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Abstract. In general the center–focus problem cannot be solved, but
in the case that the singularity has purely imaginary eigenvalues there
are algorithms to solving it. The present paper implements one of these
algorithms for the polynomial differential systems of the form

ẋ = −y + xf(x)g(y), ẏ = x + yf(x)g(y),

where f(x) and g(y) are arbitrary polynomials. These differential sys-
tems have constant angular speed and are also called rigid systems. More
precisely, this paper gives focal bases of these systems, and then neces-
sary and sufficient conditions in order to have an uniform isochronous
center. In particular, the existence of a focus with the highest order is
also studied.

1. Introduction and statement of the main result

Consider x0 ∈ R2 as the singularity of an analytic differential system in
the plane. The singularity x0 is a center if there exists an open neighborhood
U of x0 such that all the solutions in U \ {x0} are periodic. Without loss of
generality we can assume that the singular point is located at the origin de
coordinates. Thus, after a linear change of variables and a rescaling of the
time variable (if necessary) the analytic differential system with a center at
the origin can be written in one of the following three forms

ẋ = −y + F1(x, y), ẏ = x + F2(x, y);(1a)

ẋ = y + F1(x, y), ẏ = F2(x, y);(1b)

ẋ = F1(x, y), ẏ = F2(x, y);(1c)

where F1(x, y) and F2(x, y) are real analytic functions without constant and
linear terms, and defined in a neighborhood of the center. A center of an
analytic system in the plane is called linear, nilpotent, or degenerate if, after
an affine change of variables and a constant rescaling of the time it can be
written as systems (1a), (1b) or (1c), respectively.

A center is rigid if its angular speed is constant. The nilpotent and
degenerate centers cannot be rigid. Thus, the systems with a rigid center at
the origin are linear. Therefore, a planar analytic differential system with a
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center at the origin – after a linear change of variables, and a rescaling of
the time variable – is rigid if and only if it can be written in the form

(2)
ẋ = −y + xF (x, y),
ẏ = x + yF (x, y),

where F (x, y) is an analytic function, which vanishes at the origin. Observe
that, in the polar coordinates x = r cos θ and y = r sin θ, system (2) becomes

ṙ = rF (r cos θ, r sin θ),

θ̇ = 1,

and then its angular speed is constant when it has a center at the origin.

A classical problem in the qualitative theory of planar differential equa-
tions is to distinguishing between a focus and a center, and it is called the
center–focus problem. This problem is unsolved, but in the case that the
singularity located at the origin is linear (see (1a)) it is of center or focus
type, and there are standard algorithms to distinguish between a focus and
a center. These algorithms go back to Poincaré [25], Liapunov [22, 21] and
other authors: [6, 13, 15, 19, 20]. The results given by Liapunov [21] de-
fine functions in the coefficients of the analytic differential system which
determine the stability of the focus, or if we have a center when all these
functions are zero, such a functions are called now the Liapunov constants
or focal values. This paper describes these constants for some rigid systems,
and solves the center–focus problem on a class of systems of the form (2).
Moreover, by using the order of a weak focus we provide an upper bound
for the number of local limit cycles bifurcating in a small neighborhood of
the center–focus.

The so called isochronicity problem consists in determining the conditions
under which a singular point of a planar differential system with purely
imaginary eigenvalues is a center and all its periodic orbits in a neighborhood
of it have the same period. For the rigid systems the center–focus problem is
equivalent to the isochronicity problem. This is one of the reasons for which
differential systems of the form (2) has already been studied by several
authors. In [10] is characterized the case F (x, y) = Hp(x, y), where Hp(x, y)
is a homogeneous polynomial of degree p ∈ N (see also [9]). This result was
recently improved in [17] by studying their limit cycles when F (x, y) = a +
Hp(x, y) and a ∈ R. In [8] the case F (x, y) = H1(x, y)+H2(x, y) is analyzed,
and it is proved that all the center of this class are reversible. It was improved
in [1] where the authors research the cases F (x, y) = H1(x, y) + Hp(x, y)
and F (x, y) = H2(x, y) + H2p(x, y). In all these cases it is determined
the maximum number of limit cycles which can bifurcate from the weak
focus localized at the origin of system (2) (see also [28]). In [18] the case
F (x, y) = H0(x, y)+Hp(x, y)+Hq(x, y) is studied and complements [5, 7, 4]
(see also [2, 3, 27]). In [23] and [4] the authors also study the existence of
polynomial commutators for (2). In short in all these studies F is at most
a sum of three homogeneous polynomials.
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The present paper solve the center–focus problem for (2) when F (x, y) is
the product f(x)g(y) of two polynomials with arbitrary degree. The strategy
consist in describe some focal basis of those systems, and the existence of a
focus with the highest order is also studied (see Corollary 5 and Remark 3).

Consider the following real polynomial differential system

(3)
ẋ = −y + xf(x)g(y),
ẏ = x + yf(x)g(y),

where
f(x) = a0 + a1x + · · · + aNxN ,
g(y) = b0 + b1y + · · · + bMyM ,

and

N ∈ {2n, 2n + 1} ⊂ N ∪ {0} and M ∈ {2m, 2m + 1} ⊂ N ∪ {0}.

