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Abstract. In a remarkable paper, Peter Hall [On the rate of convergence of normal extremes, J. App. Prob, 16 (1979)
433–439] proved that the supremum norm distance between the distribution function of the normalized maximum of n
independent standard normal random variables and the distribution function of the Gumbel law is bounded by 3/ log n.
In the present paper we prove that choosing a different set of norming constants that bound can be reduced to 1/ log n. As
a consequence, using the asymptotic expansion of a Lambert W type function, we propose new explicit constants for the
maxima of normal random variables.
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1 Introduction

Let X1, . . . , Xn be i.i.d. standard normal random variables and denote by Mn its maximum,

Mn = max{X1, . . . , Xn}.

The normal law is in the domain of attraction for maxima of the Gumbel law, that is, there are sequences of real
numbers {an, n ≥ 1} and {bn, n ≥ 1} (the norming –or normalizing– constants) with an > 0 such that

lim
n

1

an
(Mn − bn) = G, in distribution, (1)

where G is a Gumbel random variable, with distribution function

Λ(x) = exp{−e−x}, x ∈ R. (2)

Denote by Φ(x) the distribution function of a standard normal law and by φ(x) its density. The convergence
(1) is equivalent that for every x ∈ R,

lim
n

Φn(anx+ bn) = Λ(x). (3)

In a remarkable paper Peter Hall [7] proved that taking b∗n such that

1√
2π

1

b∗n
e−(b

∗
n)

2/2 =
1

n
and a∗n = 1/b∗n,

it holds that for n ≥ 2,
C ′

log n
< sup

x∈R
|Φn(a∗nx+ b∗n)− Λ(x)| < C

log n
, (4)

with C = 3, and that the rate of convergence cannot be improved by choosing a different sequence of norming
constants. In this way, Hall gives a precise quantification of the remark by Fihser and Tippet in the the seminal
paper [5]: From the normal distribution the limiting distribution is approached with extreme slowness. Notice
that if 2 ≤ n ≤ 20, then 3/ log n > 1, so the upper bound in (4) gives no information. It should also be
remarked that Hall [7] points out that his constant C in (4) can be decreased to 0.91 when n ≥ 106.

In the present paper we prove that taking

bn = Φ−1
(
1− 1

n

)
and a◦n =

bn
1 + b2n

, (5)

we have the following theorem.
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Theorem 1. Given n0 ≥ 5, for all n ≥ n0 it holds that

sup
x∈R
|Φn
(
a◦n x+ bn

)
− Λ(x)| < C(n0)

log n
,

with

C(n0) =





1, when n0 ≤ 15( 2

3b2n0

+
1√
en0

)
log(n0) < 1 when n0 ≥ 16.

Moreover limn0→∞C(n0) = 1/3.

The above result is quite sharp because our numerical analysis shows that when n0 moves in the range
[1020, 1060], then C(n0) cannot be taken smaller than 0.12, see Table 2. In Proposition 4 we give some bounds
for {b2n} that in particular prove that when n0 ≥ 16,

C(n0) ≤ C̃(n0) =
1

3

1

1− log(4π log n0))

2 log n0

+
log n0√
en0

,

obtaining explicit and simple computable upper bounds for C(n0). To have an idea of how C(n0) and C̃(n0)
change with n0 we present some values in Table 1.

n0 16 30 50 102 104 106 1010 1020 10100

C(n0) 0.90 0.75 0.67 0.60 0.45 0.41 0.38 0.36 0.34

C̃(n0) 1.10 0.82 0.72 0.63 0.45 0.41 0.38 0.36 0.34

Table 1. Several upper approximations for C(n0) and C̃(n0).

From a practical point of view, in order to have explicit expressions of the constants, it is suggested the
following asymptotic equivalents to the norming constants b∗n and a∗n, respectively (Hall [7, Diplay (4)]):

β∗n = (2 log n)1/2 − log(4π log n)/
(
2(2 log n)1/2

)
and α∗n = 1/β∗n.

(It is also proposed α∗n = (2 log n)−1/2, see, for example, Resnick [9, pp. 71–72]). The expression of β∗n is
easily deduced by observing that b∗n can be expressed in terms of the Lambert W function (Corless et al. [3])
and its well known asymptotics, see Section 5.

However, in view of Theorem 1 and our numerical computations (see again Table 2), on the one hand, it
seems sensible to approach accurately bn, rather than b∗n, and we propose the constant

βn =

(
log
(
n2/(2π)

)
− log log

(
n2/(2π)

)
+

log
(

log(n2) + 1/2
)
− 2

log
(
n2/(2π)

)
)1/2

, (6)

that, as we will see, satisfies

bn = βn +O

(
(log log n)2

(log n)5/2

)
, n→∞.

On the other hand, by Remark 10 and once more Table 2, it seems convenient to use

αn =
βn

1 + β2n
,

rather than 1/βn. The expression of βn is derived from an asymptotic expansion of bn using an approximation to
Mills ratio by rational functions (see Subsection 3.2), an extension of the asymptotics of the Lambert function
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to a more general class of functions (Subsection 5.1) and a final refinement motivated by some numerical
computations (Subsection 5.3).

The paper is organized in the following way: In Section 2 there are recalled some elementary facts about
Extreme Value Theory for normal random variables, and there are presented graphical and numerical compar-
ative studies of the performance of the constants a∗n and b∗n versus a◦n and bn, and other proposals. In Section 3
there are presented some technical preliminary results needed in next sections. Section 4 is devoted to proof of
Theorem 1. Finally, in Section 5, new explicit expressions of the norming constant are given.

2 Extreme value theory for the normal law

By classical Extreme Value Theory, the norming constant bn in (1) can be taken, and we take, in agreement
with the notation (5),

bn = Φ−1(1− n−1), (7)

The constant an can be chosen to be
an = A(bn), (8)

where A is an auxiliary function corresponding to Φ (see, for example, Resnick [9, Proposition 1.11]). Aux-
iliary functions are not unique though they are asymptotically equal. Moreover, under certain conditions, an
auxiliary function is (see again Resnick [9, Proposition 1.11]) the quotient of the survival function (one minus
the distribution function) and the density function, that is,

AC(x) =
1− Φ(x)

φ(x)
, (9)

which is called the Mills ratio. Since this function is expressed in terms of the distribution function and the
density function, and does not depend on any other computation, we call it the canonical auxiliary function. We
should remark that from the standard proof of the convergence (1) it is not deduced that the constants bn and
AC(bn) produce more accurate results than other constants computed with other auxiliary functions or other
ways.

