This is a preprint of: “Center conditions for a class of planar rigid polynomial differential systems”,
Jaume Llibre, Roland Rabanal, Discrete Contin. Dyn. Syst., vol. 35(3), 1075-1090, 2015.
DOI: [10.3934/dcds .2015.35.1075]

EXPLICIT FOCAL BASIS FOR SOME PLANAR RIGID
POLYNOMIAL DIFFERENTIAL SYSTEMS

JAUME LLIBRE' AND ROLAND RABANAL?

ABSTRACT. In general the center—focus problem cannot be solved, but
in the case that the singularity has purely imaginary eigenvalues there
are algorithms to solving it. The present paper implements one of these
algorithms for the polynomial differential systems of the form

t=-y+af(r)g(y), v=z+yf(z)9(y),

where f(z) and g(y) are arbitrary polynomials. These differential sys-
tems have constant angular speed and are also called rigid systems. More
precisely, this paper gives focal bases of these systems, and then neces-
sary and sufficient conditions in order to have an uniform isochronous
center. In particular, the existence of a focus with the highest order is
also studied.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Consider o € R? as the singularity of an analytic differential system in
the plane. The singularity zq is a center if there exists an open neighborhood
U of zp such that all the solutions in U \ {z¢} are periodic. Without loss of
generality we can assume that the singular point is located at the origin de
coordinates. Thus, after a linear change of variables and a rescaling of the
time variable (if necessary) the analytic differential system with a center at
the origin can be written in one of the following three forms

(1a) & =—y+ Fi(z,y), Yy =x+ Fy(z,y);
(1b) i=y+ Fi(z,y), ¥ = Ia(z,y);
(1C) jﬁ':Fl(fL',y), y:FQ(x7y)7

where F(z,y) and Fa(z,y) are real analytic functions without constant and
linear terms, and defined in a neighborhood of the center. A center of an
analytic system in the plane is called linear, nilpotent, or degenerate if, after
an affine change of variables and a constant rescaling of the time it can be
written as systems (1a), (1b) or (1c), respectively.

A center is rigid if its angular speed is constant. The nilpotent and
degenerate centers cannot be rigid. Thus, the systems with a rigid center at
the origin are linear. Therefore, a planar analytic differential system with a
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center at the origin — after a linear change of variables, and a rescaling of
the time variable — is rigid if and only if it can be written in the form

(2) :U = _y+$F(xay)>

y = z+yF(zy),
where F'(z,y) is an analytic function, which vanishes at the origin. Observe
that, in the polar coordinates x = 7 cos § and y = rsin 6, system (2) becomes

7 = rF(rcosf,rsind),
0 = 1,
and then its angular speed is constant when it has a center at the origin.

A classical problem in the qualitative theory of planar differential equa-
tions is to distinguishing between a focus and a center, and it is called the
center—focus problem. This problem is unsolved, but in the case that the
singularity located at the origin is linear (see (1a)) it is of center or focus
type, and there are standard algorithms to distinguish between a focus and
a center. These algorithms go back to Poincaré [25], Liapunov [22, 21] and
other authors: [6, 13, 15, 19, 20]. The results given by Liapunov [21] de-
fine functions in the coeflicients of the analytic differential system which
determine the stability of the focus, or if we have a center when all these
functions are zero, such a functions are called now the Liapunov constants
or focal values. This paper describes these constants for some rigid systems,
and solves the center—focus problem on a class of systems of the form (2).
Moreover, by using the order of a weak focus we provide an upper bound
for the number of local limit cycles bifurcating in a small neighborhood of
the center—focus.

The so called isochronicity problem consists in determining the conditions
under which a singular point of a planar differential system with purely
imaginary eigenvalues is a center and all its periodic orbits in a neighborhood
of it have the same period. For the rigid systems the center—focus problem is
equivalent to the isochronicity problem. This is one of the reasons for which
differential systems of the form (2) has already been studied by several
authors. In [10] is characterized the case F(x,y) = Hp(z,y), where Hy(x,y)
is a homogeneous polynomial of degree p € N (see also [9]). This result was
recently improved in [17] by studying their limit cycles when F(z,y) = a +
H,(xz,y) and a € R. In [8] the case F(z,y) = Hi(z,y)+Ha(z,y) is analyzed,
and it is proved that all the center of this class are reversible. It was improved
in [1] where the authors research the cases F(x,y) = Hi(x,y) + Hp(z,y)
and F(z,y) = Ha(z,y) + Hop(x,y). In all these cases it is determined
the maximum number of limit cycles which can bifurcate from the weak
focus localized at the origin of system (2) (see also [28]). In [18] the case
F(z,y) = Ho(x,y)+ Hp(z,y) + Hy(x, y) is studied and complements [5, 7, 4]
(see also [2, 3, 27]). In [23] and [4] the authors also study the existence of
polynomial commutators for (2). In short in all these studies F' is at most
a sum of three homogeneous polynomials.
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The present paper solve the center—focus problem for (2) when F(x,y) is
the product f(z)g(y) of two polynomials with arbitrary degree. The strategy
consist in describe some focal basis of those systems, and the existence of a
focus with the highest order is also studied (see Corollary 5 and Remark 3).

