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Abstract. We study the existence and non–existence of periodic orbits and

limit cycles for planar polynomial differential systems of degree n having n real
invariant straight lines taking into account their multiplicities. The polynomial
differential systems with n = 1, 2, 3 are completely characterized.

1. Introduction and statement of the main results

The study of the periodic solutions and of the limit cycles of real polynomial
differential equations in the plane R2 is one of the main problems of the qualitative
theory of the differential systems in dimension two during the last century and the
present one, see for instance the 16–th Hilbert problem [6, 8, 10].

Let P and Q be two polynomials in the variables x and y with real coefficients,
then we say that

(1) X = X (x, y) = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y

is a polynomial vector field of degree n or simply a vector field of degree n if the max-
imum of the degrees of the polynomials P and Q is n. The differential polynomial
system

(2)
dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y),

associated to the polynomial vector field X of degree n is called a polynomial dif-
ferential system of degree n.

A limit cycle of a differential system (2) is a periodic orbit isolated in the set of
all periodic orbits of system (2).

Polynomial vector fields of degree 2 have been investigated intensively, and more
than one thousand papers have been published about them (see for instance [13,
15, 14]), but in general the problem of counting their limit cycles and finding their
maximum number remains open. There are some results for polynomial vector
fields of degree 3 but not too much.

In this paper we study the existence or non–existence of periodic orbits for real
polynomial vector fields of degree n having n real invariant straight lines taking
into account their multiplicities.
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We recall the definition of an invariant straight line and also of the multiplicity
of an invariant straight line.

Let f = ax + by + c = 0 be a straight line of R2. The straight line f = 0 is
invariant for the polynomial differential system (2) (i.e. it is formed by solutions
of system (2)) if for some polynomial K ∈ R[x, y] we have

(3) Xf = P (x, y)
∂f

∂x
+ Q(x, y)

∂f

∂y
= Kf.

The polynomial K is called the cofactor of the invariant straight line f = 0.

For the polynomial differential system (2) we define the polynomial

R(x, y) = det




1 x y
0 P Q
0 PPx + QPy PQx + QQy


 .

We say that the invariant straight line f = 0 has multiplicity k for the polynomial
differential system (2) if the polynomial fk divides the polynomial R(x, y) and
the polynomial fk+1 does not divide the polynomial R(x, y). Roughly speaking if
an invariant straight line L has multiplicity k for a given polynomial differential
system, this means that it is possible to perturb such polynomial differential system
in such a way that they appear k different invariant straight lines bifurcating from
L. For more details on the multiplicity see [3].

For polynomial differential systems of degree 2 the following result is known.

Theorem 1. For a polynomial differential system (2) of degree 2 having two real
invariant straight lines taking into account their multiplicities the following state-
ments hold.

(a) Assume that the two invariant straight lines are real and intersect in a
point. Then system (2) has no limit cycles. It can have periodic solutions.

(b) Assume that the two invariant straight lines are real and parallel. Then
system (2) has no periodic solutions.

(c) Assume that the system has a unique invariant straight line of multiplicity
2. Then system (2) has no periodic solutions.

Since statement (a) of Theorem 1 is due to Bautin [2] and its proof is short, and
statements (b) and (c) are very easy to prove we shall provide in section 2 a proof
of all statements of Theorem 1. In fact we cannot find in the literature the proofs
of statements (b) and (c) of Theorem 1.

Of course the results of Theorem 1 for polynomial differential systems (2) of
degree 2 can be extended to polynomial differential systems (2) of degree 1, i.e. to
linear differential systems in R2. More precisely we have the following well known
result.

Theorem 2. A polynomial differential system (2) of degree 1 having one real in-
variant straight line has no periodic solutions.

It is well known that the unique linear differential systems in R2 having periodic
solutions are the ones having a center, and those have no invariant straight lines.
Hence Theorem 2 is proved.

In short, Theorems 1 and 2 characterize the existence or non-existence of periodic
solutions and limit cycles for the polynomial differential systems (2) of degree n
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having n real invariant straight lines taking into account their multiplicities when
n = 1, 2. From these two theorems if follows immediately the next result.

Corollary 3. The polynomial differential systems (2) of degree n having n real
invariant straight lines taking into account their multiplicities when n = 1, 2 have
no limit cycles.

We shall see that Corollary 3 cannot be extended to n > 2, because polynomial
differential systems of degree 3 having 3 invariant straight lines taking into account
their multiplicities can have limit cycles for some configurations of their invariant
straight lines.

Before characterizing for n = 3 the existence or non-existence of periodic solu-
tions and limit cycles for the polynomial differential systems of degree 3 having 3
invariant straight lines taking into account their multiplicities according with the
different configurations of their three invariant straight lines we present a general
result for degree n.

Theorem 4. A polynomial differential system (2) of degree n > 2 having n real
parallel invariant straight lines taking into account their multiplicities has no peri-
odic solutions.

Theorem 4 is proved in section 3.

Theorem 5. For a polynomial differential system (2) of degree 3 having 3 real
invariant straight lines taking into account their multiplicities the following state-
ments hold.