To find manageable expression of the constants it is used a property of the convergence in law adapted to
this context:

Property 2. With the preceding notations, if the sequences {a′n, n ≥ 1} and {b′n, n ≥ 1} satisfy

lim
n

an
a′n

= 1 and lim
n

bn − b′n
an

= 0,

then
lim
n

1

a′n

(
Mn − b′n

)
= G in distribution.

Moreover, it is very useful the following property that involves the use of the norming constants of a simpler
distribution function right tail equivalent to Φ:

Property 3. Let F be a distribution function right tail equivalent to Φ, that means,

lim
x→∞

1− Φ(x)

1− F (x)
= 1.

Then the norming constants of F and Φ can be taken equal.

Thanks to the well known asymptotics of the Mills ratio,

lim
x→∞

1− Φ(x)
1√
2π

1

x
e−x2/2

= 1,
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we can consider a distribution function F such that there is some x0, such that for x > x0,

F (x) = 1− 1√
2π

1

x
e−x

2/2, (10)

and we deduce other possible constants: b∗n is given by

b∗n = F−1(1− n−1),

or, equivalently, b∗n verifies
1√
2π

1

b∗n
e−(b

∗
n)

2/2 =
1

n
. (11)

On the other hand, the canonical auxiliary function associated to F is

AF (x) =
x

1 + x2
. (12)

We call this auxiliary function AF because this was the election of Fisher and Tippett [5]. Note that AC and
AF are asymptotically equivalent. In our early notations (5), we take

a◦n = AF (bn).

Furthermore, it is typical to use a simpler function asymptotically equivalent to both AF and AC given by

AH(x) =
1

x
.

We write
a∗n := AH(b∗n),

and we call a∗n and b∗n the Hall’s constants. Hall didn’t introduce such constants, that are classical (indeed, b∗n
was proposed by Fisher and Tippett [5]), but as we commented, Hall [7] proved the rate of convergence (4)
with these constants. However, numerical studies show that other norming constants give more accurate results
that Hall’s ones. In Figure 1 there is a plot of the Gumbel density and the density of the random variables

Y ∗n =
1

a∗n
(Mn − b∗n) and Yn =

1

a◦n
(Mn − bn).

for n = 100.

-2 0 2 4 6

Figure 1. Gumbel density and density of the màximum of 100 standard Gaussian random variables
with different norming constants. Solid line: Gumbel density. Dotted blue line: Density of Y ∗n .
Dashed red line: Density of Yn.

In order to assess the velocity of convergence, we numerically compute an approximation of the distances

sup
x∈R
|Φn(A(bn)x+ bn)− Λ(x)| log(n),
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n
Used in Constants 10 103 1010 1030 1050 1060

Theorem 1 bn a◦n = AF (bn) 0.0420 0.1049 0.1191 0.1208 0.1208 0.1207
Proposition 9 bn AH(bn) 0.3117 0.2752 0.2552 0.2465 0.2443 0.2437

bn AC(bn) 0.1201 0.1260 0.1245 0.1224 0.1217 0.1215
Fisher & Tippett b∗n AF (b∗n) 0.2331 0.2268 0.1997 0.1945 0.1938 0.1936

Hall b∗n a∗n = AH(b∗n) 0.3546 0.3650 0.3461 0.3354 0.3324 0.3316

Table 2. Approximate distance supx∈R |Φn(A(bn)x + bn) − Λ(x)| log(n) for different sample
size n and different sets of norming constants.

for several values of n, and for different auxiliary functions A, and also with Hall’s constants a∗n and b∗n,
and with the constants proposed by Fisher and Tippet [5] that are b∗n and AF (b∗n). Those approximations are
obtained computing numerically the maxima of the corresponding functions. We have used Maple. The results
are given in Table 2.

Our purpose is to get theoretical explanations of those numerical results and our main result is Theorem 1
given in the Introduction. We restrict our study to the cases where an = a◦n = AF (bn) and an = AH(bn),
and we omit the case an = AC(bn): the reasons for that omission are the following: First, numerically and
analytically AF (bn) is much simpler that the AC(bn); second, Table 2 suggests that the performances of both
an = AF (bn) and an = AC(bn) are very similar; and finally, the study of AC(bn) has its own details and tricks,
and its study would enlarge significantly the paper.

3 Preliminary results

This section is divided in two parts. In the first one we prove a couple of properties of the sequence {bn} which
are needed in the sequel. In the second part we introduce the reciprocal of the canonical auxiliary function that
allows to express in a convenient way the difference Φn(anx+ bn)− Λ(x).

3.1 Bounds for bn
We prove that the bounds for (b∗n)2 given by Hall [7, display (2)]:

2 log n− log(4π log n) < (b∗n)2 < 2 log n, (13)

are also satisfied for b2n.

Proposition 4. For each n ≥ 2 the following inequalities hold:

2 log n− log(4π log n) < b2n < 2 log n. (14)

Proof. First of all, observe that for n = 2 we have that b2 = 0, while 2 log 2 − log(4π log 2) < 0 and
2 log 2 > 0. So, we consider the case n ≥ 3. To see the right hand side inequality in (14), we will prove that
for n ≥ 3,

1− 1

n
< Φ

(√
2 log n

)
.

By the change of variables y =
√

2 log n, this inequality is equivalent to

1− e−y2/2 < Φ(y),

for y ≥ √2 log 3 ≈ 1.14823. This is the same that
∫ ∞

y

1√
2π

e−x
2/2dx <

∫ ∞

y
x e−x

2/2dx,
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for y ≥ √2 log 3. And this inequality is clear because 1√
2π
≈ 0.3989.

In order to prove the inequality on the left-hand side of (14), the argument is similar. First, the function
H(z) := 2 log z − log

(
4π log z)

)
, z > 1, is strictly increasing, being negative for z = 3 and z = 4, and

positive for z = 5. So we will prove the inequality for n ≥ 5. Define

h(z) :=
√

2 log z − log(4π log z) =
√
H(z).

It is clear that h is strictly increasing and maps each interval [n,∞) into [h(n),∞), for all n ≥ 5. We must
show that Φ(h(n)) < 1− 1/n or, equivalently, that

∫ ∞

h(n)

1√
2π

e−x
2/2 dx >

1

n
=

∫ ∞

n

1

y2
dy.