Consider the following real polynomial differential system

(3) x =—-y+ :cf(ﬂs)g(y),
y=z+yf(z)g(y),
where
f(x)=ao+a1x+ - +anzV,
g(y) = bo+b1y+-"+bMyM,
and

Ne{2n,2n+1} CcNU{0} and M € {2m,2m+ 1} C NU{0}.
Remark 1. It is not difficult to see that one of following conditions

(4) 9(=y) = —g(y) for ally, or f(—x)=—f(x) forallz,

implies that system (3) is reversible. More precisely, if the function g (re-
spectively f) is odd, the system is invariant under the changes (z,y,t)
(x,—y,—t) (respectively (z,y,t) — (—x,y,—t)) and then it is symmetric
with respect to the x—axis (respectively y—axis). This symmetry forces that
any center—focus singularity at the origin of coordinates must be a center.
Moreover, system (3) with agbg = 0 has either a center or a weak focus at
the origin. Therefore, one of the conditions, mentioned in (4) implies that
system (3) has a reversible center at the origin.

We recall that a singular point of a planar polynomial differential system
is a strong focus if its eigenvalues are of the form o + i with a # 0, and it
is a weak focus if & = 0 and it is not a center.

In general the rigid system (2) with F'(0,0) = 0 has a center—focus sin-
gularity at the origin, and this is a reversible center as long as F(z, —y) =
—F(x,y) for all z,y or F(—xz,y) = —F(x,y) for all z,y.

Our main result is the following one, where for a definition of a focal basis
see subsection 2.1. Here N dentoes the set of all positive integers.

Theorem 1. Consider the polynomial differential system (3) with N €
{2n,2n+ 1} Cc NU{0} and M € {2m,2m + 1} C NU{0}. Then the origin
of system (3) admits
A={ag,a2,...,a0n—2,a2,} and B={bg,ba,..., bam—2,bam}
as focal bases.
Theorem 1 improves the main result of Dias and Mello [12], where the
authors assume that either f(z) =1 or g(y) = 1 (see also [11]).

In section 2 we describe the standard methods for computing the Lia-
punov constants in the case of rigid systems, and we prove a particular case
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of Theorem 1 (see Proposition 3). Finally, section 3 is devoted to prove
Theorem 1 and some consequences.

2. PRELIMINARY DEFINITIONS AND RESULTS

In the next subsection we recall some definitions and some classical results
in order to prove a weaker version of the main result (see Lemma 2 and
Proposition 3).

2.1. The Poincaré map and the Liapunov constants. Consider system
(2) in polar coordinates with F' a polynomial of degree § € NU {0}, and not
necessarily with a zero of F' at the origin. The homogeneous decomposition
of F' allows to write system (2) as

dr 140 .
(5) 75 = FO.0r+> Ri(O)r,
j=2

where R;(#) is a homogeneous polynomial of degree j — 1 in the variables
cosf and sinf. In particular, R;(6) is a 2r—periodic function.

Let (6, p) be the solution of system (5) satisfying that r(0, p) = p. Since
r(6,0) = 0 we obtain that r(6, p) can be expanded in a convergent power
series of p > 0 sufficiently small. By (5), it take the form

r(0; p) = exp(F(0,0)0)p + > ui(0)p’, with u;(0) = 0.
i>2
Moreover the continuous dependence of the solutions on the parameters
imply that every trajectory of system (2) in a sufficiently small neighborhood
of the origin crosses every ray § = ¢, 0 < ¢ < 2m. Consequently, it is
sufficient to consider all the trajectories passing through a small segment.
In this context it is suitable to recall the following definitions and properties.

