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EXPLICIT TRAVELING WAVES
AND INVARIANT ALGEBRAIC CURVES

ARMENGOL GASULL AND HECTOR GIACOMINI

Abstract. In this paper we introduce a precise definition of algebraic traveling
wave solution for general n-th order partial differential equations. All examples
of explicit traveling waves known by the authors fall in this category. Our main
result proves that algebraic traveling waves exist if and only if an associated n-
dimensional first order ordinary differential system has some invariant algebraic
curve. As a paradigmatic application we prove that, for the celebrated Fisher-
Kolmogorov equation, the only algebraic traveling waves solutions are the ones
found in 1979 by Ablowitz and Zeppetella. To the best of our knowledge, this
is the first time that this type of results have been obtained.

1. Introduction and Main Results

Mathematical modelling of dynamical processes in a great variety of natural
phenomena leads in general to non-linear partial differential equations. There is a
particular class of solutions for these non-linear equations that are of considerable
interest. They are the traveling wave solutions [10, 12, 13, 31]. Such a wave is
a special solution of the governing equations, that may be localised or periodic,
which does not change its shape and which propagates at constant speed. In the
case of linear equations the profile is usually arbitrary. In contrast, a non-linear
equation will normally determine a restricted class of profiles, as the result of a
balance between nonlinearity and dissipation. These waves appear in fluid dynam-
ics [16, 20], chemical kinetics involving reactions [10, 21], mathematical biology
[13, 28], lattice vibrations in solid state physics [24], plasma physics and laser
theory [15], optical fibers [3], etc. In these systems the phenomena of disper-
sion, dissipation, diffusion, reaction and convection are the fundamental physical
common facts.
There is an increasing interest in finding explicit exact solutions for these trav-

eling waves. There are several standard methods for obtaining such solutions, as
the inverse scattering transformation [1, 5], the Backlund transformation [1, 5],
the Painlevé method [11] and the Hirota’s bilinear method [16].
The inverse scattering transformation is a non-linear analog of the Fourier trans-

form used for solving linear equations. This method allows certain non-linear
problems, called integrable, to be treated by what are essentially linear methods.
The Backlund transformation allows to find solutions to a non-linear partial

differential equation from either a known solution to the same equation or from a
solution to another equation. This can enable one to find more complex solutions
from a simple one, e.g. a multi-soliton solution from a single soliton solution.
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The Painlevé method is a procedure to detect integrable differential equations.
The Lie group method is applied to a partial differential equation for finding group-
invariant solutions that satisfy ordinary differential equations. Then the Painlevé
property is tested for these reduced equations. An ordinary differential equation
is said to have the Painlevé property if the general solution has no movable critical
singularities. Movable refers to the arbitrary position of the solutions singularities
in complex time. For any solution the presence and position of movable singular-
ities is given by the initial conditions. The other type of singularities that can be
found are fixed singularities.
The Hirota’s direct method is employed for constructing multi-soliton solutions

to integrable non-linear evolution equations. The method is based on introducing
a transformation into new variables, so that in these new variables multi-soliton
solutions appear in a particularly simple form. In fact they appear as polyno-
mials of simple exponentials in the new variables. This transformation requires
sometimes the introduction of new dependent and sometimes even independent
variables. Expressed in the new variables the equation will be quadratic in the
dependent variables (the so-called Hirota’s bilinear form) and the derivatives must
only appear in combinations that can be expressed using Hirota’s differential op-
erator.
We consider in this work general n-th order partial differential equations of the

form

∂nu

∂xn
= F

(
u,

∂u

∂x
,
∂u

∂t
,
∂2u

∂x2
,
∂2u

∂x∂t
,
∂2u

∂t2
, . . . ,

∂n−1u

∂xn−1
,
∂n−1u

∂xn−2∂t
, . . . ,

∂n−1u

∂x∂tn−2
,
∂n−1u

∂tn−1

)
,

(1)
where x and t are real variables and F is a smooth map. The traveling wave
solutions (TWS) of (1) are particular solutions of the form u = u(x, t) = U(x−ct),
where U(s) satisfies the boundary conditions

lim
s→−∞

U(s) = a and lim
s→∞

U(s) = b, (2)

where a and b are solutions, not necessarily different, of F (u, 0, . . . , 0) = 0. Plug-
ging u(x, t) = U(x− ct) into (1) we get that U(s) has to be a solution, defined for
all s ∈ R, of the n-th order ordinary differential equation