By the change of variables y = h−1(x), the left hand side of the above inequality is equal to
∫ ∞

n

1√
2π

exp{−(2 log y − log(4π log y)/2}h′(y) dy

=

∫ ∞

n

1√
2π

1

y

√
4π log y

1

2
√

2 log y − log(4π log y)

[2

y
− 1

y log y

]
dy

=

∫ ∞

n

1√
2

1

y2
2 log y − 1√(

2 log y − log(4π log y)
)

log y
dy.

To prove that this last term is greater than
∫∞
n

1
y2
dy we should prove that for any y ≥ 5,

2 log y − 1√(
2 log y − log(4π log y)

)
log y

>
√

2.

By the change of variables u = log y and after squaring the two terms of the inequality and some simplifications,
we have to show that, for u ≥ log 5,

2u log(4πu) > 4u− 1

that is the same that
g(u) := log(4πu)− 2 +

1

2u
> 0,

for u ≥ log 5. And this is due to the fact that g(log 5) > 0, and g′(u) > 0 for u > log 5.

In several parts of this work we will get the rate of convergence of Φn(anx + bn) to Λ(x) in terms of b2n,
and later we translate it in terms of log n. To this end, we use the following result:

Proposition 5. For any n0 ≥ 3 and any n > n0 the following inequality is satisfied:

b2n > K(n0) log n, with K(n0) =
b2n0

log n0
.

Proof. Observe that the proposition is equivalent to say that the sequence {b2n/log n , n ≥ 3} is increasing.
Nevertheless, we will prove the result in an indirect way. Specifically, we will prove the following assertion:
For any K ∈ (0, 2), the equation

Φ−1(1− 1

x
)−

√
K log x = 0 (15)

has a unique solution x0 > 1, and Φ−1(1− 1
x)−√K log x > 0 for any x > x0.

Observe that if we take K = K(n0) = b2n0
/log n0 (due to Proposition 4, the inequality 0 < K < 2 is

satisfied), the solution of the equation (15) is precisely x0 = n0, and so, the proposition will follow from the
assertion.
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Composing with Φ and doing the change of variables y =
√
K log x, in order to prove the assertion, we

must see that the equation

1− e− y2

K = Φ(y),

has a unique solution y0 > 0 and the function 1− e− y2

K − Φ(y) is positive for y > y0.
Define

M(y) := e−y
2/K =

2

K

∫ ∞

y
xe−

x2

K dx

and
N(y) := 1− Φ(y) =

1√
2π

∫ ∞

y
e−

x2

2 dx.

We have to prove that the equation M(y) − N(y) = 0 has a unique solution y0 > 0 and that for y > y0,
M(y)−N(y) < 0. To prove this, we study the function M(y)−N(y) for y ≥ 0. Notice that

sign

(
M ′(y)

N ′(y)
− 1

)
= − sign(M ′(y)−N ′(y)). (16)

Therefore we introduce the function

g(y) :=
M ′(y)

N ′(y)
=

2
√

2π

K
y e

K−2
2K

y2 ,

and study the equation g(y) = 1, for y ≥ 0. It is not difficult to show that it has exactly two solutions, y1 and
y2, and that

0 < y1 < ỹ :=

√
2−K
K

< y2,

where ỹ is the unique positive solution of g′(y) = 0.
Moreover g(y)− 1 is positive in (y1, y2) and negative on [0, y1)∪ (y2,∞). Using (16), we get that M −N

is increasing in [0, y1) ∪ (y2,∞) and decreasing in (y1, y2).
Notice also that M(0)−N(0) = 1− 1/2 > 0. Joining all the information we get that M −N has at most

one zero, y = y∗, in (0, y2] and, if exits, it is in (y1, y2]. In fact, since

M ′(x) < N ′(x) for x > y2,

integrating both sides from y to infinity, we obtain that M(y)−N(y) < 0 for all y > y2.
In short, M − N has exactly one zero y0 = y∗ in [0,∞), this zero belongs to the interval (y1, y2] and

moreover M −N is negative for y > y0. This fact finishes the proof of the assertion.

3.2 The canonical auxiliary function and its reciprocal

The canonical auxiliary function

AC(t) =
1− Φ(t)

φ(t)
, t > 0,

is known as Mills ratio and enjoys nice properties. In Baricz [1] or Gasull and Utzet [6] it is proved that it is
completely monotone, that means, the derivatives alternate their signs: AC(t) > 0, and for n ≥ 1,

(−1)nA
(n)
C (t) > 0, for t > 0.

In particularAC is strictly decreasing and strictly convex. It is also known how to construct two sequences of ra-
tional functions {Pn(t)/Qn(t), n ≥ 0}with nonnegative integer coefficients and numerators and denominators
with increasing degrees, such that for all t > 0,

Qn+1(t)

Pn+1(t)
< AC(t) <

Qn(t)

Pn(t)
,
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see again [6] or [8]. We will use
t

t2 + 1
< AC(t) <

t2 + 2

t3 + 3t
<

1

t
. (17)

Denote by V (t) the reciprocal of the canonical auxiliary function

V (t) =
1

AC(t)
(18)

Since AC is strictly decreasing, V is strictly increasing. Moreover, the bounds for AC give bounds for V . In
particular, from (17), for t > 0,

t < V (t) < t+
1

t
. (19)

The function V (t) also provides a very useful way to express the function Φn(A(bn)x+bn)−Λ(x), which
is a main object in this paper.

Proposition 6. Set bn = Φ−1(1 − 1/n) and let {a′n, n ≥ 1} be an arbitrary sequence of strictly positive
numbers. For every x ∈ R it holds that

Φn(a′nx+ bn)− Λ(x) = e−nSn(x)
(

Λ
(
In(x)

)
− Λ(x)

)
+ Λ(x)

(
e−nSn(x) − 1

)
, (20)

where

In(x) =

∫ a′nx+bn

bn

V (t) dt, 0 < Sn(x) <
C2
n(x)

2(1− Cn(x))
and Cn(x) =

1

n
e−In(x). (21)

Proof. Notice that for y ∈ R,

1− Φ(y) = exp
(

log(1− Φ(y))
)

= exp
{∫ y

−∞

−φ(t)

1− Φ(t)
dt
}

= exp
{
−
∫ y

−∞
V (t) dt

}
.

Then

1− Φ(a′nx+ bn) = exp
{
−
∫ bn

−∞
V (t) dt

}
exp

{
−
∫ a′nx+bn

bn

V (t) dt
}

= exp
{

log
(
1− Φ(t)

)∣∣bn
−∞

}
exp

{
−
∫ a′nx+bn

bn

V (t) dt
}

=
1

n
e−In(x), (22)

where the last equality follows from the definition of bn. Notice also that, by (22), 0 < exp
(
− In(x)

)
/n < 1.

