D′), C

√
A(D′)

}

by letting ϵ → 0 and we are done by induction. □

3.2. Small area case.

Lemma 3.2. Let D be a Riemannian two-disk and η > 0. There exists ϵ > 0
such that any subdisk D′ ⊂ D with A(D′) ≤ ϵ satisfies

Wθ(D
′) ≤ (1 + η) (|∂D′|+

√
A(D′)).

Proof. According to Lemma 3.1 with C = 0 it is enough to prove the lemma
for subdisks D′ with

|∂D′| < (4 + η)
√
ϵ.

As observed in the proof of [LNR12, Lemma 2.3], for r small enough every
ball of radius r is (1 +O(r))-bilipschitz homeomorphic to a convex subset
of R2. Hence for ϵ small enough the condition |∂D′| < (4 + η)

√
ϵ ensures

that D′ is (1 + η)-bilipschitz to a subset U ⊂ R2 with analytic boundary. It
is easy to continuously contract the boundary of U into a point through a
continuous one-parameter family of closed multicurves—that is, the union
of a finite number of closed curves—of U with decreasing length. For this
consider a supporting line ℓ of U . We linearly translate this line in the
inner orthogonal direction until we sweep out U and denote by {ℓt}t∈[0,1] this
family of translated lines (with the convention that ℓ0 = ℓ). For each t ∈ [0, 1]
the intersection ℓt ∩ U consists of a finite number of disjoint segments. By
transversality we can assume that this number of disjoint segments changes
at each step by at most 1, and because the boundary is analytic the number
of such steps is finite. Consider the family of closed multicurves γt defined as
the boundary of the union ∪s∈[t,1]U ∩ ℓt. This is a continuous one-parameter
family of closed multicurves of U with decreasing length that contracts
∂U to a point. The multicurves involved in this family are not disjoint,
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but it can be done by slightly pertubing the family in the neighborhood
of ∂U without significantly increasing their length. Finally it is classic
to derive from this family a map f : U → T with T a trivalent tree and
satisfying conditions (W.1-4) with L as close as wanted from |∂U |, compare
with [Gr83, p.128]. In particular Wθ(U) ≤ |∂U | which in turn implies that
Wθ(D

′) ≤ (1 + η) |∂D′|. □

3.3. General case. Let D be a Riemannian disk. Fix η > 0 and 0 < λ < 1
4

and define

Cλ,η = 4 + 2η + 2
√
3 +

1− λ√
3(1− 2η)

+
√
1− λ.

We will argue by induction and prove that for any subdisk D′ ⊂ D we
have

Wθ(D
′) ≤ (1 + η) max

{
|∂D′|+

√
A(D′), Cλ,η

√
A(D′)

}
.

In particular it implies the conclusion of Theorem 2.1 by letting η → 0 and
λ → 1

4 . According to lemma 3.1 with C = Cλ,η it is enough to estimate

the θ-width ofD′ under the stronger assumption that |∂D′| < (4+η)
√
A(D′).

Let ϵ > 0 such that the conclusion of lemma 3.2 holds. For any subdisk
D′ ⊂ D we define m(D′) to be the smallest integer m such that

A(D′) ≤ ϵ

(
1

1− λ

)m

.

Let D′ be a subdisk such that m(D′) = 0. Equivalently A(D′) ≤ ϵ and we
are done according to lemma 3.2.

Now fix a positive integer m and suppose that for any subdisk D′ ⊂ D with
m(D′) ≤ m− 1 we have proven that

Wθ(D
′) ≤ (1 + η) max

{
|∂D′|+

√
A(D′), Cλ,η

√
A(D′)

}
.

Let D′ ⊂ D be a subdisk with m(D′) = m.
By Lemma 2.3 there exists a subdisk D′

0 ⊂ D′ such that

• λA(D′) ≤ A(D′
0) ≤ (1− λ)A(D′),

• |∂D′
0 \ ∂D′| ≤ (2

√
3 + η)

√
A(D′).

First case. If ∂D′
0 ∩ ∂D′ ̸= ∅, then D′ decomposes into an union of subdisks

D′
0, . . . , D

′
k with disjoint interiors such that A(D′

i) ≤ (1 − λ)A(D′) for i =
0, . . . , k. In particular for each i we have

Wθ(D
′
i) ≤ (1 + η) max

{
|∂D′

i|+
√
A(D′

i), Cλ,η

√
A(D′

i)

}

as m(D′
i) ≤ m− 1 and the inductive assumption applies.
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Using a similar argument to that of Claim 3.1, it is straightforward to
check that

Wθ(D
′) ≤ (1+η)max

{
|∂D′|+ |∂D′

0 \ ∂D′|+
√
1− λ

√
A(D′), Cλ,η

√
1− λ

√
A(D′)

}

as |∂D′
i| ≤ |∂D′|+ |∂D′

0 \ ∂D′| and A(D′
i) ≤ (1− λ)A(D′) for i = 0, . . . , k.