U (n) = F
(
U, U ′,−cU ′, U ′′,−cU ′′, c2U ′′, . . . ,

U (n−1),−cU (n−1), . . . , (−c)n−2U (n−1), (−c)n−1U (n−1)
)
, (3)

where U = U(s) and the derivatives are taken with respect to s. The parameter
c is called the speed of the TWS.
We remark that although in this paper we restrict our attention to TWS asso-

ciated to only one partial differential equation and x ∈ R, our approach can be
extended to systems of partial differential equations, with u ∈ Rd and x ∈ Rm.
In this situation, we would search for TWS of the form uj(x, t) = Uj(k · x − ct),
j = 1, . . . , d, for some k ∈ Rm and c ∈ R.
Definition. We will say that u(x, t) = U(x − ct) is an algebraic TWS if U(s) is
a non constant function that satisfies (2) and (3) and there exists a polynomial
p ∈ R[z, w] such that p(U(s), U ′(s)) = 0.
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All the explicit TWS known by the authors are algebraic when F is a polynomial.
Let us present several well-known examples.
Consider at first the Burgers equation

∂u

∂t
+ u

∂u

∂x
− a

∂2u

∂x2
= 0,

where a 6= 0 is an arbitrary constant. This equation appears in the modeling of
acoustic and hydrodynamic waves, gas dynamics and traffic flow (see [30]) and has
the one-parametric family of solutions

u(x, t) = c
(
1− tanh

( c

2a
(x− ct)

))
,

where c, the speed of the wave, is an arbitrary constant. For this case p(U, U ′) =
2aU ′ + (2c− U)U.
The famous Korteweg-de Vries equation

∂u

∂t
− 6u

∂u

∂x
+

∂3u

∂x3
= 0

appears in several domains of physics, non-linear mechanics, water waves, etc (see
[1, 5, 18, 30]). It has a one-parametric family of solutions given by

u(x, t) =
−c

2 cosh2(
√
c
2
(x− ct))

,

where c is an arbitrary positive parameter. For this second example p(U, U ′) =
(U ′)2 − (c+ 2U)U2.
Consider now the Boussinesq equation

∂2u

∂t2
+ u

∂2u

∂x2
− ∂2u

∂x2
+
(∂u
∂x

)2
− ∂4u

∂x4
= 0.

This equation describes surface water waves (see [1, 16]) and has the two-parametric
family of solutions

u(x, t) = (1− 8k2 − c2) + 12k2 tanh2(k(x− ct)),

where k and c are arbitrary constants. Here we have

p(U, U ′) =3(U ′)2 − U3 − 3 (c− 1) (1 + c)U2 − 3
(
c2 − 1 + 4k2

) (
c2 − 1− 4k2

)
U

−
(
c2 − 1 + 8k2

) (
c2 − 1− 4k2

)2
.

We consider now the so-called improved modified Boussinesq equation

∂2u

∂t2
− u

∂2u

∂x2
− ∂2u

∂x2
−
(∂u
∂x

)2
− ∂4u

∂x2∂t2
= 0.

This equation appears in the modeling of non-linear waves in a weakly dispersive
medium (see for instance [17]) and has a three-parametric family of TWS given
by

u(x, t) = c2 − 1 + 4c2k2 − 8c2mk2 + 12c2mk2 cn2(k(x− ct), m),

where c, k andm are arbitrary constants and cn(x,m) is the Jacobi elliptic function
of elliptic modulus m that reduces to cos(x) when m = 0. In this equation, this
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family of traveling waves and many others have been found in [39]. For this case

p(U, U ′) =3c2(U ′)2 + U3 + 3
(
1− c2

)
U2

+
(
48c4

(
m−m2 − 1

)
k4 + 3

(
1− c2

)2)
U

+ 64c6 (−1 + 2m) (m+ 1) (m− 2) k6

+ 48c4
(
1− c2

) (
m−m2 − 1

)
k4 +

(
1− c2

)3
.