(i) The function P(p) = r(2m, p) defined in a convenient interval [0, po]
with pg > 0 is called the Poincaré map or first return map.
(ii) D(p) = P(p) — p is the displacement map, and it satisfies

D(p) = [exp(F(0,0)2) — 1p+ 3 u(27)p".
k>2

Its zeros provides the periodic solutions near the origin of coordi-
nates.

(iii) The coefficients of the displacement map are named the Liapunov
constants of system (2).

(iv) A focal basis associated to system (2) is a basis of the ideal generate
by the Liapunov constants in the ring of real polynomials on the
coefficients of F(x,y).

By the Hilbert Basis Theorem the ideals of this ring are finitely generated.

Furthermore it is clear that system(2) has a center at the origin if and only
if D(p) = 0, and also that the Liapunov constants control the behavior of
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the Poincaré map in a neighborhood of the origin. The geometry of this
Poincaré map implies that the first nonzero Liapunov constant corresponds
to an odd power. This nonzero constant does not depend of the ray where we
take the segment in the definition of the respective displacement map, and
it defines the order of the weak focus. Thus the order is ¢ when the power
of the first non—zero coefficient of D(p) is k = 2¢ + 1). The coefficients
uge+1(2m) are called the Liapunov quantities of system (2), and they span
the same ideal associated with the definition of focal basis. Thus, if all the
Liapunov quantities vanish the singular point is a center.

Remark 2. A classical method to compute the Liapunov quantities of system

2, 2
Ty + ZHq(x,y), where Hj
q=3
are homogeneous polynomials of degree q (see for instance [21]). It is well
know that there exist some V(x,y) such that V (its rate of change along the
orbits of system (2)) takes the form

(1a) uses a formal power series V(x,y) =

Vo= mgr® 4 nart + - o o or™ T 4

where 12 = 2% + y%. Thus system (2) has a center at the origin if and
only if the focal values nop, = 0,Vk. Moreover, the stability of the origin
is determined by the sign of the first nonzero coefficient of V, and it is
proportional to the respective Liapunov quantity of (2). More precisely,
F(0,0) = 0 and the Frommer’s Theorem [15] shows that if ny = -+ =19 = 0
and Mogio # 0 then

Ugey1(27) = 272042

Therefore the characterization of a center joint to the stability and the order
of the weak focus is independent of the method used to describe the Liapunov
constants.

The problem of computing the Liapunov constants for determining a cen-
ter goes back to Liapunov [21, 22] and Poincaré [25]. The major difficulty
with these Liapunov constants is their high complexity, and to find them ex-
plicitly becomes a computational problem. However there are several ways
to compute them [14, 26], and different application to solve the center—focus
problem [16, 24]. For some differential equations of the form (5) it is possible
to describe the behavior of the expansion Z?.Zluj(H)pj of r(0; p), because
), () is the coefficient of p* in %ijluj (0)p’. Thus if we replace r(6; p) in
(5) we get

o+1 .
(6)  uj(h) = coefficient of p* in Z R;(9) [Zui(e)p’}], for all k > 1,
j=1 i>1

with R;(0) = F(0,0). For instance, (6) induces the Initial Value Problem
(7) uy(0) = F(0,0)u1(0), u1(0) = 1.
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Its solution is u1(0) = exp(F'(0,0)0). In general, observe that given j > k,

the right side of (6) does not add any element in the coefficient of p*, and
17
that given 1 < j < k the coefficient of p* in the expression [Zplui(ﬁ)pl]
corresponds to all the possible ways of obtaining & by adding j indices
i1,12,...,14; of u;() (repetitions are allowed). Consequently, the coefficient

of p¥ in [Zizlui(ﬁ)pl}] is

> un(O)uiy(6) - iy (6).

iy +igt+ij=k
every i;>1

Therefore, if k > 2 the function u} () must satisfy the linear equation

ul(0) = F(0,0)ux(0) + ZR Z wiy (0)uiy (0) - - - i, (0),
itigtetij=k
every i, >1

with the initial condition uy(0) = 0. In particular, if F(0,0) =0
ui(0) = 1 and
(8) Z / i, (B () -, (1),

7.1+'L2+ +7, L=k
every i;>1

2.2. First result. In this subsection we prove a particular case of the main
result. To this end the next formulaes

2w 2m
9) / cos?Pt1 9sin? do = / cos? fsin®t1 dh =0, Vp,Ge NU{0},
0 0
will be needed.
Lemma 2. Consider the system
it = —y+z(l+by+--+byrM(az+ - +ana),
g = z+yl+by+--+byz™)(arz+ -+ anz™),
where N € {2n,2n + 1} € NU {0} and M € {2m,2m + 1} C N. The
following statements hold.
(a) The solution r(6, p) of system (10) with (0, p) = p satisfies (8). The
displacement function has the form