Remark 1. It is not difficult to see that one of following conditions

(4) g(−y) = −g(y) for all y, or f(−x) = −f(x) for all x,

implies that system (3) is reversible. More precisely, if the function g (re-
spectively f) is odd, the system is invariant under the changes (x, y, t) 7→
(x, −y, −t) (respectively (x, y, t) 7→ (−x, y, −t)) and then it is symmetric
with respect to the x−axis (respectively y−axis). This symmetry forces that
any center–focus singularity at the origin of coordinates must be a center.
Moreover, system (3) with a0b0 = 0 has either a center or a weak focus at
the origin. Therefore, one of the conditions, mentioned in (4) implies that
system (3) has a reversible center at the origin.

We recall that a singular point of a planar polynomial differential system
is a strong focus if its eigenvalues are of the form α + iβ with α ̸= 0, and it
is a weak focus if α = 0 and it is not a center.

In general the rigid system (2) with F (0, 0) = 0 has a center–focus sin-
gularity at the origin, and this is a reversible center as long as F (x,−y) =
−F (x, y) for all x, y or F (−x, y) = −F (x, y) for all x, y.

Our main result is the following one, where for a definition of a focal basis
see subsection 2.1. Here N dentoes the set of all positive integers.

Theorem 1. Consider the polynomial differential system (3) with N ∈
{2n, 2n + 1} ⊂ N ∪ {0} and M ∈ {2m, 2m + 1} ⊂ N ∪ {0}. Then the origin
of system (3) admits

A = {a0, a2, . . . , a2n−2, a2n} and B = {b0, b2, . . . , b2m−2, b2m}
as focal bases.

Theorem 1 improves the main result of Dias and Mello [12], where the
authors assume that either f(x) = 1 or g(y) = 1 (see also [11]).

In section 2 we describe the standard methods for computing the Lia-
punov constants in the case of rigid systems, and we prove a particular case
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of Theorem 1 (see Proposition 3). Finally, section 3 is devoted to prove
Theorem 1 and some consequences.

2. Preliminary definitions and results

In the next subsection we recall some definitions and some classical results
in order to prove a weaker version of the main result (see Lemma 2 and
Proposition 3).

2.1. The Poincaré map and the Liapunov constants. Consider system
(2) in polar coordinates with F a polynomial of degree δ ∈ N ∪{0}, and not
necessarily with a zero of F at the origin. The homogeneous decomposition
of F allows to write system (2) as

(5)
dr

dθ
= F (0, 0)r +

1+δ∑

j=2

Rj(θ)r
j ,

where Rj(θ) is a homogeneous polynomial of degree j − 1 in the variables
cos θ and sin θ. In particular, Rj(θ) is a 2π−periodic function.

Let r(θ, ρ) be the solution of system (5) satisfying that r(0, ρ) = ρ. Since
r(θ, 0) ≡ 0 we obtain that r(θ, ρ) can be expanded in a convergent power
series of ρ ≥ 0 sufficiently small. By (5), it take the form

r(θ; ρ) = exp(F (0, 0)θ)ρ +
∑

i≥2

ui(θ)ρ
j , with uj(0) = 0.

Moreover the continuous dependence of the solutions on the parameters
imply that every trajectory of system (2) in a sufficiently small neighborhood
of the origin crosses every ray θ = c, 0 ≤ c < 2π. Consequently, it is
sufficient to consider all the trajectories passing through a small segment.
In this context it is suitable to recall the following definitions and properties.

(i) The function P (ρ) = r(2π, ρ) defined in a convenient interval [0, ρ0]
with ρ0 > 0 is called the Poincaré map or first return map.

(ii) D(ρ) = P (ρ) − ρ is the displacement map, and it satisfies

D(ρ) = [exp(F (0, 0)2π) − 1]ρ +
∑

k≥2

uk(2π)ρk.

Its zeros provides the periodic solutions near the origin of coordi-
nates.

(iii) The coefficients of the displacement map are named the Liapunov
constants of system (2).

(iv) A focal basis associated to system (2) is a basis of the ideal generate
by the Liapunov constants in the ring of real polynomials on the
coefficients of F (x, y).

By the Hilbert Basis Theorem the ideals of this ring are finitely generated.
Furthermore it is clear that system(2) has a center at the origin if and only
if D(ρ) ≡ 0, and also that the Liapunov constants control the behavior of
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the Poincaré map in a neighborhood of the origin. The geometry of this
Poincaré map implies that the first nonzero Liapunov constant corresponds
to an odd power. This nonzero constant does not depend of the ray where we
take the segment in the definition of the respective displacement map, and
it defines the order of the weak focus. Thus the order is ℓ when the power
of the first non–zero coefficient of D(ρ) is k = 2ℓ + 1). The coefficients
u2ℓ+1(2π) are called the Liapunov quantities of system (2), and they span
the same ideal associated with the definition of focal basis. Thus, if all the
Liapunov quantities vanish the singular point is a center.