Notice also that the class of TWS given by U(s) = q(eλs) for some real number
λ 6= 0 and some rational function q ∈ R(z), that are usually obtained with the so-
called exp-function method ([14]), are always algebraic TWS. In this case U ′(s) =
λq′(eλs). Write U(s) = q1(z)/q2(z), and U ′(s) = q3(z)/q4(z), with z = eλs, for
some polynomials qj ∈ R[z], j = 1, . . . , 4. Then, define

p(U, U ′) = Res
(
q2(z)U − q1(z), q4(z)U

′ − q3(z), z
)
,

where Res(M(z), N(z), z) denotes the resultant of the polynomials M and N with
respect to z; see [36, p.45]. Then, clearly p(U(s), U ′(s)) = 0 for some polynomial
p, as we wanted to see.
It is known that the TWS correspond to homoclinic (a = b) or heteroclinic

(a 6= b) solutions of an associated n-dimensional system of ordinary differential
equations, see also the proof of Theorem 1.1. In many cases, the critical points
where these invariant manifolds start and end are hyperbolic. When F is regular
we get, using for instance normal form theory, that in a neighborhood of each
of these points, this manifold can be parameterized as ϕ(eλs), for some smooth
function ϕ, where λ is one of the eigenvalues of the critical points. This fact,
together with the above list of examples, motivate our definition of algebraic TWS.
Our main result, which is proved in Section 2, is:

Theorem 1.1. The partial differential equation (1) has an algebraic traveling
wave solution with speed c if and only if the first order differential system





y′1 = y2,
y′2 = y3,
...

...
y′n−1 = yn,
y′n = Gc(y1, y2, . . . , yn),

(4)

where

Gc(y1, y2, . . . , yn) = F (y1, y2,−cy2, y3,−cy3, c
2y3, . . . ,

yn,−cyn, . . . , (−c)n−2yn, (−c)n−1yn),

has an invariant algebraic curve containing the critical points (a, 0, . . . , 0) and
(b, 0, . . . , 0) and no other critical points between them.

Recall that, as usual, we will say that a differential system has an invariant
algebraic curve C if this curve is invariant by the flow and moreover it is con-
tained in the intersection of n − 1 functionally independent algebraic varieties of
codimension one. We remark that these varieties do not need to be necessarily
invariant by the flow of the system.
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When F is a polynomial, the condition for the existence of an algebraic TWS
is that a certain polynomial differential system must have an algebraic invariant
curve. The problem of determining necessary conditions for the existence of al-
gebraic invariant curves for polynomial differential systems goes back to the work
of Poincaré. This problem has been extensively investigated in the last years for
the case n = 2, see for instance [4, 6, 22] and references therein, but for n > 2 the
research is only beginning, see for instance [8, 23]. As a consequence, for second
order partial differential equations of the form (1), our result translates the ques-
tion of the existence of algebraic TWS to a related problem for which many tools
are available.
We remark that explicit TWS have also been searched for by using several direct

methods, such as the exp-function method and the tanh-function method and its
variants, see for instance [14, 24, 25, 26, 39]. These methods are essentially based
on the following idea: fix a class of functions with several free parameters and
then impose conditions on the parameters to find some particular cases satisfying
the corresponding equations. For instance, the four examples of algebraic TWS
given above can be obtained by applying these direct methods.
On the contrary, our approach gives necessary and sufficient conditions for a

partial differential equation to have explicit algebraic TWS. To the best of our
knowledge, this is the first time that this type of results have been obtained. As a
paradigmatic example, we apply our method to the celebrated Fisher-Kolmogorov
reaction-diffusion partial differential equation

∂u

∂t
=

∂2u

∂x2
+ u (1− u), (5)

introduced in 1937 in the classical papers [7, 19] to model the spreading of biolog-
ical populations; see also [9] for some recent results. For this equation a = 1 and
b = 0 in (2). Moreover, from [7, 19], it is also known that the traveling waves only
exist for c ≥ 2. We prove:

Theorem 1.2. The Fisher-Kolmogorov equation (5) has algebraic traveling wave
solutions only when the speed is c = 5/

√
6 and they are the ones given by Ablowitz

and Zeppetella ( [2]):

u(x, t) =
1

(
1 + ke

1√
6

(
x− 5√

6
t
))2 , k > 0.

These explicit TWS have been found by applying the Painlevé method; see [11]
for an introduction to this method.
Notice that for (5), the above function is an algebraic TWS, because the corre-

sponding U(s) satisfies

p(U, U ′) = 3(U ′)2 + 2
√
6UU ′ + 2(1− U)U2 = 0.