D(p) = agmp® + > ui(2m)p
i>4

(10)

and uz(f) = a1 sin.
(b) Suppose that ag = --- = agg = 0 for some { < n — 1, then there is a
constant Ay # 0 such that the map in (a) can be written as

D(p) = anes2Arp™ ™+ ) wi(2m)p!
i>20+4
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Moreover, there are Cy, ; € R, P(j,k) € 2NU{0} and I(j,k) € 2N+1

such that
ugs(0) = Z Cas,j cost(:25) g 5in!(5:25) g, 1<s<l+1;
jEFQS
u2s+1(0) = Z Cosi1, cost(3:25+1) g ginP(3:25+1) g, 1<s<¢;
JEF2s41

where Fy is a finite set for every 2 < k < 204 2.
(c¢) System (10) has a center at the origin if and only if ag = -+ =
aop — 0.
Proof. System (10) satisfies (2) with F'(0,0) = 0, and equation becomes

(11)

gr MEN+1 M+N+1
i Z Z asbycos® Osint @ | ! = Z Z R;(0) | 17,
j=2 stt=j—1 j=2 stt=j—1

with ap = 0 and by = 1. As Ry(f) = ajcosf and R3(f) = agcos?6 +
a1by cosfsin b, (8) implies that ug(0) = a1 siné and

0
us(f) = / (ag cos®t + a1(2ay + by) costsint)dt.
0

Therefore (a) holds.

We shall obtain (b) by induction. The first step starts with (a) and
az = 0. A direct computation shown that D(p) = 2Ta3p® + Zui(%r)pi,

i>6
2a3 +b

uz(0) = # sin? 0 and uy(6) = —1 <(3a:{’—a3+4a%b1 +a1bs) cos(260) —
Sa? — bag — 4a%b1 — a1b2> sinf. Since cos(26) = cos? 6 — sin? 6, the first
induction step is proved. In general, if ag = --- = a9y = 0, with £ > 2 the
induction hypothesis implies that

D(p) = ageAr1p” '+ Y wi(2m)ph
1>20+2

Furthermore, there is a finite collection of numbers Cy; € R, P(j,k) €
2N U {0} and I(j,k) € 2N + 1 such that

(12)
ugs(0) = Z Cas,j cosPU:29) g 5in(5:25) g 1<s<y,;
JEF2s
ugs+1(0) = Z Cosy1,j cosPU2s+D) gginP@2st) g 1 < s < —1;
JE€EF2s+1

where Fj is a finite set, for every 2 < k < 2¢. Since the first nonzero
Liapunov constant corresponds to an odd number we have

(13) D(p) = uger3(2m)p> P + Y wi(2m)p,
i>2044
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where 20 +3 < 2n +1 and
20+2

tnps5(0) = / Rovvs(t)dt + Z / R i (8) -, (1)t

i1 +ig+-- +z-—2€+3
every 7,@>1

In this formula the functions R;’s are given in (11) with the induction as-
sumptions, that is

/+1
(14) R24+3 ((9) = a2¢+2 COS2Z+2 0 + Za20+1b2g+1_20 COSQU—‘_1 0 sin2€+1_2‘7 0
o=0
and
(15)
2] |
Rj(0) = ) azp41bj_25—2cos® T Osin/ 27720, for all 2 < j < 20+ 2.
o=0

Thus, (9) implies that

27
ugers(2m) = a23+2/ cos? P2 tdt + Iy 3(27) = agproAp + Iopy3(2m),
0

where
2042

Ioeis(0 Z / R;( i, (t) - -, (t)dt.

i1+ig+-- +z =20+3
every Z/>1

Therefore statement (b) is directly obtained from (13) and the next claim.
Claim 1. Suppose that ag = --- = a9y = 0 with £ > 2. Then
(1) uge41(0) finitely expands on even powers of cosf and sin as in (b);
(ii) u2€+2(9) satisfies (b); and