Combined with the fact that |∂D′| < (4 + η)
√

A(D′) it implies

Wθ(D
′) ≤ (1 + η)max

{
(4 + 2η + 2

√
3 +

√
1− λ)

√
A(D′), Cλ,η

√
A(D′)

}

≤ (1 + η)max
{
|∂D′|+

√
A(D′), Cλ,η

√
A(D′)

}

as claimed.

Second case. If ∂D′
0 ∩ ∂D′ = ∅, then D′ decomposes into the union of the

disk D′
0 and an annulus A. Recall that

• |∂D′| < (4 + η)
√

A(D′),

• |∂D′
0| ≤ (2

√
3 + η)

√
A(D′),

• A(A) ≤ (1− λ)A(D′),
• A(D′

0) ≤ (1− λ)A(D′).

In particular m(D′
0) ≤ m− 1 so that

Wθ(D
′
0) ≤ max

{
|∂D′

0|+
√
A(D′

0), Cλ,η

√
A(D′)

}

≤ Cλ,η

√
A(D′).

by the inductive assumption.

Denote by h(A) the height of the annulus, that is the distance between
its two boundary curves. We say that A decomposes into a stack of annuli if
there exist a finite number of annuli A1, . . . ,Ak with disjoint interiors such
that A = ∪k

i=1Ai and Ai ∩ Ai+1 = βi is a common boundary simple closed
curve for i = 1, . . . , k − 1. The following lemma will help us to estimate the
θ-width of D′.

Lemma 3.3. The Riemannian annulus A decomposes into a stack of annuli
A1, . . . ,Ak such that

h(Ai) ≤
√
1− λ

2
√
3(1− 2η)

√
A(A)

for i = 1, . . . , k and

|βi| ≤
2
√
3 + η√
1− λ

√
A(A)

for i = 1, . . . , k − 1.

Proof. Suppose that

h(A) >

√
1− λ

2
√
3(1− 2η)

√
A(A).
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Consider for every 0 < t < h(A) the 1-cycle ct formed by points of A at
distance t of β0. By the coarea formula

A({ct | t ∈ [ηh(A), (1− η)h(A)]} =

∫ (1−η)h(A)

ηh(A)
|ct|dt ≤ A(A)

so that there exists some t ∈ [ηh(A), (1− η)h(A)] such that

|ct| ≤
2
√
3√

1− λ

√
A(A)

otherwise we derive a contradiction. The cycle ct can be approximated by a
union of smooth closed simple curves with total length at most

2
√
3 + η√
1− λ

√
A(A).

So A decomposes into a stack of two annuli A1 and A2 such that A1 ∩ A2

is a simple closed curve of length at most ((2
√
3 + η)/

√
1− λ)

√
A(A) and

such that h(Ai) ≤ (1 − η)h(A) for i = 1, 2. By iterating this process we
derive the Lemma. □

We suppose that the stack decomposition is ordered in such a way that
D′

0 and A1 are adjacent. In the sequel we will denote by β0 the boundary
curve of A corresponding to ∂D′

0 and by βk the one corresponding to ∂D′.
Observe in particular that

|βi| ≤ (2
√
3 + η)

√
A(D′)

for i = 0, . . . , k − 1 and that

|βk| ≤ (4 + η)
√

A(D′).

Now it remains to estimate the θ-width ofD′ using this stack decomposition.
For each annulus Ai of the decomposition choose a minimizing simple path
αi between its two boundary curves. Cutting then along the curve αi yields
to a disk we denote by D′

i whose boundary consists in the concatenation of
βi−1, a copy of αi, βi and another copy of αi. Observe that

|∂D′
i| ≤ (4 + η)

√
A(D′) + (2

√
3 + η)

√
A(D′) + 2

( √
1− λ

2
√
3(1− 2η)

)√
A(Ai)

≤
(
4 + 2η + 2

√
3 +

1− λ√
3(1− 2η)

)√
A(D′).