Remark 2. A classical method to compute the Liapunov quantities of system

(1a) uses a formal power series V (x, y) =
x2 + y2

2
+
∑

q̃≥3

Hq̃(x, y), where Hq̃

are homogeneous polynomials of degree q̃ (see for instance [21]). It is well

know that there exist some V (x, y) such that V̇ (its rate of change along the
orbits of system (2)) takes the form

V̇ = η2r
2 + η4r

4 + · · · + η2kr
2k + η2k+2r

2k+2 + · · ·
where r2 = x2 + y2. Thus system (2) has a center at the origin if and
only if the focal values η2k = 0,∀k. Moreover, the stability of the origin
is determined by the sign of the first nonzero coefficient of V̇ , and it is
proportional to the respective Liapunov quantity of (2). More precisely,
F (0, 0) = 0 and the Frommer’s Theorem [15] shows that if η2 = · · · = η2ℓ = 0
and η2ℓ+2 ̸= 0 then

u2ℓ+1(2π) = 2πη2ℓ+2.

Therefore the characterization of a center joint to the stability and the order
of the weak focus is independent of the method used to describe the Liapunov
constants.

The problem of computing the Liapunov constants for determining a cen-
ter goes back to Liapunov [21, 22] and Poincaré [25]. The major difficulty
with these Liapunov constants is their high complexity, and to find them ex-
plicitly becomes a computational problem. However there are several ways
to compute them [14, 26], and different application to solve the center–focus
problem [16, 24]. For some differential equations of the form (5) it is possible
to describe the behavior of the expansion

∑
j≥1uj(θ)ρ

j of r(θ; ρ), because

u′
k(θ) is the coefficient of ρk in d

dθ

∑
j≥1uj(θ)ρ

j . Thus if we replace r(θ; ρ) in

(5) we get

(6) u′
k(θ) = coefficient of ρk in

δ+1∑

j=1

Rj(θ)
[∑

i≥1

ui(θ)ρ
i
]j

, for all k ≥ 1,

with R1(θ) = F (0, 0). For instance, (6) induces the Initial Value Problem

(7) u′
1(θ) = F (0, 0)u1(θ), u1(0) = 1.
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Its solution is u1(θ) = exp(F (0, 0)θ). In general, observe that given j > k,
the right side of (6) does not add any element in the coefficient of ρk, and

that given 1 ≤ j ≤ k the coefficient of ρk in the expression
[∑

i≥1ui(θ)ρ
i
]j

corresponds to all the possible ways of obtaining k by adding j indices
i1, i2, . . . , ij of ui(θ) (repetitions are allowed). Consequently, the coefficient

of ρk in
[∑

i≥1ui(θ)ρ
i
]j

is

∑

i1+i2+···+ij=k

every iℓ≥1

ui1(θ)ui2(θ) · · ·uij (θ).

Therefore, if k ≥ 2 the function u′
k(θ) must satisfy the linear equation

u′
k(θ) = F (0, 0)uk(θ) +

k∑

j=2

Rj(θ)
∑

i1+i2+···+ij=k

every iℓ≥1

ui1(θ)ui2(θ) · · · uij (θ),

with the initial condition uk(0) = 0. In particular, if F (0, 0) = 0

(8)

u1(θ) = 1, and

uk(θ) =

k∑

j=2

∫ θ

0
Rj(t)

∑

i1+i2+···+ij=k

every iℓ≥1

ui1(t)ui2(t) · · ·uij (t)dt.

2.2. First result. In this subsection we prove a particular case of the main
result. To this end the next formulaes

(9)

∫ 2π

0
cos2p̃+1 θ sinq̃ dθ =

∫ 2π

0
cosp̃ θ sin2q̃+1 dθ = 0, ∀p̃, q̃ ∈ N ∪ {0},

will be needed.

Lemma 2. Consider the system

(10)
ẋ = −y + x(1 + b1y + · · · + bMxM )(a1x + · · · + aNxN ),
ẏ = x + y(1 + b1y + · · · + bMxM )(a1x + · · · + aNxN ),

where N ∈ {2n, 2n + 1} ⊂ N ∪ {0} and M ∈ {2m, 2m + 1} ⊂ N. The
following statements hold.

(a) The solution r(θ, ρ) of system (10) with r(0, ρ) = ρ satisfies (8). The
displacement function has the form

D(ρ) = a2πρ3 +
∑

i≥4

ui(2π)ρi,

and u2(θ) = a1 sin θ.
(b) Suppose that a2 = · · · = a2ℓ = 0 for some ℓ ≤ n − 1, then there is a

constant Aℓ ̸= 0 such that the map in (a) can be written as

D(ρ) = a2ℓ+2Aℓρ
2ℓ+3 +

∑

i≥2ℓ+4

ui(2π)ρi.
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Moreover, there are Ck,j ∈ R , P (j, k) ∈ 2N∪{0} and I(j, k) ∈ 2N+1
such that

u2s(θ) =
∑

j∈F2s

C2s,j cosP (j,2s) θ sinI(j,2s) θ, 1 ≤ s ≤ ℓ + 1;

u2s+1(θ) =
∑

j∈F2s+1

C2s+1,j cosP (j,2s+1) θ sinP (j,2s+1) θ, 1 ≤ s ≤ ℓ;

where Fk is a finite set for every 2 ≤ k ≤ 2ℓ + 2.
(c) System (10) has a center at the origin if and only if a2 = · · · =

a2n = 0.