™
(iii) / cos® 2 tdt # 0 and I 3(27) = 0.
0

Proof of Claim 1. By (8) uge11(6 / Ropyq(t)dt + Z/ S%H )dt, and

20+1
uge+2(0 /Rgg_,_g )dt + Z/ 52£+2 )dt, where

k
Sj (t) = Rj (t) Z Uiy (t) C U (t)a
iqtigttij=k
every i;>1

for every k € {20+ 1,2¢ + 2} and j > 2. In both cases (15) implies

20—1
6 7] 6
/ R2g+1(t)d7f == E a20+1b2g_20_1/ COSQCH_1 tsin%_%_l tdt,
0

o=0 0
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and

0 ¢ 0
/ Ropio(t)dt = ZGQO—J,_le@QU/ cos27 ! ¢ 5in20727 ¢4t
0 = 0

Thus the first terms of ugy1(0) and ugpi2(f) have the stated form because
for every p,q € NU {0} we have

0 a /- 2a+2p+2
3 . 1 — cos“®T2PT= 4
16 20+1 (1) gin2d 1 (£) dt — ) (_1)e
16 [ o5 ) > (o) e
and
9 13+q ~ ~ . 2a+l
; o +q sin 0
17 () sin®d(t)dt = 1)
1 [Cestantoa =3 (") 0 g
In general the arguments to prove (i) and (ii) reduce to show the following

claim.

Claim 2. Suppose that j > 2. Then S’JZZH(IS) (respectively SJZHQ(L‘)) admits
a finite expansion such that every term has the form of the integrant function
in (16) (respectively (17)).

Proof of Claim 2. Here we only do the proof for the function S]%H(t), be-

cause the proof for the function 5]24+2 (t) is similar. From (15) we have

S3N(t) =arcost Y wi (B)uy(t).
i1 +ig=20+1
every i;>1
Since the terms have the form ueyen (t)uogq(t), equation (12) implies that
COS tlepen (t)Uogq(t) satisfies the claim. Then, the second term of wugy1(0)
has the form of (b). In general, the terms of S]%H(t), with 7 —1 > 2 admit
two cases:
(a.1) Rj(t)ugy (t) -+ ui;_; (t)Ueven(t) with iy + -+ +4;_1 odd; and
(3.2) Rj (t)uil (t) cee uij_l(t)uodd(t) with 1 +--- + ij_l even.
Consider (a.1) with j = even. By (12) and (16),

(18) Rj_1(t)uy (t) -+ - ui;_, (t) = 0% ¢ sin°% ¢,

where A(t) /2, cos°@ tsin°@ ¢ means the existence of a finite decomposition
A(t) = >, Ag(t) and a finite set of constants py,qr € NU {0}, ¢, € R
(independent of t) such that Aj(t) = cjcos?PkT1tsin?%+1¢ for all ¢ and
k. Notice that this notation naturally extends to all the possible cases
A cos?MEsin®Uen ) ag, cos®UM tsin® t ete. In this way, equation (15)
implies that R;_1(t) = Roda(t) ~m cos®™tsin®?t, R;(t) = Repen(t) ~m
c0s?¥ ¢ sin®*" ¢ and also that sintR,qq(t) ~m Rodds1t, for all 3 < odd <
2¢ — 1, then
Rj(t)ui, (t) - - ug,_, () Ao cos®™ tsin® e t.
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But (12) gives Uepen (t) ~Rpm cos®¢ tsin®@ ¢, thus
(19) Rj(t)uy (t) - - - ui;_y (H)ueven(t) ~m cos®% ¢ sin°% ¢,
Therefore, (a.1) with j = even satisfies the claim. The case (a.l) with
j = odd, also verifies (18), but now R;_1(t) = Reven(t) ~m cos® ¢ sin®e" ¢,
R;(t) = Road(t) =m cos®¥ ¢ sin®¥ ¢ and sintReypen(t) ~m Reveni1(t) for all
2 < even < 20 — 2. However, as Ueypen(t) ~m coseVem ¢ gin®dd ¢ (a.1) with
J = odd also satisfies (19). This concludes the proof of the claim in the case
(a.1).

To obtain the claim in the case (a.2), observe that (12) and (17) give
(20) Rj_1(t)wiy () -+ - wiy_, () ~m cos®@ ¢ sin®ven ¢,
Thus, the conditions Reyen (t) R c0s°% t sin®em t ~,, cos®t and Rogq(t) ~m
c0s%% t §in® ¢ ~,, cos®® tsint imply that

Rj(t)ugy (t) - ui;_, (1) ~m cos%% ¢ sin°%d ¢,
But ueqq(t) ~m, cos®" tsin®’" ¢, consequently if 2¢ > j > 2 then
Rj(t)uiy () - wi;_y (E)Uodd(t) ~m cos®¥ ¢ 5in°dd ¢,

This proves the claim in the case (a.2). Therefore Claim 2 holds. O

From Claim 2 statement (i) of Claim 1 follows.