As A(D′
i) = A(Ai) ≤ (1− λ)A(D′) , we have m(D′

i) ≤ n− 1 for i = 1, . . . , k
so that

Wθ(D
′
i) ≤ max

{
|∂D′

i|+
√

A(D′
i), Cλ,η

√
A(D′

i)

}

≤ max

{(
4 + 2η + 2

√
3 +

1− λ√
3(1− 2η)

+
√
1− λ

)√
A(D′), Cλ,η

√
A(D′)

}

≤ Cλ,η

√
A(D′).
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by the inductive assumption.

Lemma 3.4. For i = 1, . . . , k,

Wθ(D
′
0 ∪ . . . ∪D′

i) ≤ max
{
Wθ(D

′
0 ∪ . . . ∪D′

i−1),Wθ(D
′
i)
}
.

In particular

Wθ(D
′) ≤ max

{
Wθ(D

′
0), . . . ,Wθ(D

′
k)
}
≤ Cλ,η

√
A(D)

which concludes the proof of Theorem 2.1.

Proof. Fix δ > 0 and i ∈ J1, kK. Choose a trivalent tree Ti (resp. T
′
i ) together

with a continuous map fi : D
′
i → Ti (resp. f

′
i : D

′
0∪. . .∪D′

i−1 → T ′
i ) satisfying

conditions (W.1-4) with associated length strictly less than Wθ(D
′
i)+ δ (resp.

Wθ(D
′
0 ∪ . . . ∪D′

i−1) + δ).
We now fix the notation, see Fig.1. Let vi (resp. v

′
i) denote the terminal

vertex of Ti (resp. T
′
i ) whose preimage is the boundary ∂D′

i (resp. βi−1 =
∂(D′

0 ∪ . . . ∪D′
i−1)). Denote by Ui ⊂ Ti a small neighbourhood of vi ∈ Ti

(resp.by U ′
i ⊂ T ′

i a small neighbourhood of v′i ∈ T ′
i ), and by Vi the closure of

the union of the preimages f−1
i (Ui) and f ′−1

i (U ′
i). The set Vi is isomorphic

to a sphere with three boundary components. One of these three boundary
components is βi, the two remaining being denoted by γi1 and γi2 according
to Fig. 1.

γi1

γi2

Vi

βi

βi−1

αi D′i

D′i+1

D′i−1

fi vi

︸︷︷︸
Ui

Ti

f ′i

v′i

}
U ′i

T ′i

Fig.1. The annulus A near D′
i.
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Observe that γi1 is a small deformation of ∂D′
i viewed as a curve in D′

i,
while γi2 is a small deformation of βi−1 ⊂ D′

0 ∪ . . . ∪D′
i−1. In particular

|γi1| = |∂D′
i|+ o(ϵ)

and
|γi2| = |βi−1|+ o(ϵ).

We will define a new map from D′
0 ∪ . . . ∪D′

i to a trivalent tree by using the
restriction of the previous maps fi and f ′

i on the complementary regions of
Vi, and completing it on Vi using the following map.

Claim 3.2. There exists a map f : Vi → Y where Y is a tripod (a triva-
lent tree with only three edges) and satisfying the conditions (W.1-4) with
associated length

|∂D′
i|+ o(ϵ).

Proof of Claim 3.2. The construction of the map is straightforward and is
depicted in Fig. 2. □

βi−1

αi

βi

γi2

γi1
f Y f

f f

f f

Fig.2. The map f : Vi → Y .
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Consider the trivalent tree T ′′
i obtained from the disjoint union of Ti \ Ui,

T ′
i \ U ′

i and Y after identification of the terminal vertices of Ti \ Ui and Y
corresponding to γi1 and the one of T ′

i \ U ′
i and Y corresponding to γi2. We

then define f ′′
i : D′

0 ∪ . . . ∪D′
i → T ′′

i as follows:

• f ′′
i (x) = fi(x) if x ∈ D′

i \ Vi;
• f ′′

i (x) = f ′
i(x) if x ∈ D′

0 ∪ . . . ∪D′
i−1 \ Vi;

• f ′′
i (x) = f(x) if x ∈ Vi.

By construction we have that the length of the preimages is always less than

max
{
Wθ(D

′
0 ∪ . . . ∪D′

i−1) + δ,Wθ(D
′
i) + δ, |∂D′

i|+ o(ϵ)
}
.

This concludes the proof by letting ϵ → 0 and δ → 0 as Wθ(M) ≥ |∂M | for
any Riemannian surface M . □
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