Proof. System (10) satisfies (2) with F (0, 0) = 0, and equation becomes
(11)

dr

dθ
=

M+N+1∑

j=2


 ∑

s+t=j−1

asbt coss θ sint θ


 rj =

M+N+1∑

j=2


 ∑

s+t=j−1

Rj(θ)


 rj ,

with a0 = 0 and b0 = 1. As R2(θ) = a1 cos θ and R3(θ) = a2 cos2 θ +
a1b1 cos θ sin θ, (8) implies that u2(θ) = a1 sin θ and

u3(θ) =

∫ θ

0
(a2 cos2 t + a1(2a1 + b1) cos t sin t)dt.

Therefore (a) holds.

We shall obtain (b) by induction. The first step starts with (a) and

a2 = 0. A direct computation shown that D(ρ) = 3π
4 a2

4ρ
5 +

∑

i≥6

ui(2π)ρi,

u3(θ) =
2a2

1 + b1a1

2
sin2 θ and u4(θ) = −1

6

((
3a3

1−a3+4a2
1b1+a1b2

)
cos(2θ)−

3a3
1 − 5a3 − 4a2

1b1 − a1b2

)
sin θ. Since cos(2θ) = cos2 θ − sin2 θ, the first

induction step is proved. In general, if a2 = · · · = a2ℓ = 0, with ℓ ≥ 2 the
induction hypothesis implies that

D(ρ) = a2ℓAℓ−1ρ
2ℓ+1 +

∑

i≥2ℓ+2

ui(2π)ρi.

Furthermore, there is a finite collection of numbers Ck,j ∈ R, P (j, k) ∈
2N ∪ {0} and I(j, k) ∈ 2N + 1 such that
(12)

u2s(θ) =
∑

j∈F2s

C2s,j cosP (j,2s) θ sinI(j,2s) θ, 1 ≤ s ≤ ℓ;

u2s+1(θ) =
∑

j∈F2s+1

C2s+1,j cosP (j,2s+1) θ sinP (j,2s+1) θ, 1 ≤ s ≤ ℓ − 1;

where Fk is a finite set, for every 2 ≤ k ≤ 2ℓ. Since the first nonzero

Liapunov constant corresponds to an odd number we have

(13) D(ρ) = u2ℓ+3(2π)ρ2ℓ+3 +
∑

i≥2ℓ+4

ui(2π)ρi,
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where 2ℓ + 3 ≤ 2n + 1 and

u2ℓ+3(θ) =

∫ θ

0
R2ℓ+3(t)dt +

2ℓ+2∑

j=2

∫ θ

0
Rj(t)

∑

i1+i2+···+ij=2ℓ+3

every iℓ≥1

ui1(t) · · · uij (t)dt.

In this formula the functions Rj ’s are given in (11) with the induction as-
sumptions, that is

(14) R2ℓ+3(θ) = a2ℓ+2 cos2ℓ+2 θ +

ℓ+1∑

σ=0

a2σ+1b2ℓ+1−2σ cos2σ+1 θ sin2ℓ+1−2σ θ

and
(15)

Rj(θ) =

[ j−2
2 ]∑

σ=0

a2σ+1bj−2σ−2 cos2σ+1 θ sinj−2σ−2 θ, for all 2 ≤ j ≤ 2ℓ + 2.

Thus, (9) implies that

u2ℓ+3(2π) = a2ℓ+2

∫ 2π

0
cos2ℓ+2 tdt + I2ℓ+3(2π) = a2ℓ+2Aℓ + I2ℓ+3(2π),

where

I2ℓ+3(θ) =

2ℓ+2∑

j=2

∫ θ

0
Rj(t)

∑

i1+i2+···+ij=2ℓ+3

every iℓ≥1

ui1(t) · · · uij (t)dt.

Therefore statement (b) is directly obtained from (13) and the next claim.

Claim 1. Suppose that a2 = · · · = a2ℓ = 0 with ℓ ≥ 2. Then

(i) u2ℓ+1(θ) finitely expands on even powers of cos θ and sin θ as in (b);
(ii) u2ℓ+2(θ) satisfies (b); and

(iii)

∫ 2π

0
cos2ℓ+2 tdt ̸= 0 and I2ℓ+3(2π) = 0.