The proof of (ii) is similar, and uses (i). The details are left to the reader.
The first part of (iii) is directly obtained from the equality

C(p+ 350G+ 3)
F'(p+q+1)
where T' is the Gamma Function which satisfies I'(3) = /7, and also that

1 1.-3.5.-7-..(2m — 1 1
T'(m) =m!, F<m+2>: 35 72m(m )F<2>, for all m € N.

21
(21) / cos?? 0 sin®? 6dh = 2 VvV p,q €N,
0

2
In particular / cos?*2 tdt # 0. The last part of (iii) follows from (9). The
0

2042
integrant function of Ipsy3(0) is ZSJZH?’(t), with ugei1(0) and ugei2(0) as
=2
in (i) and (ii), respectively. Thus a similar idea as in the last proofs shows
20+2

that ZSJZH?’ (t) R cos?¥ ¢ sin®¥ ¢ and then Iy, 3(27) = 0. Therefore (iii)
j=2
holds. This proves Claim 1. O

From Claim 1 it follows the proof of statement (b).

To obtain (c) consider the center assumption D(p) = 0. By using (a) and
(b) it is not difficult to prove that as = - - - = ag, = 0. The converse follows
from Remark 1, and so (c) holds. Therefore the lemma is proved. (]
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Remark 3. Notice that a direct application of statement (b) of Lemma 2
shows that the assumptions ag = a4 = -+ = aop_2 = 0 and az, # 0 imply
that (10) has a weak focus or order n, located at the origin.

Proposition 3. Consider the following system

& = —y+a(bo+by)(a+az+---+ayz’),

22 .
(22) g = z+yo+by)(a+arz+- +ayz),

where N € {2n,2n + 1} C NU{0}. The origin is a center for system (22)
if and only if one of the following conditions holds:

(i) bp = 0.

(11) ag = az :~--:a2n:0.

Moreover, the center is reversible.

Proof. Suppose that one of the hypotheses, (i) or (ii) holds. A direct appli-
cation of Remark 1 shows that (22) has a reversible center at the origin.

Conversely, assume that (22) has a center. Since the eigenvalues of the
linearization at the singularity are agbg = 4, the product agbg must be zero.
If by # 0 we can rewrite (22) as

i = —y+az(l+by)(az+---+ayz),

g = z+y(l+by) @+ +ayae?),
where by = I;—é and a; = ajby (because ap = 0). Statement (c) of Lemma
2 with M = 1 implies as = -+ = a9, = 0. The last part follows from
Remark 1 and concludes the proof. O

3. THE FOCAL BASIS AND RIGID SYSTEMS

Using the notation of system (3) in the next lemma we consider the case
m > 1 because in Lemma 2 we have studied the case m = 0.

Lemma 4. Let f(z) = ag+a1z+---+anz™ be a real polynomial map such
that N € {2n,2n+ 1} C NU {0}, and consider the following system
(23)

odd powers no power restrictions

i o= —y+x(b1y+~-+b2p_1y2p*1+bgpy2p+~-+bMyM)f(x),
y = x+y(bly+--~+bzp_1y2p*1+b2py2p+---+bMyM)f(x),

where M € {2m,2m + 1} C N and 1 < p < m. Suppose that bap, # 0. Then
the following holds.

(a) The first Liapunov constants of system (23) are
0, 0, ce ,0, aobngp,
where the constant By, # 0.
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(b) Suppose that ay = ag = -+ = agy = 0, for some £ < n—1. Then
there is a constant Ay # 0 such that the Liapunov constants of system
(23), as in (a) satisfy

0,0,...,0,a0bapBy = 0,0, ..., bapassi2As.