We remark that this family of TWS only exists for a fixed value of the speed c,
while for the other examples given above the speed c is arbitrary. This can also
be seen in the corresponding associated systems (4), because in all these cases, for
all values of c, the system possesses an invariant algebraic curve. In fact, in the
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first two equations (Burgers and Korteweg-de Vries) all the solutions of the vector
fields are contained in algebraic curves.
Another family exhibiting algebraic TWS for a given speed c is presented in

Section 3. It includes the so-called Nagumo equation; see [27].
Our approach can be applied to characterize the existence of algebraic TWS for

many other polynomial partial differential equations, like for instance the Newell-
Whitehead-Segel equation([29, 34]), the Zeldovich equation([38]) or some of the
equations considered in [11, 13, 32, 33, 37].

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1 and give some of its consequences. Further-
more, we introduce an algebraic characterization of the planar invariant algebraic
curves.

Proof of Theorem 1.1. Assume first that the partial differential equation (1) has
an algebraic TWS, u(x, t) = U(x−ct), with p(U(s), U ′(s)) = 0 for some polynomial
p. For the sake of notation we define p1 := p and

p2(U(s), U ′(s), U ′′(s)) := D1 p1(U(s), U ′(s))U ′(s) +D2 p1(U(s), U ′(s))U ′′(s),

where D1 and D2 indicate partial derivatives with respect to the first and sec-
ond variables of p1(U, U

′), respectively, and p2 ∈ R[u, v, w]. Notice that since
p1(U(s), U ′(s)) = 0 it holds that p2(U(s), U ′(s), U ′′(s)) = 0. Doing successive
derivatives we obtain n− 3 new polynomials pj, j = 3, . . . , n− 1, for which

pj(U(s), U ′(s), U ′′(s), . . . , U (j)(s)) = 0.

Using all the above equalities, and the fact that U gives a TWS, we obtain that
the vector function

(y1(s), y2(s), . . . , yn(s)) =
(
U(s), U ′(s), . . . , U (n−1)(s)

)

is a parametric representation of a curve C in the phase space of the system (4)
associated to (1). In fact, C is an algebraic curve, because it is contained in
the intersection of the n − 1 functionally independent algebraic hypersurfaces
pj(y1, . . . , yj) = 0, j = 1, 2 . . . , n− 1, that is,

C ⊂
n−1⋂

j=1

{
pj(y1, . . . , yj) = 0

}
.

As U satisfies (2) the system has no critical points on this curve between (a, 0, . . . , 0)
and (b, 0, . . . , 0). Hence the first part of the theorem follows.
Assume, to prove the converse implication, that system (4) has an algebraic

invariant curve. Let

y(s) =
(
U(s), U ′(s), U ′′(s), . . . , U (n−1)(s)

)

be the solution of system (4) associated to this curve and joining the critical points
(a, 0, . . . , 0) and (b, 0, . . . , 0). By definition, this curve is included in the intersec-
tion of n − 1 codimension one functionally independent algebraic hypersufaces
qj(y1, y2, . . . , yn) = 0, j = 1, 2, . . . , n − 1. Therefore, U(s) must satisfy the n − 1
polynomial differential equations

qj(U(s), U ′(s), . . . , U (n−1)(s)) = 0, j = 1, 2, . . . , n− 1.
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Doing successive resultants, we obtain that U satisfies all the resulting lower order
polynomial differential equations. This procedure arrives to a polynomial first
order equation q(U(s), U ′(s)) = 0. This equation proves that the TWS is algebraic.

�

In view of our result, we need a method to detect when a polynomial system of
ordinary differential equations has algebraic invariant curves to determine whether
some polynomial partial differential equation can have algebraic TWS.
Although, as we have already explained in the introduction, there are some

works dealing with this problem in the n-dimensional setting [8, 23], the planar
case is the most developed one.
Consider a planar differential system,

{
x′ = P (x, y),
y′ = Q(x, y),

(6)

where P and Q are polynomials of degree at most N , and assume that there is
a polynomial g(x, y) such that the set {g(x, y) = 0} is non-empty and invariant
by the flow of (6). If g is not irreducible in C[x, y] then there exist several ir-
reducible polynomials, g̃j , j = 1, . . . , k, such that for each j, the corresponding
set {g̃j(x, y) = 0} is also non-empty and invariant by the flow of the system and
{g(x, y) = 0} = ∪k

j=1{g̃j(x, y) = 0}.
For irreducible polynomials we have the following algebraic characterization of

invariant algebraic curves, which is the one that we will use in Section 4. Given
an irreducible polynomial of degree n, f(x, y), then f(x, y) = 0 is an invariant
algebraic curve for the system if there exists a polynomial of degree at most N−1,
k(x, y), called the cofactor of f , such that

P (x, y)
∂f(x, y)

∂x
+Q(x, y)

∂f(x, y)

∂y
− k(x, y)f(x, y) = 0. (7)

For a proof of this result see [4, 6, 22]. The above characterization is also used for
n-dimensional systems to determine codimension one invariant algebraic varieties;
see for instance [23]. For finding invariant algebraic curves the cofactor is then
exchanged for a (n− 1)× (n− 1) matrix of cofactors, see [8].