The following formula is well-known and was already used by Hall in [7]. For u ∈ (−1, 1),

log(1− u) = −u− r(u) with 0 ≤ r(u) ≤ u2

2(1− u)
.

Then, from (22),

log Φn(a′nx+ bn) = n log
(

1− 1

n
e−In(x)

)
= −e−In(x) − nSn(x), (23)

where Sn(x) satisfies the conditions given in (21). Hence,

Φn(a′nx+ bn)− Λ(x) = e−nSn(x)Λ
(
In(x)

)
− Λ(x),

and (20) follows adding and subtracting the term e−nSn(x)Λ(x).
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4 Proof of Theorem 1

To short the notations in this proof, we write an instead of a◦n = AF (bn). We will consider separately the cases
x ≥ 0 and x < 0, where the rate of convergence is analyzed; later both cases are joined to get a global rate
of convergence. In Subsection 4.4 there are some comments about the other norming constants AH(bn) and
AC(bn).

4.1 Case x ≥ 0.

We prove the following proposition:

Proposition 7. Given n0 ≥ 3, for all n ≥ n0 it holds that

sup
x≥0
|Φn
(
an x+ bn

)
− Λ(x)| < C+(n0)

log n
,

where
C+(n0) =

( 1

e b2n0

+
1

2(n0 − 1)

)
log(n0).

Proof. By Proposition 6, for x ≥ 0, we have that

∣∣Φn(anx+ bn)− Λ(x)
∣∣ ≤ e−nSn(x)

∣∣∣Λ
(
In(x)

)
− Λ(x)

∣∣∣+ Λ(x)
∣∣e−nSn(x) − 1

∣∣

≤
∣∣∣Λ
(
In(x)

)
− Λ(x)

∣∣∣+
∣∣e−nSn(x) − 1

∣∣. (24)

We first study the term
∣∣e−nSn(x) − 1

∣∣. From (21), 0 < Cn(x) ≤ 1/n (now In(x) ≥ 0) and hence,

0 < Sn(x) <
1

2n(n− 1)
.

Thus, since when y ≥ 0, 1− e−y ≤ y, we get

∣∣e−nSn(x) − 1
∣∣ = 1− e−nSn(x) < nSn(x) <

1

2(n− 1)

=
log n

2(n− 1)

1

log n
≤ log n0

2(n0 − 1)

1

log n
, (25)

because the function log y/(y − 1) is decreasing. Notice that the above inequality gives the second term of the
right hand side of the statement.

To bound the other term we will study separately the cases whether In(x) < x or In(x) ≥ x. It can be seen
that both situations occur.

1. Case In(x) < x. Here,
∣∣∣Λ
(
In(x)

)
− Λ(x)

∣∣∣ = Λ(x)− Λ
(
In(x)

)
≤ Λ′

(
In(x)

)(
x− In(x)

)

= Λ
(
In(x)

)
e−In(x)

(
x− In(x)

)
≤ ex−In(x)e−x

(
x− In(x)

)
. (26)

where we have used that for x > 0, Λ(x) is increasing, Λ′(x) is decreasing, the Mean Value Theorem and that
Λ
(
In(x)

)
≤ 1.

At this point observe that since an = bn/(b
2
n + 1),

0 < x− In(x) ≤ x−
∫ anx+bn

bn

t dt = x− (anx)2

2
− anbnx ≤ (1− anbn)x =

x

b2n + 1
,
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where we utilize the bound V (t) > t given in (19). Hence, plugging the above inequality in (26),

∣∣∣Λ (In(x))− Λ(x)
∣∣∣ ≤ e

x

b2n+1 e−x
x

b2n + 1
= e
− b2nx

b2n+1
x

b2n + 1

= e
− b2nx

b2n+1
b2nx

b2n + 1

1

b2n
≤ max

y∈[0,∞)

{
e−yy

} 1

b2n
=

1

eb2n
. (27)

2. Case In(x) ≥ x. Here,
∣∣∣Λ
(
In(x)

)
− Λ(x)

∣∣∣ = Λ
(
In(x)

)
− Λ(x) ≤ Λ′(x)

(
In(x)− x

)

= Λ(x)e−x
(
In(x)− x

)
≤ e−x

(
In(x)− x

)
, (28)

where we have used the same properties as above. We proceed also as in the previous situation, and moreover
we use that when y ≥ 0, then log(1 + y) ≤ y. Given that V (t) < t+ 1/t (see (19)),

0 ≤ In(x)− x ≤ 1

2
a2nx

2 + anbnx+ log
(an
bn
x+ 1

)
− x

≤ b2n
2(b2n + 1)2

x2 +
b2n

b2n + 1
x+

1

b2n + 1
x− x =

b2n
2(b2n + 1)2

x2 <
1

2b2n
x2. (29)

Hence, from (28), ∣∣∣Λ
(
In(x)

)
− Λ(x)

∣∣∣ ≤ x2

2
e−x

1

b2n
<

2

e2b2n
. (30)

The proposition follows joining (25), (27) and (30), using that 1/e > 2/e2 and applying Proposition 5.

4.2 Case x < 0.

Proposition 8. Given n0 ≥ 3, for all n ≥ n0 it holds that

sup
x<0
|Φn
(
an x+ bn

)
− Λ(x)| < C−(n0)

log n
,

where

C−(n0) =





1, when n0 ≤ 15( 2

3b2n0

+
1√
en0

)
log(n0) when n0 ≥ 16.

Proof. First notice that for x < 0, Λ(x) < Λ(0) < 1/e, and

Φn
(
anx+ bn

)
< Φn

(
bn
)

=
(

1− 1

n

)n
<

1

e
.

Hence, for 3 ≤ n ≤ 15,

sup
x<0

∣∣∣Λ(x)− Φn
(
anx+ bn

)∣∣∣ < 1

e
<

1

log n
. (31)

From now on we assume n ≥ 16. For convenience, we divide the values of x according whether

x ∈ (−∞,−bn/an), x ∈ [−bn/an,−1.25 log bn] or x ∈ (−1.25 log bn, 0).