Proof of Claim 1. By (8) u2ℓ+1(θ) =

∫ θ

0
R2ℓ+1(t)dt +

2ℓ∑

j=2

∫ θ

0
S2ℓ+1

j (t)dt, and

u2ℓ+2(θ) =

∫ θ

0
R2ℓ+2(t)dt +

2ℓ+1∑

j=2

∫ θ

0
S2ℓ+2

j (t)dt, where

Sk
j (t) = Rj(t)

∑

i1+i2+···+ij=k

every iℓ≥1

ui1(t) · · · uij (t),

for every k ∈ {2ℓ + 1, 2ℓ + 2} and j ≥ 2. In both cases (15) implies

∫ θ

0
R2ℓ+1(t)dt =

[ 2ℓ−1
2 ]∑

σ=0

a2σ+1b2ℓ−2σ−1

∫ θ

0
cos2σ+1 t sin2ℓ−2σ−1 tdt,
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and ∫ θ

0
R2ℓ+2(t)dt =

ℓ∑

σ=0

a2σ+1b2ℓ−2σ

∫ θ

0
cos2σ+1 t sin2ℓ−2σ tdt.

Thus the first terms of u2ℓ+1(θ) and u2ℓ+2(θ) have the stated form because
for every p, q ∈ N ∪ {0} we have

(16)

∫ θ

0
cos2p̂+1(t) sin2q̂+1(t)dt =

q̂∑

a=0

(
q̂

a

)
(−1)a 1 − cos2a+2p̂+2 θ

2a + 2p̂ + 2
,

and

(17)

∫ θ

0
cos2p̌+1(t) sin2q̌(t)dt =

p̌+q̌∑

a=0

(
p̌ + q̌

a

)
(−1)a sin2a+1 θ

2a + 1
,

In general the arguments to prove (i) and (ii) reduce to show the following
claim.

Claim 2. Suppose that j ≥ 2. Then S2ℓ+1
j (t) (respectively S2ℓ+2

j (t)) admits
a finite expansion such that every term has the form of the integrant function
in (16) (respectively (17)).

Proof of Claim 2. Here we only do the proof for the function S2ℓ+1
j (t), be-

cause the proof for the function S2ℓ+2
j (t) is similar. From (15) we have

S2ℓ+1
2 (t) = a1 cos t

∑

i1+i2=2ℓ+1

every iℓ≥1

ui1(t)ui2(t).

Since the terms have the form ueven(t)uodd(t), equation (12) implies that
cos tueven(t)uodd(t) satisfies the claim. Then, the second term of u2ℓ+1(θ)

has the form of (b). In general, the terms of S2ℓ+1
j (t), with j − 1 ≥ 2 admit

two cases:

(a.1) Rj(t)ui1(t) · · · uij−1(t)ueven(t) with i1 + · · · + ij−1 odd; and
(a.2) Rj(t)ui1(t) · · · uij−1(t)uodd(t) with i1 + · · · + ij−1 even.

Consider (a.1) with j = even. By (12) and (16),

(18) Rj−1(t)ui1(t) · · ·uij−1(t) ≈m cosodd t sinodd t,

where A(t) ≈m cosodd t sinodd t, means the existence of a finite decomposition
A(t) =

∑
k Ak(t) and a finite set of constants pk, qk ∈ N ∪ {0}, ck ∈ R

(independent of t) such that Ak(t) = ck cos2pk+1 t sin2qk+1 t, for all t and
k. Notice that this notation naturally extends to all the possible cases
≈m cosodd t sineven t, ≈m coseven t sinodd t, etc. In this way, equation (15)
implies that Rj−1(t) = Rodd(t) ≈m cosodd t sinodd t, Rj(t) = Reven(t) ≈m

cosodd t sineven t and also that sin tRodd(t) ≈m Rodd+1t, for all 3 ≤ odd ≤
2ℓ − 1, then

Rj(t)ui1(t) · · ·uij−1(t) ≈m cosodd t sineven t.
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But (12) gives ueven(t) ≈m coseven t sinodd t, thus

(19) Rj(t)ui1(t) · · · uij−1(t)ueven(t) ≈m cosodd t sinodd t.

Therefore, (a.1) with j = even satisfies the claim. The case (a.1) with
j = odd, also verifies (18), but now Rj−1(t) = Reven(t) ≈m cosodd t sineven t,

Rj(t) = Rodd(t) ≈m cosodd t sinodd t and sin tReven(t) ≈m Reven+1(t) for all

2 ≤ even ≤ 2ℓ − 2. However, as ueven(t) ≈m coseven t sinodd t, (a.1) with
j = odd also satisfies (19). This concludes the proof of the claim in the case
(a.1).

To obtain the claim in the case (a.2), observe that (12) and (17) give

(20) Rj−1(t)ui1(t) · · ·uij−1(t) ≈m cosodd t sineven t.

Thus, the conditions Reven(t) ≈m cosodd t sineven t ≈m cosodd t and Rodd(t) ≈m

cosodd t sinodd t ≈m cosodd t sin t imply that

Rj(t)ui1(t) · · · uij−1(t) ≈m cosodd t sinodd t.

But uodd(t) ≈m coseven t sineven t, consequently if 2ℓ ≥ j ≥ 2 then

Rj(t)ui1(t) · · ·uij−1(t)uodd(t) ≈m cosodd t sinodd t.

This proves the claim in the case (a.2). Therefore Claim 2 holds. �
From Claim 2 statement (i) of Claim 1 follows.