(c) System (23) has a center at the origin if and only if ag = --- =

aon = 0.
Proof. In the new coordinates X = —y and Y = z, system (23) becomes
M .
X = -Y+X (Z m(—X)l) fY),
(24) M
Y = X+Y (Z m(—X)") fY),
i=0
where bg = by = -+ = bgp—2 = 0. In polar coordinates X = rcosf and
Y = rsin6 this system becomes
(25)
gp MENAT 571 A  M4N+1
a0 Z (Z(_l)taj—l—tbt cost Osin 1t 9) rd = Z R;(0)r7.
=2 \t=0 j=2
Therefore
5] |
(26) R;(0) = Z aj—1-2-bar cos? fsin? 1727 ¢
7=0
372] |
— Z aj—27—2bar 41 cos?™ 1 9sin/ 727729, for all j > 2.
7=0
(2]
Thus Rapi1(t) = aobzp cos?P(t) — Z agp—27—1b2r 41 cos? ™t tgin?P=27 1 ¢,
=0

and from (8) and (9) we obtain that

2m
U2p+1(27l') = aobgp/ COSQp(t>dt + [2p+1(27r) = aobngp + Igp+1(271'),
0
2p 0
where Io,11(0) = Z / S’]?p *L(¢)dt. More precisely, as (8) induces the gen-
j=2"9
0 k=1 .9
eral equality ug(6) = / Ry (t)dt + Z/ Sj’?(t)dt, statement (a) is directly
0 —5J0
Jj=2

obtained from Remark 2 and the next claim.
Claim 3. The following statements hold.
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2w
(i) Rijt)dt = 0 for all 2 < j < 2p, w1(0) = 1 and ux(f) =
—agby sin 6.
(ii) u;(2m) =0 for all2 < j < 2p and

Uz, (0) Ry 05" §sin® g if 1<s<p,
U2s+1(0) ~p, cos Osin®" 0 if 0<s<p-—1.

2
(iii) /O cos® tdt # 0 and Iopi1(2m) = 0.

Proof of Claim 3. The first part of (i) is obtained form (9) because
(27)

R;(0) = — Z aj—27—2bar 41 cos?™ 1 sin? 727729, for all 2 < j < 2p.
7=0
As (26) gives Ra(t) = —agb; cost, the last equality follows from (8). There-
fore (i) holds.

To obtain (ii) observe that the case p = 1 is obtained directly from (i).
In the general case p > 2 the argument proceeds by induction. The firs step
is given by ui(0) = 1, ua(f) = —apby sinf and us(2w) = 0. The induction
assumption is

u;j(2m) =0 if 2<j<2s—2<2p—2.
(28) u20(0) ~m, cosEUen @ sin®dd g if 1<o<s—-1<p-—-1,
U2o+1(0) A, cos® Osin®" 0 if 0<o<s—1<p-—-2.
Now the argument reduces to show the following claim.
Claim 4. The following statements hold.
(I) 2 <j <25 = S2°(t) ~p cos®™(t) sin® " (t).
(I1) 2 <j <25 +1 = S7F(E) ~yp cos?(t) sin®(t).
(III) ’LL2571(27T) =0.

Proof of Claim 4. In fact Ra(t) = —agby cos(t) gives
S35(t) = —agby cost Z Uiy (B)wiy ().

i14ig=2s
every i,>1

The terms are either Ueyen () Uepen(t) OF Uoda(t)toqq(t). Thus (28) implies
that cos tueyen (t)Uepen(t) and cos tugq(t)uoqq(t) have the stated form, and
S25(t) satisfies the claim. In general, the terms of S?S(t), with j —1 > 2
admit two cases:

(a.1) Rj(t)ugy (t) - ui;_; (t)ueven(t) with ig + -+ +14;_1 even.

(a.2) Rj (t)uil (t) s ul-jfl(t)uodd(t) with 41 +--- + Z'j,1 odd.
Consider (a.1). By (28) and (17),

Rj_1(t)ui (1) - Uj; 4 (t) ~m cos® ¢ gipeven t,
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Since the R;’s satisfy (27), R;_1(t)sint ~,, R;(t) and then

Rj(t)uiy (t) -+ - wiy_ () ~m cos%% ¢ sin°%d ¢,
Moreover, (28) gives Ueyen (t) =2y, cosVe™ tsin® ¢, Therefore

R;(t)u; (t)--- Ui, (t)teven(t) ~m cos®™ ¢ sin®vem ¢,

and SJQ-S(t) satisfies (I) if (a.1) holds. If (a.2) holds then equations (28) and
(16) imply

Rj_1(t)uiy () - - ui;_, () ~m cos?¥ ¢ sin°dd ¢,
Consequently

Rj(t)uiy () - ui;_, (1) ~m cos?% ¢ sin®ven ¢,
and Uygq(t) Ry, cos®U" sin®ve™ t imply that

Rj(t)uiy () -+ - wi;_y () Uodd(t) ~m cos®% ¢ gin®ven ¢,

Therefore, szs(t) always satisfies (I). The proof of (II) for S]Zsﬂ(t) is similar
to the proof of (I). Moreover the properties of stfl(t) and (i) imply (III).
The details are left to the reader. Therefore the claim is proved. O

From Claim 4 statement (ii) follows.
2
To prove (iii) observe that equation (21) directly gives / cos?P(t)dt # 0.