Notice that for n ≥ 16, −bn/an < −1.25 log bn. We remark that in our approach the choice of the point
−1.25 log bn is essential to obtain sharp bounds.
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1. Case x ∈ (−∞,−bn/an). Here we will bound separately Λ(x) and Φn(anx+ bn). Since anx+ bn < 0, on
the one hand, Φ

(
anx+ bn

)
< Φ(0) = 0.5, and therefore

0 < Φn(anx+ bn) <
1

2n
.

On the other hand,

0 < Λ(x) < Λ

(
−an
bn

)
= Λ

(
−(b2n + 1)

)
= exp

{
−eb2n+1

}
.

Joining the above inequalities we obtain that for x ∈ (−∞,−bn/an),
∣∣∣Λ(x)− Φn

(
anx+ bn

)∣∣∣ ≤ max
(

Λ(x),Φn
(
anx+ bn

))
<

1

2n
(32)

where we have used that for n ≥ 3,

exp
{
−eb2n+1

}
≤ 1

2n
.

It is easy to see that this inequality holds for n ≤ 5. To prove it for n ≥ 6, notice that it is equivalent to see that

eb
2
n+1 ≥ (log 2)n.

Now, by Proposition 4,

eb
2
n+1 ≥ e1+2 logn−log(4π logn) =

e n2

4π log n
.

Hence, it suffices to prove that, for n ≥ 6, e n2/(4π log n) ≥ (log 2)n and this result follows studying the
function y/ log y and its derivatives.

Finally, since for y > 1 the function (1/2)y log y is decreasing, inequality (32) implies that

∣∣∣Λ(x)− Φn
(
anx+ bn

)∣∣∣ < log n0
2n0

1

log n
. (33)

2. Case x ∈ [−bn/an,−1.25 log n]. As in the first case we will bound separately Λ(x) and Φn(anx+ bn).
We start studying Λ(x). We get that

0 ≤ Λ(x) ≤ Λ(−1.25 log bn) < Λ(− log bn) ≤ 4

e2
1

b2n
≤ 4 log n0

e2b2n0

1

log n
. (34)

where we have used Proposition 5 and that

Λ(−y) ≤ 4

e2
e−2y (35)

for all y ≥ 0. Notice that this inequality holds because maxz≥0
(
z2e−z

)
= 4/e2.

Let us consider now the term Φn(anx+ bn). Recall that by (23),

log Φn(anx+ bn) = − exp
{
−
∫ anx+bn

bn

V (t) dt
}
− nSn(x), (36)

with Sn(x) > 0. Hence,

Φn(anx+ bn) ≤ e− exp

{ ∫ bn
anx+bn

V (t) dt

}
. (37)

By (19) we get ∫ bn

anx+bn

V (t) dt ≥
∫ bn

anx+bn

t dt = −anbnx− a2n
x2

2
:= g(x).

11



Notice that on the interval [−bn/an,−1.25 log bn] the function g is decreasing and then for all x in this interval,
g(x) ≥ g(−1.25 log bn). Thus,

∫ bn

anx+bn

V (t) dt ≥ 5

4
anbn log bn −

25

32
a2n(log bn)2

=
5

4

b2n
b2n + 1

log bn −
25b2n

32(b2n + 1)2
(log bn)2

≥ 5

4

b2n
b2n + 1

log bn −max
y>1

(
25y2

32(y2 + 1)2
log y

)
log bn

≥ 5

4

b2n
b2n + 1

log bn −
1

10
log bn =

23b2n − 2

20(b2n + 1)
log bn, (38)

where we have used that

max
y≥1

(
25y2

32(y2 + 1)2
log y

)
<

1

10
, (39)

and that bn > 1 for n ≥ 16. The above inequality follows studying the function h(y) = (y2 log y)/(y2 + 1)2.
In fact,

h′(y) = y
y2 + 1 + 2(1− y2) log y

(y2 + 1)3
,

and its sign, when y > 1, is the contrary of the sign of

H(y) = log y − y2 + 1

2(y2 − 1)
,

which can be easily studied because H ′(y) = (y4 + 1)/(y(y2 − 1)2) > 0. Hence, for y > 1, the function h is
positive and increasing until some value y = y∗ and then decreases monotonically towards zero. By Bolzano’s
Theorem, y∗ ∈ (y, y) := (2.16, 2.17). Hence

max
y>1

h(y) <
y 2 log y

(y2 + 1)2
and

25

32

y 2 log y

(y2 + 1)2
<

1

10
.

Combining (37), (38) and (35) we obtain that

Φn(anx+ bn) ≤ Λ

(
−
∫ bn

anx+bn

V (t) dt

)
≤ 4

e2
exp

{
2− 23b2n

10(b2n + 1)
log bn

}
.

Hence, once we prove that

max
y≥1

P (y) <
2

3
, (40)

where

P (y) =
4

e2
y2 exp

{
2− 23y2

10(y2 + 1)
log y

}
=

4

e2
y2Q(y),

we will have that

Φn(anx+ bn) ≤ 2

3b2n
≤ 2 log n0

3b2n0

1

log n
.

where note that we have used once more Proposition 5.
Joining (34) and the above inequality we get that when x ∈ [−bn/an,−1.25 log n],

∣∣Φn(anx+ bn)− Λ(x)
∣∣ ≤ 2 log n0

3b2n0

1

log n
, (41)

12



Hence, to end this part of the proof we need to prove (40). To study the function P (y) we compute

P ′(y) =
2

5e2
y

(1 + y2)2
Q(y) q(y), with q(y) = (22− 3y2)(1 + y2)− 50y2 log y.

Moreover, for y ≥ 1, q′(y) = −100 y log y − 12(1 + y2)y < 0. Joining all this information we get that for
y ≥ 1, the function P ′(y) is decreasing and has a unique zero y∗ and, by Bolzano’s Theorem, y∗ ∈ (y, y) :=
(1.532, 1.533). Therefore the function P is increasing in [1, y∗) and decreasing in (y∗,∞). As a consequence,

max
y≥1

P (y) = P (y∗) <
4

e2
y2 exp

{
2− 23y2

10(y2 + 1)
log y

}
< 0.66 <

2

3
,

as we wanted to prove.

3. Case x ∈ (−1.25 log n, 0). Using Proposition 6 we write

Φn(anx+ bn)− Λ(x) = e−nSn(x)Λ(x)
(Λ (In(x))

Λ(x)
− 1
)

+ Λ(x)
(
e−nSn(x) − 1

)
.