3. Proof of Theorem 1.2 and other examples

Our proof of Theorem 1.2 is based on the following result, which will be proved
in the next section.

Theorem 3.1. Consider the system
{

x′ = −y,
y′ = −x− cy + x2,

(8)

with c ≥ 2. Assume that it has an irreducible invariant algebraic curve that passes
through the origin. Then c = 5/

√
6 and this curve is

y2 + 2

√
2

3
(1− x)y +

2

3
x(1 − x)2 = 0. (9)
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Proof of Theorem 1.2. Assume that (5) has an algebraic TWS, u(x, t) = U(x−ct).
By the results of [7, 19] we already know that c ≥ 2. Moreover, by Theorem 1.1,
the planar system

{
y′1 = y2,
y′2 = −cy2 − y1(1− y1),

should have an invariant algebraic curve, g(y1, y2) = 0, containing the critical
points (0, 0) and (1, 0). Moreover, without loss of generality, we can assume that
it is irreducible.
Taking x = 1 − y1 and y = y2 we obtain system (8). Then, it should also have

an irreducible invariant algebraic curve f(x, y) = 0, with f(0, 0) = f(1, 0) = 0. By
Theorem 3.1 we get that c = 5/

√
6 and f has to be

f(x, y) = y2 + 2

√
2

3
(1− x)y +

2

3
x(1 − x)2.

The branch of f(x, y) = 0 that contains the origin is

y = A(1−
√
1− x)(x− 1),

where A :=
√
6/3. Using the first equation of (8), that in this case is x′ = −y, we

obtain that

x′(s) = A(1−
√

1− x(s))(1− x(s)).

Returning to the function U(s) = y1(s) = 1−x(s) we get the differential equation

U ′(s) = −A
(
1−

√
U(s)

)
U(s).

Introducing W (s) =
√

U(s) we obtain that W satisfies the logistic differential
equation

W ′(s) = −A

2

(
1−W (s)

)
W (s).

Its non-constant solutions that are defined for all s ∈ R are

W (s) =
1

1 + ke
A
2
s
, k > 0.

Hence

U(s) =
1

(1 + ke
A
2
s)2

=
1

(1 + ke
1√
6
s
)2

and

u(x, t) =
1

(
1 + ke

1√
6

(
x− 5√

6
t
))2 , k > 0,

as we wanted to prove. �
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3.1. A simple family with algebraic TWS. In this subsection we consider the
family of second order reaction-diffusion equations

∂u

∂t
= −d f(u)(f ′(u) + r) + d

∂2u

∂x2
, (10)

where f is a polynomial function and d > 0 and r are real constants. As we will
see, studying its algebraic TWS we recover some of the results presented in [27,
Ch.11]. In particular we will find some algebraic TWS for the Nagumo equation,
related with the FitzHugh-Nagumo model for the nerve action potentials.
The planar system (4) associated to (10) is

{
x′ = y,

y′ = − c

d
y + f(x)(f ′(x) + r).

(11)

It is easy to obtain one invariant algebraic curve for it for some particular values
of the parameters.

Lemma 3.2. When r = c/d, system (11) has the invariant algebraic curve y −
f(x) = 0.

Proof. Consider the algebraic curve H(x, y) = y − f(x) and r = c/d. Then

y
∂H(x, y)

∂x
+
(
− c

d
y + f(x)

(
f ′(x) +

c

d

)) ∂H(x, y)

∂y

=− yf ′(x) +
(
− c

d
y + f(x)

(
f ′(x) +

c

d

))

=−
(
f ′(x) +

c

d

)
(y − f(x)) = −

(
f ′(x) +

c

d

)
H(x, y).

Hence the result follows. �
As a corollary of this lemma and the results of the previous section we have:

Corollary 3.3. The solutions of the polynomial ordinary differential equation
p(U(s), U ′(s)) = U ′(s) − f(U(s)) = 0, with adequate boundary conditions, give
the algebraic TWS of equation (10), u(x, t) = U(x− ct) with speed c = rd.