0
A similar argument used in the proof of the (ii) shows that the integrant
2p 9
function of Ippy1(0) = Z /0 Sj?p L (#)dt complies (9), and consequently
j=2
I5p+1(2m) = 0. This concludes the proof of Claim 3. O

By using Remark 2 and Claim 3, it is not difficult to obtain statement
(a).
To prove (b) consider the next claim.
Claim 5. The following statements hold.
(i) If 2<j <2p+2(+2, then

R;(0) € {4, cos®™ 9 sin®e" 0, ~2,,, cos®" sin® 9},

2m
and so / R;(t)dt = 0.

0
(ii) u;j(2m) =0 forall2 < j <2p+20+2

s (0) R cose" fsin® g, if 1<s<p+0+1,
U2s41(0) R cOST Osin®m g, if 0<s<p+L
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(iti) By (26),

_ 2 s 2042
R2p+2g+3(9) = bgpagg_,_g cosP  sin 0
p+L

- E a2p420—27+1b2r 41 €OS
7=0

27+1 2p+20—27+1 0

0 sin

Consequently

Uopt20+3(27) = bopanero Ay + Iopiops3(27),

2

where Ay = / cos?P(t) sin?*2(t)dt is different from zero and the
0

value Iopyop43(2m) = 0.

The proof of Claim 5 is similar to the proof of Claim 3 and we do not prove
it. Claim 5 directly implies statement (b). In the first part, the hypothesis
ap = --- = ag; = 0is used to describe Rgp 4,44 With 2 < 2p+odd < 2p+20+2.
The details are left to the reader. Therefore statement (b) holds.

Statement (c) follows from an application of (a), (b) and Remark 1.
Therefore the lemma is proved. U

Corollary 5. Set f(x) = ag +arx + -+ anz™. Suppose that ag = as =
cov = a9n_o =0 and azy, # 0. Then the system

i —y+ xngm‘l +y*™) f(2),
g = a+y Tt +y") f(@),
with m > 1 has at the origin a weak focus of order m + n. Consequently,

there are at most m + n small limit cycles in a suitable neighborhood of the
origin.

(29)

Proof. This is a direct consequence of the proofs of the last claims, under
the assumptions p = m, £ = n—1 and by, = 1. The origin is a center—focus
singularity of (29). Moreover equation (29) and a particular solution r(6; p)
of it imply that its displacement function is

2w
D(p) = <a2n/ cos®™ (t) sin2"(t)dt> prmtantl 4 Z u; (27)p".
0

1>2m+2n-+2

Therefore, the order of the weak focus associated to (29) is m + n, and it is
located at the origin. The last part is consequence of the well-know property
that the order of a weak focus is an upper bound for the number of local
limit cycles bifurcating in a small neighborhood of the focus. O

Remark 4. By using Lemmas 2 and 4 it is not difficult to prove that the
set {ag,az,...,a,} is a focal basis for both systems (10) and (23).

Proof of Theorem 1. If some beyen, # 0, by using the smallest even j with
b; # 0. The result is directly obtained from Remark 4.
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If some aeypen, # 0, the new coordinates X = —y and Y = x, imply that
system (3) becomes

N
X = —Y+X(Zai(—Y)i> 9(X),

=0
N
Y = X+Y (Z ai(—Y)i> 9(X).
=0

Thus the proof of Lemmas 4 and 2 imply that for the smallest even with
Geven 7 0 the following two properties.

(i) The first nontrivial Liapunov constant has the form aeyenboBeven,
where Bgyey, 1S @ nonzero constant.

(ii) Assuming that by = by = -+ = byy = 0, for some ¢ < m — 1, then
the first nontrivial Liapunov constant has the form aeyenb2ri2Beven,
where Byen 1S a nonzero constant.

Consequently, Remark 2 helps to obtain that the set {bg, ba,...,ban} is a
focal basis for (3), and the theorem holds.

Ifag=ao=---=as, =0and bg = by = -- - = by, = 0, the result follows
from Remark 1. This concludes the proof of the theorem. ([
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