Hence

|Φn(anx+ bn)− Λ(x)| ≤ Λ(x)
∣∣∣Λ (In(x))

Λ(x)
− 1
∣∣∣+ Λ(x)

∣∣∣e−nSn(x) − 1
∣∣∣ . (42)

We start proving that

−In(x) =

∫ bn

anx+bn

V (t) dt ≤ −x. (43)

Recall that by (19), for t > 0, V (t) ≤ t+ 1/t and moreover that V is an increasing function. Hence

∫ bn

anx+bn

V (t) dt ≤ −V (bn)anx ≤ −
(
bn +

1

bn

)
anx = −b

2
n + 1

bn
anx = −x.

Therefore, for the first term of the right hand side of (42) we have

Λ(x)
∣∣∣Λ (In(x))

Λ(x)
− 1
∣∣∣ = Λ(x)

∣∣∣exp
(
e−x − e−In(x)

)
− 1
∣∣∣

= Λ(x)
{

exp
(
e−x − e−In(x)

)
− 1
}

≤ Λ(x) exp
{
e−x − e−In(x)

}(
e−x − e−In(x)

)
, (44)

where in the last inequality we have applied the Mean Value Theorem to ex.
Now, notice that taking into account that for y ≥ 0, 1− e−y ≤ y,

e−x − e−In(x) = e−x
(

1− ex+
∫ bn
anx+bn

V (t) dt
)
≤ e−x

(
−x−

∫ bn

anx+bn

V (t) dt

)

≤ e−x
(

(anbn − 1)x− a2n
2
x2
)
≤ e−x

(
− x+

x2

2

) 1

b2n
, (45)

where in the last inequalities we have used first that V (t) > t, and later that a2n and 1− anbn are both smaller
than 1/b2n.

To continue, notice that since −x ≤ 1.25 log bn, then b2n ≥ exp(−8x/5). Hence, from (44) and (45),

Λ(x)
∣∣∣Λ (In(x))

Λ(x)
− 1
∣∣∣ ≤ Q(x)

1

b2n
,
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where

Q(x) =
(
− x+

x2

2

)
exp

{
−x− e−x +

(
− x+

x2

2

)
e3x/5

}
=
(
− x+

x2

2

)
T (x).

We claim
0 < max

x<0
Q(x) < 0.63. (46)

Therefore

Λ(x)
∣∣∣Λ (In(x))

Λ(x)
− 1
∣∣∣ ≤ 0.63

b2n
. (47)

Let us prove now the inequality (46) given in the above claim. Notice that

Q′(x) =
1

20
T (x) t(x) =

1

20
T (x)

(
t0(x) + t1(x)e−x + t2(x)e3x/5

)
,

where t0(x) = −10(x2 − 4x + 2), t1(x) = 10x(x − 2) and t2(x) = x(x − 2)(3x2 + 4x − 10). To study the
sign of Q′(x) we consider the function t(x) for x < 0. We get that

t′′(x) = −20 + s1(x)e−x + s2(x)e3x/5,

where s1(x) = 10(x2− 6x+ 6) > 0 and s2(x) = (27x4 + 342x3 + 558x2− 1200x− 300)/25. It is clear that

t′′(x) ≥ −20 + s1(x) + s2(x)e3x/5 = s0(x) + s2(x)e3x/5 = S(x),

with s0(x) = 10(x2 − 6x+ 4). Hence, if we prove that S(x) > 0 we will have the convexity of t(x). Joining
this information with the fact that t(0) = −20 < 0, t′(0) = 40 > 0 and that t(x) tends to infinity when
x goes to minus infinity, we obtain that t(x) has a unique zero x = x∗ in (−∞, 0). By Bolzano’s Theorem
x∗ ∈ (x, x) := (−1.051,−1.050). FinallyQ is increasing on (−∞, x∗) and decreasing in (x∗, 0) and therefore,

max
x<0

Q(x) = Q(x∗) <
(
− x+

x2

2

)
exp

{
−x− e−x +

(
− x+

x2

2

)
e3x/5

}
< 0.63,

as we wanted to prove. That S(x) > 0 for x < 0, can be proved by using similar arguments and we omit the
details.

To end the proof it remains to study the term Λ(x)|e−nSn(x) − 1|, where recall that from Proposition 6,

Sn(x) ≤ C2
n(x)

2(1− Cn(x))
and Cn(x) =

1

n
exp

{∫ bn

anx+bn

V (t) dt
}

= 1− Φ(anx+ bn).

Hence

nSn(x) ≤

(
exp

{∫ bn
anx+bn

V (t) dt
})2

2nΦ(anx+ bn)
≤ 1

n
e−2x,

where we have used (43) and that Φ(anx+ bn) > 1/2, because anx+ bn > 0.
Using this inequality, that 1− e−y ≤ y for y ≥ 0 and that e−x ≥ 1− x+ x2/2, for x ≤ 0, we obtain

Λ(x)
∣∣e−nSn(x) − 1

∣∣ ≤ 1

n
Λ(x)e−2x ≤ 1

n
e−1+x−x

2/2e−2x

≤ 1

n
e−1/2e−(x+1)2/2 ≤ log n√

en

1

log n
≤ log n0√

en0

1

log n
. (48)

Joining (47) and (48) and using Proposition 5 we arrive to

∣∣Φn(anx+ bn)− Λ(x)
∣∣ ≤

(
0.63 log n0

b2n0

+
log n0√
en0

)
1

log n
, (49)

for the values of x considered in this case.

14



Finally, collecting the right hand terms of inequalities (33), (41) and (49) we have that for n ≥ 16,

max

(
log n0
2n0

,
2 log n0

3b2n0

,
(0.63 log n0

b2n0

+
log n0√
en0

))
<

2 log n0
3b2n0

+
log n0√
en0

.

Hence ∣∣Φn(anx+ bn)− Λ(x)
∣∣ <

(2 log n0
3b2n0

+
log n0√
en0

) 1

log n
,

and the proposition follows.

4.3 Global rate of convergence: proof of Theorem 1

The first part of the Theorem 1 is a straightforward consequence of Propositions 7 and 8: For n0 ≥ 16, because
it is easy to prove that C−(n0) > C+(n0). For 5 ≤ n0 ≤ 15 because C−(n0) = 1 and C+(n0) < 1.

Proposition 4 provides upper and lower bounds for b2n. These bounds substituted in C(n0) give easily that
limn0→∞C(n0) = 1/3.