Let us apply this corollary to find algebraic TWS for the partial differential
equations:

∂u

∂t
= a(u− u1)(u2 − u)(u− u3) + d

∂2u

∂x2
, (12)

∂u

∂t
= uq+1(1− uq) +

∂2u

∂x2
, (13)

where a > 0, d > 0, u1 < u2 < u3 are given real constants and q ∈ N+.
Equation (12) is the Nagumo equation. Notice that it is of the type (10) since

the following equality holds

a(u− u1)(u2 − u)(u− u3) = −df(u)
(
f ′(u) +

√
a

2d
(u1 − 2u2 + u3)

)
,

where f(u) =
√

a
2d
(u − u1)(u − u3). Hence, using Corollary 3.3, we obtain that,

when

c =

√
ad

2
(u1 − 2u2 + u3),
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equation (12) has the algebraic TWS, u(x, t) = U(x− ct), where U satisfies

U ′(s) =

√
a

2d
(U(s)− u1)(U(s)− u3),

which is a logistic equation. Its non-constant solutions that are defined for all s
are

U(s) =
u3 + ku1e

α(u3−u1)s

1 + keα(u3−u1)s
, with k > 0 and α =

√
a

2d
.

Similarly, we have the equality

uq+1(1− uq) = −f(u)
(
f ′(u) +

1√
q + 1

)
,

where f(u) = 1√
q+1

u(uq − 1). Applying again Corollary 3.3, with d = 1, we obtain

that when

c =
1√
q + 1

,

equation (13) has the algebraic TWS, u(x, t) = U(x− ct), where U satisfies

U ′(s) =
1√
q + 1

U(s)(U q(s)− 1).

Its non-constant solutions that are defined for all s are

U(s) =
(
1 + ke

q√
q+1

s
)− 1

q

, with k > 0.

We remark that studying all the invariant algebraic curves of the planar sys-
tem (11) we could know whether the corresponding partial differential equa-
tion (10) does or does not have algebraic TWS with speed different from rd.

4. Algebraic invariant curves for system (8)

This section is devoted to the proof of Theorem 3.1. We need some preliminary
results. The first one collects some well-known properties of the Gamma function,
and also relates it with the Pochhammer symbol, x[m] := x(x + 1)(x+ 2) · · · (x+
m− 1).

Lemma 4.1. For x, y ∈ R and p, q,m ∈ N,
(i) Γ(x+ 1) = xΓ(x),

(ii)
∏q

j=p(x+ j) =
Γ(x+ q + 1)

Γ(x+ p)
,

(iii)
∑m

j=0

(
m
j

)
Γ (x+ j) Γ (y +m− j) =

Γ (x) Γ (y) Γ (x+ y +m)

Γ (x+ y)
,

(iv)
∑m

j=0

(
m
j

)
(m− j)Γ (x+ j) Γ (y +m− j) =

myΓ (x) Γ (y) Γ (x+ y +m)

(x+ y)Γ (x+ y)
,

(v)
Γ(x+m)

Γ(x)
= x[m].

The next results reduce the set of possible invariant curves and cofactors.

Proposition 4.2. If the quadratic system (8) has an irreducible invariant alge-
braic curve of degree n, then its cofactor k(x, y) must be constant, i.e. k(x, y) ≡ c0,
and its degree has to be even.
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Proof. Since the system (8) is quadratic (N = 2), the cofactor of an invariant
algebraic curve of degree n, fn(x, y) = 0, with

fn(x, y) = hn(x)y
n + hn−1(x)y

n−1 + · · ·+ h1(x)y + h0(x), (14)

is linear, i.e k(x, y) = c0 + c1x+ c2y. Then, equation (7) writes as

−y
∂fn(x, y)

∂x
+ (−x− cy + x2)

∂fn(x, y)

∂y
− (c0 + c1x+ c2y)fn(x, y) = 0. (15)

Imposing that the higher order term in y of the above equation vanishes we get
the differential equation

c2hn(x) + h′
n(x) = 0.

Since hn has to be a polynomial we obtain that c2 = 0 and that hn(x) is a constant.
Hence, without loss of generality, we can assume that hn(x) ≡ 1. Then, equality
(15) is equivalent to the following set of linear differential equations

h′
j−2(x) = jx(x−1)hj(x)−((j−1)c+c0+c1x)hj−1(x), j = n+1, n, . . . , 2, 1, (16)

where hn(x) ≡ 1 and hn+1(x) ≡ h−1(x) ≡ 0.
If c1 6= 0, using (16) we can obtain the degrees of the functions hj . They are:

deg(hn−k) = 2k, k = 0, 1, . . . , n− 1, n.