The proof of (ii) is similar, and uses (i). The details are left to the reader.
The first part of (iii) is directly obtained from the equality

(21)

∫ 2π

0
cos2p̄ θ sin2q̄ θdθ = 2

Γ(p̄ + 1
2)Γ(q̄ + 1

2)

Γ(p̄ + q̄ + 1)
∀ p̄, q̄ ∈ N,

where Γ is the Gamma Function which satisfies Γ(1
2) =

√
π, and also that

Γ(m) = m!, Γ

(
m +

1

2

)
=

1 · 3 · 5 · 7 · · · (2m − 1)

2m
Γ

(
1

2

)
, for all m ∈ N.

In particular

∫ 2π

0
cos2ℓ+2 tdt ̸= 0. The last part of (iii) follows from (9). The

integrant function of I2ℓ+3(θ) is
2ℓ+2∑

j=2

S2ℓ+3
j (t), with u2ℓ+1(θ) and u2ℓ+2(θ) as

in (i) and (ii), respectively. Thus a similar idea as in the last proofs shows

that

2ℓ+2∑

j=2

S2ℓ+3
j (t) ≈m cosodd t sinodd t and then I2ℓ+3(2π) = 0. Therefore (iii)

holds. This proves Claim 1. �
From Claim 1 it follows the proof of statement (b).

To obtain (c) consider the center assumption D(ρ) ≡ 0. By using (a) and
(b) it is not difficult to prove that a2 = · · · = a2n = 0. The converse follows
from Remark 1, and so (c) holds. Therefore the lemma is proved. �
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Remark 3. Notice that a direct application of statement (b) of Lemma 2
shows that the assumptions a2 = a4 = · · · = a2n−2 = 0 and a2n ̸= 0 imply
that (10) has a weak focus or order n, located at the origin.

Proposition 3. Consider the following system

(22)
ẋ = −y + x(b0 + b1y)(a0 + a1x + · · · + aNxN ),
ẏ = x + y(b0 + b1y)(a0 + a1x + · · · + aNxN ),

where N ∈ {2n, 2n + 1} ⊂ N ∪ {0}. The origin is a center for system (22)
if and only if one of the following conditions holds:

(i) b0 = 0.
(ii) a0 = a2 = · · · = a2n = 0.

Moreover, the center is reversible.

Proof. Suppose that one of the hypotheses, (i) or (ii) holds. A direct appli-
cation of Remark 1 shows that (22) has a reversible center at the origin.

Conversely, assume that (22) has a center. Since the eigenvalues of the
linearization at the singularity are a0b0 ± i, the product a0b0 must be zero.
If b0 ̸= 0 we can rewrite (22) as

ẋ = −y + x(1 + b̄1y)(ā1x + · · · + āNxN ),
ẏ = x + y(1 + b̄1y)(ā1x + · · · + āNxN ),

where b̄1 = b1
b0

and āj = ajb0 (because a0 = 0). Statement (c) of Lemma
2 with M = 1 implies ā2 = · · · = ā2n = 0. The last part follows from
Remark 1 and concludes the proof. �

3. The focal basis and rigid systems

Using the notation of system (3) in the next lemma we consider the case
m ≥ 1 because in Lemma 2 we have studied the case m = 0.

Lemma 4. Let f(x) = a0 +a1x+ · · ·+aNxN be a real polynomial map such
that N ∈ {2n, 2n + 1} ⊂ N ∪ {0}, and consider the following system
(23)

ẋ = −y + x
( odd powers︷ ︸︸ ︷
b1y + · · · + b2p−1y

2p−1 +

no power restrictions︷ ︸︸ ︷
b2py

2p + · · · + bMyM
)
f(x),

ẏ = x + y
(
b1y + · · · + b2p−1y

2p−1 + b2py
2p + · · · + bMyM

)
f(x),

where M ∈ {2m, 2m + 1} ⊂ N and 1 ≤ p ≤ m. Suppose that b2p ̸= 0. Then
the following holds.

(a) The first Liapunov constants of system (23) are

0, 0, . . . , 0, a0b2pBp,

where the constant Bp ̸= 0.
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(b) Suppose that a0 = a2 = · · · = a2ℓ = 0, for some ℓ ≤ n − 1. Then

there is a constant Ãℓ ̸= 0 such that the Liapunov constants of system
(23), as in (a) satisfy

0, 0, . . . , 0, a0b2pBp = 0, 0, . . . , b2pa2ℓ+2Ãℓ.

(c) System (23) has a center at the origin if and only if a2 = · · · =
a2n = 0.

Proof. In the new coordinates X = −y and Y = x, system (23) becomes

(24)

Ẋ = −Y + X

(
M∑

i=0

bi(−X)i

)
f(Y ),

Ẏ = X + Y

(
M∑

i=0

bi(−X)i

)
f(Y ),

where b0 = b2 = · · · = b2p−2 = 0. In polar coordinates X = r cos θ and
Y = r sin θ this system becomes
(25)

dr

dθ
=

M+N+1∑

j=2

(
j−1∑

t=0

(−1)taj−1−tbt cost θ sinj−1−t θ

)
rj =

M+N+1∑

j=2

Rj(θ)r
j .