4.4 Other norming constants an
If instead of a◦n = AF (bn) = bn/(1 + b2n) it is used AH(bn) = 1/bn, applying similar tools that in the proof of
Proposition 7 we get the following result:

Proposition 9. Given n0 ≥ 2, for all n ≥ n0 it holds that

sup
x≥0
|Φn
(
AH(bn)x+ bn

)
− Λ(x)| < C

+
(n0)

log n
,

with

C
+

(n0) =

√
2 + 1

e
√
2

log n0
b2n0

+
log n0

2(n0 − 1)
.

Proof. Starting as in the proof of Proposition 7 we obtain that

∣∣Φn(AH(bn)x+ bn)− Λ(x)
∣∣ ≤

∣∣∣Λ (In(x))− Λ(x)
∣∣∣+

log n0
2(n0 − 1)

1

log n
, (50)

where here

In(x) =

∫ AH(bn)x+bn

bn

V (t) dt, and AH(bn) =
1

bn
.

To study the remainder left hand term of (50) let us prove first that under our hypotheses In(x) > x. Notice
that since AC(t) < 1/t, AC(bn) < AH(bn). Then, by the Mean Value Theorem, there is x1 ∈ [0, x] such that

In(x) =

∫ AH(bn)x+bn

bn

V (t) dt >

∫ AC(bn)x+bn

bn

V (t) dt

= V
(
AC(bn)x1 + bn

)
AC(bn)x =

AC(bn)

AC
(
AC(bn)x1 + bn

) x > x,

where in the last step we have used that AC is decreasing. Then
∣∣∣Λ (In(x))− Λ(x)

∣∣∣ = Λ (In(x))− Λ(x) ≤ Λ′(x)
(
In(x)− x

)

= Λ(x)e−x
(
In(x)− x

)
≤ e−x

(
In(x)− x

)
, (51)

using once more that for x > 0, Λ(x) is increasing, and the Mean Value Theorem.
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Now, taking into account that V (t) ≤ t + 1/t (see (19)) and again that for y > −1, log(1 + y) ≤ y, we
obtain that

In(x)− x =

∫ x/bn+bn

bn

V (t) dt− x ≤ 1

2

x2

b2n
+ log

( x
b2n

+ 1
)
<
x2/2 + x

b2n
. (52)

Moreover, the following bound is immediate: for x ≥ 0,

0 ≤ e−x(x2/2 + x) ≤ e−
√
2(
√

2 + 1). (53)

Joining (51), (52) and (53), we get

∣∣∣Λ (In(x))− Λ(x)
∣∣∣ ≤
√

2 + 1

e
√
2b2n

. (54)

Finally, applying Proposition 5 the result follows.

Remark 10. (i) Notice that when x ≥ 0, applying Proposition 7 and Proposition 4 we have that choosing
a◦n = AF (bn) = bn/(1 + b2n) we get that

lim
n0→∞

C+(n0) =
1

2e
≈ 0.184,

while Proposition 9 implies that when an = AH(bn) = 1/bn then

lim
n0→∞

C
+

(n0) =

√
2 + 1

2e
√
2
≈ 0.294

The above results are coherent with the numerical results presented in Table 2 and show that the first choice
a◦n = AF (bn) gives best approximations. We do not develop here the case x < 0 for AH(bn).

(ii) It is worth noting that since AC(t) < 1/t, AC(bn) < AH(bn), it is easy to see that Proposition 9 also
holds replacing AH(bn) by AC(bn). Nevertheless the bound given by this result seems less accurate than the
ones provided in Propositions 7 and 9, see again Table 2.

5 Explicit norming constants

Since the expression b∗n is not explicit, by using asymptotic analysis it can be deduced expressions asymptoti-
cally equivalent for b∗n and a∗n (they satisfy Property 2)

β∗n = (2 log n)1/2 − log logn+ log(4π)

2 (2 log n)1/2
(55)

and
α∗n = (2 log n)−1/2.

(see, for example, Resnick [9, pp. 71–72]). An easy way to deduce these constants and to suggest other ones
more suited to previous results is to use the Lambert W function and its extensions.

5.1 Lambert W function and extensions

For t > 0, the equation yey = t has a unique real positive solution y, which determines (for t > 0) the principal
branch of the real Lambert W function, that means, W (t) satisfies

W (t) eW (t) = t,
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and limt→∞W (t) = ∞ (see Corless et al. [3] for a complete overview of Lambert W function and many
applications). The asymptotic expansion of this function is given by Corless et al. [3, pp. 22 and 23], see also
De Bruijn [4, pp. 25–27].

W (t) = log t− log log t+
log log t

log t
+O

(( log log t

log t

)2)
, t→∞. (56)

For γ 6= 0, Comtet [2] extended that expansion to the (unique) positive solution y of the equation

yγey = t

such that y → ∞ when t → ∞. Later, Robin [10] and Salvy [11] extended Comtet [2] results in order to
deduce an asymptotic expansion of the solution of the equation

yγeyD
(1

y

)
= t, (57)

where

D(y) =

∞∑

n=0

dny
n, with d0 6= 0,

is a power series convergent in a neighborhood of the origin. Denote by UD(t) that solution. We are only
interested on the case γ = 1 and d0 = 1, and for this case, Robin [10] and Salvy [11] prove

UD(t) = log t− log log t+
log log t− d1

log t
+
Q2(log log t)

(log t)2
+ o

(
1

(log t)2

)
, t→∞,

where Q2 is a polynomial of degree 2, whose coefficients depend on D. The above expression implies that

UD(t) = log t− log log t+
log log t− d1

log t
+O

(( log log t

log t

)2)
, t→∞. (58)

5.2 Return to the norming constants

Thanks to (11), the constant b∗n can be written in terms of the principal branch of Lambert function:

b∗n =
(
W
(
n2/(2π)

))1/2
.

Hence, from, (56),

b∗n =

(
log
(
n2/(2π)

)
− log log

(
n2/(2π)

)
+O

( log log n

log n

))1/2

= (2 log n)1/2 − log(4π log n)

2 (2 log n)1/2
+O

((log log n)2

(log n)3/2

)

= β∗n +O
((log log n)2

(log n)3/2

)
, n→∞.

Notice that if we introduce the following sequence

β
∗
n =

(
log
(
n2/(2π)

)
− log log

(
n2/(2π)

)
+

log log(n2/(2π))

log(n2/(2π))

)1/2

,

we obtain a better approximation to b∗n because

b∗n = β
∗
n +O

(
(log log n)2

(log n)5/2

)
, n→∞.