In particular deg(h1) = 2n− 2 and deg(h0) = 2n. From (16), for j = 1, we obtain
that

−c0h0(x)− c1xh0(x)− xh1(x) + x2h1(x) = 0. (17)

Studying the higher order terms in x of this equation we get that relation (17)
can never be satisfied. As a consequence c1 = 0 and so k(x, y) = c0 as we wanted
to prove.
Consider now equation (16) with c1 = 0. Assume, to arrive to a contradiction,

that n is odd. Studying again the degrees of the functions hj we get that

deg(hn−2k) = 3k and deg(hn−(2k+1)) ≤ 3k + 1, k = 0, 1, . . . (n− 1)/2.

In particular, deg(h0) ≤ (3n − 1)/2 and deg(h1) = 3(n − 1)/2. Again, as in the
case c1 6= 0, the higher order terms in x corresponding to equation (17) can not
cancel. Therefore n must be even, as we wanted to prove. �

Proposition 4.3. Let

fn(x, y) = hn(x)y
n + hn−1(x)y

n−1 + · · ·+ h1(x)y + h0(x) = 0

be an irreducible invariant algebraic curve of system (8) with even degree, n = 2m.
Then

h0(x) =
(2
3

)m
x3m +O

(
x3m−1

)
, (18)

h1(x) =
1

5

(2
3

)m
(
5c0 −

(
5c0 + 6mc

)(5
6

)[m]

(
1
3

)[m]

)
x3m−2 +O

(
x3m−3

)
, (19)

where x[m] = x(x+ 1)(x+ 2) · · · (x+m− 1).
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Proof. We proceed as in the proof of Proposition 4.2. The coefficients hj of fn
must satisfy the differential equations (16), with c1 = 0. Arguing as in that proof
we obtain the degrees of each hj . We can write

hj(x) = aj(2m)xdeg(hj) +O
(
xdeg(hj)−1

)
,

where,

deg(hj) =

{
3k − 2, when j = 2m− (2k − 1),

3k, when j = 2m− 2k,

for k = 0, 1, . . . , m and a2m(2m) = 1. Let us determine these functions.
Plugging the above expressions in (16) we obtain that the terms aj = aj(2m)

satisfy the following recurrences

a2m−2k =
2m− (2k − 2)

3k
a2m−(2k−2), k = 1, 2, . . . , m, (20)

a2m−(2k+1) =
(2m− (2k − 1))a2m−(2k−1) + h(2m− 2k)a2m−2k

3k + 1
, k = 1, 2, . . . , m− 1,

(21)

where h(j) = −(c0 + jc) and the initial conditions are

a2m = 1 and a2m−1 = h(2m) = −(c0 + 2mc).

The even terms a2j can be easily obtained from (20). We get

a2m−2j =

(
m

j

)(2
3

)j
(22)

and in particular a0 = (2/3)m as we wanted to prove. It remains to obtain the
general expression of the last odd term a1 = a1(2m). We take advantage of the
linearity of the problem with respect to the initial condition a2m−1 and write

a1(2m) = −
(
â1(2m)c0 + ã1(2m)c

)
,

where â1 and ã1 are the solution of the recurrences (20)-(21) with initial conditions
a2m = 1 and

a2m−1 = 1 or a2m−1 = 2m,

respectively.
Substituting expression (22) in (21) and developing the recurrent expressions

we arrive at

â1(2m) =
m−1∑

j=0

(
m

j

)(2
3

)j m−j−1∏

k=0

(2k + 1)
m−1∏

k=j

1

3k + 1
,

ã1(2m) = 2
m∑

j=0

(m− j)

(
m

j

)(2
3

)j m−j−1∏

k=0

(2k + 1)
m−1∏

k=j

1

3k + 1
.



EXPLICIT TRAVELING WAVES AND INVARIANT ALGEBRAIC CURVES 13

We introduce the following auxiliary functions

α(m) = Γ
(1
2

)
Γ
(1
3
+m

)
, β(m) =

Γ(1
2
)Γ(1

3
)Γ(5

6
+m)

Γ(5
6
)

,

γ(m) =
β(m)

α(m)
=

Γ(1
3
)Γ(5

6
+m)

Γ(5
6
)Γ(1

3
+m)

=

(
5
6

)[m]

(
1
3

)[m]
,

where in the last equality we have used (v) of Lemma 4.1. Let us simplify the
expressions of â1 and ã1 using the above functions and the other equalities given
in Lemma 4.1.