Therefore

Rj(θ) =

[ j−1
2 ]∑

τ=0

aj−1−2τ b2τ cos2τ θ sinj−1−2τ θ(26)

−
[ j−2

2 ]∑

τ=0

aj−2τ−2b2τ+1 cos2τ+1 θ sinj−2τ−2 θ, for all j ≥ 2.

Thus R2p+1(t) = a0b2p cos2p(t) −
[ 2p−1

2 ]∑

τ=0

a2p−2τ−1b2τ+1 cos2τ+1 t sin2p−2τ−1 t,

and from (8) and (9) we obtain that

u2p+1(2π) = a0b2p

∫ 2π

0
cos2p(t)dt + I2p+1(2π) = a0b2pBp + I2p+1(2π),

where I2p+1(θ) =

2p∑

j=2

∫ θ

0
S2p+1

j (t)dt. More precisely, as (8) induces the gen-

eral equality uk(θ) =

∫ θ

0
Rk(t)dt +

k−1∑

j=2

∫ θ

0
Sk

j (t)dt, statement (a) is directly

obtained from Remark 2 and the next claim.

Claim 3. The following statements hold.



FOCAL BASIS AND UNIFORMLY ISOCHRONOUS SYSTEMS 13

(i)

∫ 2π

0
Rj(t)dt = 0 for all 2 ≤ j ≤ 2p, u1(θ) = 1 and u2(θ) =

−a0b1 sin θ.
(ii) uj(2π) = 0 for all 2 ≤ j ≤ 2p and

u2s(θ) ≈m coseven θ sinodd θ if 1 ≤ s ≤ p,
u2s+1(θ) ≈m coseven θ sineven θ if 0 ≤ s ≤ p − 1.

(iii)

∫ 2π

0
cos2p tdt ̸= 0 and I2p+1(2π) = 0.

Proof of Claim 3. The first part of (i) is obtained form (9) because
(27)

Rj(θ) = −
[ j−2

2 ]∑

τ=0

aj−2τ−2b2τ+1 cos2τ+1 θ sinj−2τ−2 θ, for all 2 ≤ j ≤ 2p.

As (26) gives R2(t) = −a0b1 cos t, the last equality follows from (8). There-
fore (i) holds.

To obtain (ii) observe that the case p = 1 is obtained directly from (i).
In the general case p ≥ 2 the argument proceeds by induction. The firs step
is given by u1(θ) = 1, u2(θ) = −a0b1 sin θ and u2(2π) = 0. The induction
assumption is

(28)
uj(2π) = 0 if 2 ≤ j ≤ 2s − 2 ≤ 2p − 2.
u2σ(θ) ≈m coseven θ sinodd θ if 1 ≤ σ ≤ s − 1 ≤ p − 1,
u2σ+1(θ) ≈m coseven θ sineven θ if 0 ≤ σ ≤ s − 1 ≤ p − 2.

Now the argument reduces to show the following claim.

Claim 4. The following statements hold.

(I) 2 ≤ j ≤ 2s ⇒ S2s
j (t) ≈m cosodd(t) sineven(t).

(II) 2 ≤ j ≤ 2s + 1 ⇒ S2s+1
j (t) ≈m cosodd(t) sinodd(t).

(III) u2s−1(2π) = 0.

Proof of Claim 4. In fact R2(t) = −a0b1 cos(t) gives

S2s
2 (t) = −a0b1 cos t

∑

i1+i2=2s

every iℓ≥1

ui1(t)ui2(t).

The terms are either ueven(t)ueven(t) or uodd(t)uodd(t). Thus (28) implies
that cos tueven(t)ueven(t) and cos tuodd(t)uodd(t) have the stated form, and
S2s

2 (t) satisfies the claim. In general, the terms of S2s
j (t), with j − 1 ≥ 2

admit two cases:

(a.1) Rj(t)ui1(t) · · · uij−1(t)ueven(t) with i1 + · · · + ij−1 even.
(a.2) Rj(t)ui1(t) · · · uij−1(t)uodd(t) with i1 + · · · + ij−1 odd.

Consider (a.1). By (28) and (17),

Rj−1(t)ui1(t) · · ·uij−1(t) ≈m cosodd t sineven t,
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Since the Rj ’s satisfy (27), Rj−1(t) sin t ≈m Rj(t) and then

Rj(t)ui1(t) · · · uij−1(t) ≈m cosodd t sinodd t.

Moreover, (28) gives ueven(t) ≈m coseven t sinodd t. Therefore

Rj(t)ui1(t) · · · uij−1(t)ueven(t) ≈m cosodd t sineven t,

and S2s
j (t) satisfies (I) if (a.1) holds. If (a.2) holds then equations (28) and

(16) imply

Rj−1(t)ui1(t) · · ·uij−1(t) ≈m cosodd t sinodd t.

Consequently

Rj(t)ui1(t) · · ·uij−1(t) ≈m cosodd t sineven t.

and uodd(t) ≈m coseven t sineven t imply that

Rj(t)ui1(t) · · · uij−1(t)uodd(t) ≈m cosodd t sineven t.