In any case, Theorem 1 suggests that the utilization of an approximation to bn rather than an approxima-
tion to b∗n likely will provide more velocity of convergence. To this end, in next proposition we compute an
asymptotic expansion of bn at infinity using the bounds (17) for the Mills ratio and the function UD introduced
in (58).
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Proposition 11. It holds that

bn = βn +O

(
(log log n)2

(log n)5/2

)
, n→∞, (59)

where

βn =

(
log
(
n2/(2π)

)
− log log

(
n2/(2π)

)
+

log log(n2/(2π))− 2

log(n2/(2π))

)1/2

.

Proof. By inequalities (17) we know that for x > 0,

r(x)φ(x) < 1− Φ(x) < R(x)φ(x),

where

r(x) =
x

x2 + 1
and R(x) =

x2 + 2

x3 + 3x
.

For n large enough, let vn (resp. Vn) be the solution of the equation r(x)φ(x) = 1/n (resp. R(x)φ(x) = 1/n).
Recall that bn satisfies 1− Φ(bn) = 1/n. Therefore, for these values of n it holds that

vn ≤ bn ≤ Vn. (60)

Let us compute the asymptotic expansions at infinity of {vn} and {Vn}. Notice that vn satisfies the equation

n2

2π
= x2ex

2
(

1 +
1

x2

)2
= x2ex

2
(

1 + 2
1

x2
+

1

x4

)
,

while Vn satisfies

n2

2π
= x2ex

2

(
1 + 3

x2

1 + 2
x2

)2

= x2ex
2

(
1 + 2

1

x2
+O

( 1

x4

))
.

By changing x2 by y, and with the notations of Subsection 5.1, both vn and Vn, are
(
UD
(
n2/(2π)

))1/2
,

for some analytic functions D, both satisfying

D(y) = 1 + 2y +O
(
y2
)
.

Then, from (58) and (60), we arrive to the same asymptotic expansions for vn, bn and Vn. Specifically,

bn =

(
log
(
n2/(2π)

)
− log log

(
n2/(2π)

)
+

log log
(
n2/(2π)

)
− 2

log
(
n2/(2π)

) +O

(( log logn

log n

)2))1/2

.

From the above expression, (59) follows from
√
w + a−√w = a/(

√
w + a+

√
w).

Remark 12. Using the same tools that in the proof of the above proposition we obtain that

(i) bn − b∗n = O

(
1

(log n)3/2

)
, n→∞,

(ii) βn − β∗n = O

(
(log log n)2

(log n)3/2

)
, n→∞,

(iii) βn − β
∗
n = O

(
1

(log n)3/2

)
, n→∞.
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Remark 13. It is also possible to construct some approximations of b∗n and bn that are improvements of (55)
adding some suitable terms. In fact, if we define:

β̃∗n =
√

2 log n− log(4π log n)

2
√

2 log n
−
(

log(4π log n)
)2 − 4 log(4π log n)

8
√

(2 log n)3
,

β̃n =
√

2 log n− log(4π log n)

2
√

2 log n
−
(

log(4π log n)
)2 − 4 log(4π log n) + 8

8
√

(2 log n)3
,

it also holds that

b∗n = β̃∗n +O

(
(log log n)2

(log n)5/2

)
and bn = β̃n +O

(
(log log n)2

(log n)5/2

)
n→∞.

Nevertheless the approximations β
∗
n and βn, respectively, are sharper, specially for small n.

5.3 From βn to βn

As we have seen in the previous subsection, βn is a very good approximation of bn. Nevertheless, for each
p, q ∈ R, if we introduce the new constants

Bn(p, q) =

(
log
(
n2/(2π)

)
− log log

(
n2/(2π)

)
+

log
(

log(n2) + p
)
− 2

log
(
n2
)

+ q

)1/2

,

it also holds that

bn = Bn(p, q) +O

(
(log log n)2

(log n)5/2

)
, n→∞.

In particular, βn = Bn
(
− log(2π),− log(2π)

)
.

To obtain some values of p and q that provide better approximations to bn, at least for n in the most used
range [10, 105], we proceed as follows: For simplicity we fix q = − log(2π) and consider p as a free parameter
to be determined. For a given m ∈ N, we consider the set of m− 9 equations

bk −Bk
(
p,− log(2π)

)
= 0, k = 10, 11, . . . ,m.

The actual values bk are obtained numerically. For each k, let pk be the solution of the corresponding equation,
which is also obtained numerically. Then we define

p̂(m) =
1

m− 9

m∑

k=10

pk.

Notice that p̂(m) can be interpreted as the “best" solution for the incompatible system formed by the cor-
responding m − 9 equations. We have obtained that p̂(102) ≈ 0.59, p̂(103) ≈ 0.47, p̂(104) ≈ 0.47, and
p̂(105) ≈ 0.52. These values suggest to consider p = 1/2 as a candidate to have an approximation of bn that is
good both for n ∈ [10, 105] and for n large enough. In short we consider

βn = Bn
(
1/2,− log(2π)

)
,

that is precisely the expression (6) given in the introduction.
In table 3 there is a numerical comparison between all the constants involved in this section for different

sample size. These results illustrate that the suggested new constant βn is a very good approximation for bn,
and that it is sharper than βn, specially for small values of n. Also β

∗
n is a good approximation to b∗n, whereas

β∗n approximates b∗n, but more slowly. The computations to get the table are done with Maple.
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n 10 102 105 1010 1030 1060

bn 1.28155 2.32635 4.26489 6.36134 11.46402 16.39728
βn 1.27115 2.32632 4.26488 6.36132 11.46402 16.39728
βn 1.18090 2.31828 4.26430 6.36123 11.46401 16.39728

b∗n 1.43165 2.37533 4.27575 6.36492 11.46467 16.39750
β
∗
n 1.45508 2.37607 4.27535 6.36478 11.46465 16.39750
β∗n 1.36192 2.36625 4.28019 6.36855 11.46611 16.39821

Table 3. Comparison of the standard constants β∗n and the constants β
∗
n with b∗n and the proposed

constants βn and βn with bn.

Conclusions

As a corollary of Theorem 1, Proposition 11 and the computations of this section, we propose (6),

βn =

(
log
(
n2/(2π)

)
− log log

(
n2/(2π)

)
+

log
(

log(n2) + 1/2
)
− 2

log
(
n2/(2π)

)
)1/2

,

that is a very good approximation for bn, as one of the norming constants for the maximum of n i.i.d. standard
normal random variables. Also, in agreement with Remark 10 and Table 2, it seems also convenient to utilize
always AF . So we propose, instead of α∗n to use, together with bn, the norming constant

αn =
βn

1 + β2n
.
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