â1(2m) =
(2
3

)m m−1∑

j=0

(
m

j

)m−j−1∏

k=0

(1
2
+ k
)m−1∏

k=j

1
1
3
+ k

=
1

α(m)

(2
3

)m m−1∑

j=0

(
m

j

)
Γ
(1
2
+m− j

)
Γ
(1
3
+ j
)

=
1

α(m)

(2
3

)m
(

m∑

j=0

(
m

j

)
Γ
(1
2
+m− j

)
Γ
(1
3
+ j
)
− Γ

(1
2

)
Γ
(1
3
+m

))

=
1

α(m)

(2
3

)m(Γ(1
2
)Γ(1

3
)Γ(5

6
+m)

Γ(5
6
)

− α(m)

)

=
1

α(m)

(2
3

)m
(β(m)− α(m)) =

(2
3

)m
(γ(m)− 1) .

Similarly,

ã1(2m) =
2

α(m)

(2
3

)m m∑

j=0

(m− j)

(
m

j

)
Γ
(1
2
+m− j

)
Γ
(1
3
+ j
)

=
2

α(m)

(2
3

)m 1
2
Γ(1

2
)Γ(1

3
)Γ(5

6
+m)

5
6
Γ(5

6
)

m

=
1

α(m)

(2
3

)m6

5
β(m)m =

(2
3

)m 6

5
γ(m)m.

Hence

a1(2m) = −
(
â1(2m)c0 + ã1(2m)c

)

= −
(2
3

)m(
(γ(m)− 1)c0 +

6

5
γ(m)mc

)

=
1

5

(2
3

)m(
5c0 −

(
5c0 + 6mc

)
γ(m)

)

=
1

5

(2
3

)m
(
5c0 −

(
5c0 + 6mc

)(5
6

)[m]

(
1
3

)[m]

)
,

as we wanted to prove. �
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When an invariant algebraic curve passes by an elementary critical point, in
many cases, the value of the cofactor at this point can be obtained. These type
of results, based on previous works of Seidenberg ([35]), are proved in [4]. In the
next proposition, which is included in [4, Thm 14], we state one of these cases.

Proposition 4.4. Let f(x, y) = 0 be an invariant algebraic curve of a planar
system with corresponding cofactor k(x, y). Assume that it contains a critical
point of the system, (x0, y0), and that it is a hyperbolic saddle with eigenvalues
λ− < 0 < λ+. Then k(x0, y0) ∈ {λ+, λ−, λ+ + λ−}.
Proof of Theorem 3.1. By Propositions 4.2 and 4.3 we know that the invariant
curve has even degree n = 2m,m ∈ N, and it can be written as

f(x, y) = hn(x)y
n + hn−1(x)y

n−1 + · · ·+ h1(x)y + h0(x) = 0,

where h0 and h1 satisfy (18) and (19). Moreover its cofactor is constant, k(x, y) =
c0. Using that h0 and h1 must satisfy (17) we get the identity

−c0h0(x)− xh1(x) + x2h1(x) ≡ 0.

Using Proposition 4.3 we obtain that

−c0h0(x)− xh1(x) + x2h1(x) = −5c0 + 6mc

5

(2
3

)m(5
6

)[m]

(
1
3

)[m]
x3m +O

(
x3m−1

)
.

Therefore,
5c0 + 6mc = 0. (23)

The origin of (8) is a saddle point with eigenvalues λ± =
−c±

√
c2 + 4

2
, where

λ− < 0 < λ+. Since, by hypothesis, f(0, 0) = 0 we can apply Proposition 4.4
to determine c0 = k(0, 0). We obtain that c0 ∈ {λ+, λ−,−c}. When c0 = −c,
equation (23) gives (6m− 5) c = 0, which is in contradiction with the hypothesis
c ≥ 2. Therefore, if the system has an algebraic invariant curve under the above
hypotheses, then c0 ∈ {λ+, λ−}. Take c0 = λ±. Hence, equation (23) writes as
6mc+ 5λ± = 0, or equivalently,

c = ∓ 5√
6

1√
m(6m− 5)

.

Imposing that c ≥ 2 we get that the only possibility is c0 = λ− and m = 1. Then,
c = 5/

√
6 as we wanted to prove. Finally, simple computations give (9) and the

theorem follows. �
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