Therefore, S2s
j (t) always satisfies (I). The proof of (II) for S2s+1

j (t) is similar

to the proof of (I). Moreover the properties of S2s−1
j (t) and (i) imply (III).

The details are left to the reader. Therefore the claim is proved. �

From Claim 4 statement (ii) follows.

To prove (iii) observe that equation (21) directly gives

∫ 2π

0
cos2p(t)dt ̸= 0.

A similar argument used in the proof of the (ii) shows that the integrant

function of I2p+1(θ) =

2p∑

j=2

∫ θ

0
S2p+1

j (t)dt complies (9), and consequently

I2p+1(2π) = 0. This concludes the proof of Claim 3. �

By using Remark 2 and Claim 3, it is not difficult to obtain statement
(a).

To prove (b) consider the next claim.

Claim 5. The following statements hold.

(i) If 2 ≤ j ≤ 2p + 2ℓ + 2, then

Rj(θ) ∈ {≈m cosodd θ sineven θ, ≈m coseven θ sinodd θ},

and so

∫ 2π

0
Rj(t)dt = 0.

(ii) uj(2π) = 0 for all 2 ≤ j ≤ 2p + 2ℓ + 2

u2s(θ) ≈m coseven θ sinodd θ, if 1 ≤ s ≤ p + ℓ + 1,
u2s+1(θ) ≈m coseven θ sineven θ, if 0 ≤ s ≤ p + ℓ.
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(iii) By (26),

R2p+2ℓ+3(θ) = b2pa2ℓ+2 cos2p θ sin2ℓ+2 θ

−
p+ℓ∑

τ=0

a2p+2ℓ−2τ+1b2τ+1 cos2τ+1 θ sin2p+2ℓ−2τ+1 θ.

Consequently

u2p+2ℓ+3(2π) = b2pa2ℓ+2Ãℓ + I2p+2ℓ+3(2π),

where Ãℓ =

∫ 2π

0
cos2p(t) sin2ℓ+2(t)dt is different from zero and the

value I2p+2ℓ+3(2π) = 0.

The proof of Claim 5 is similar to the proof of Claim 3 and we do not prove
it. Claim 5 directly implies statement (b). In the first part, the hypothesis
a0 = · · · = a2ℓ = 0 is used to describe R2p+odd with 2 ≤ 2p+odd ≤ 2p+2ℓ+2.
The details are left to the reader. Therefore statement (b) holds.

Statement (c) follows from an application of (a), (b) and Remark 1.
Therefore the lemma is proved. �

Corollary 5. Set f(x) = a0 + a1x + · · · + aNxN . Suppose that a0 = a2 =
· · · = a2n−2 = 0 and a2n ̸= 0. Then the system

(29)
ẋ = −y + x

(
y2m−1 + y2m

)
f(x),

ẏ = x + y
(
y2m−1 + y2m

)
f(x),

with m ≥ 1 has at the origin a weak focus of order m + n. Consequently,
there are at most m + n small limit cycles in a suitable neighborhood of the
origin.

Proof. This is a direct consequence of the proofs of the last claims, under
the assumptions p = m, ℓ = n− 1 and b2m = 1. The origin is a center–focus
singularity of (29). Moreover equation (29) and a particular solution r(θ; ρ)
of it imply that its displacement function is

D(ρ) =

(
a2n

∫ 2π

0
cos2m(t) sin2n(t)dt

)
ρ2m+2n+1 +

∑

i≥2m+2n+2

ui(2π)ρi.

Therefore, the order of the weak focus associated to (29) is m + n, and it is
located at the origin. The last part is consequence of the well–know property
that the order of a weak focus is an upper bound for the number of local
limit cycles bifurcating in a small neighborhood of the focus. �

Remark 4. By using Lemmas 2 and 4 it is not difficult to prove that the
set {a0, a2, . . . , a2n} is a focal basis for both systems (10) and (23).

Proof of Theorem 1. If some beven ≠ 0, by using the smallest even j with
bj ̸= 0. The result is directly obtained from Remark 4.
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If some aeven ̸= 0, the new coordinates X = −y and Y = x, imply that
system (3) becomes

Ẋ = −Y + X

(
N∑

i=0

ai(−Y )i

)
g(X),

Ẏ = X + Y

(
N∑

i=0

ai(−Y )i

)
g(X).

Thus the proof of Lemmas 4 and 2 imply that for the smallest even with
aeven ̸= 0 the following two properties.

(i) The first nontrivial Liapunov constant has the form aevenb0Beven,
where Beven is a nonzero constant.

(ii) Assuming that b0 = b2 = · · · = b2ℓ = 0, for some ℓ ≤ m − 1, then

the first nontrivial Liapunov constant has the form aevenb2ℓ+2B̃even,

where B̃even is a nonzero constant.

Consequently, Remark 2 helps to obtain that the set {b0, b2, . . . , b2m} is a
focal basis for (3), and the theorem holds.

If a0 = a2 = · · · = a2n = 0 and b0 = b2 = · · · = b2m = 0, the result follows
from Remark 1. This concludes the proof of the theorem. �
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