(a) If these 3 invariant straight lines taking into account their multiplicities are
parallel, system (2) has no periodic solutions.

(b) We assume that the system has 3 different invariant straight lines, two of
them are parallel and intersects the third one, then the cubic polynomial
differential system (2) can have limit cycles.

(c) We assume that the system has only 2 different invariant straight lines
which are not parallel. Then the cubic polynomial differential system (2)
can have limit cycles.

(d) We assume that the system has 3 different invariant straight lines intersect
at a unique point. Then the cubic polynomial differential system (2) can
have limit cycles.

(e) We assume that the system has 3 different invariant straight lines intersect
in three different points. Then the cubic polynomial differential system (2)
can have limit cycles.

Theorem 5 is proved in section 4.

We must mention that Kooij in [9] studied the existence and non-existence of
periodic orbits and limit cycles of the cubic polynomial differential systems with
4 real invariant straight lines, while in Theorem 6 for the same cubic polynomial
differential systems but with only 3 real invariant straight lines taking into account
their multiplicities we study the existence and non-existence of periodic orbits and
limit cycles. We shall use some of the ideas of Kooij for proving Theorem 6.
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2. Proof of Theorem 1

In this section we shall prove Theorem 1. We shall need the next three well
known results.

Theorem 6. Let R be a simply connected region of R2, and assume that the dif-
ferential system (2) is C1 in R, i.e. P,Q : R → R are C1 maps. Then any periodic
orbit of system (2) in R must surround an equilibrium point of this system.

For a proof of Theorem 6 see for instance Theorem 1.31 of [5].

Let U be a dense open subset of R2. Then a first integral H : U → R for system
(2) is a non–locally constant function which is constant on the orbits of the system
contained in U . In other words, if X given in (1) is the vector field associated to
system (2), then H is a first integral if and only if XH = 0 in U .

Theorem 7 (Dulac’s Theorem). Assume that there exists a C1 function D(x, y)
in a simply connected region R of R2 such that for the differential system (2) either
∂(DP )/∂x + ∂(DQ)/∂y ≥ 0, or ∂(DP )/∂x + ∂(DQ)/∂y ≤ 0, and at most this
previous expression is zero in a zero measure Lebesgue set. Then the differential
system (2) has no periodic orbits in R.

For a proof of the Dulac’s Theorem see for instance Theorem 7.12 of [5].

Finally we summarize for the differential systems defined in an open subset of
R2 some basic results characterizing the Hopf bifurcation. These results will be
used for proving some statements of Theorem 5. For more details on the results
presented on the Hopf bifurcation for differential systems in the plane see Marsden
and McCracken [11].

For u ∈ R2 consider a family of autonomous systems of ordinary differential
equations depending on a parameter µ

(4)
du

dt
= F (u, µ),

where F : R2×R → R2 is C∞ and µ is the bifurcation parameter. Suppose that a(µ)
is a equilibrium point of the differential system (4) for every µ in a neighborhood
U of µ = 0, i.e. F (a(µ), µ) = 0 if µ ∈ U . Assume that DF |(a(µ),µ) has eigenvalues
of the form α(µ) ± iβ(µ).

Poincaré [12], Andronov and Witt [1] and Hopf [7] (a translation into English of
Hopf’s original paper can be found in section 5 of [11]) shown that for µ sufficiently
small, an one–parameter family of periodic orbits of the differential system (4)
arises at (u, µ) = (0, 0) if

(i) DF |(0,0) has eigenvalues ±iβ(0) ̸= 0,
(ii) (dα/dµ)|µ=0 ̸= 0, and
(iii) we do not have a center at u = 0 for µ = 0.

We say that µ = 0 is the value of the Hopf bifurcation.

Proof of statement (a) of Theorem 1. After an affine change of variables we can
assume that the two invariant straight lines of statement (a) of Theorem 1 of the
polynomial differential system (2) of degree 2 are x = 0 and y = 0. Then, if
K1 = K1(x, y) (respectively K2 = K2(x, y)) is the cofactor of x = 0 (respectively
y = 0), from the definition of invariant straight line (3) we have that P = xK1

(respectively Q = yK2), where K1 and K2 are polynomials of degree 1. Therefore,
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it is sufficient to prove statement (a) of Theorem 1 for the following polynomial
differential system of degree 2

(5) ẋ = P (x, y) = x(a1x + b1y + c1), ẏ = Q(x, y) = y(a2x + b2y + c2),

where a1, b1, c1, a2, b2, c2 ∈ R are arbitrary real numbers.

From Theorem 6 the unique equilibrium point of system (5) which can be sur-
rounded by periodic orbits is

p =

(
b2c1 − b1c2

a2b1 − a1b2
,
a1c2 − a2c1

a2b1 − a1b2

)
,

because the other equilibria are on the invariant straight lines x = 0 and y = 0. So in
order that periodic orbits exist for system (5) we need to have that a2b1 −a1b2 ̸= 0.

We consider the function D(x, y) = xlyk where

l =
2a1b2 − a2(b1 + b2)

a2b1 − a1b2
, k =

2a1b2 − (a1 + a2)b1

a2b1 − a1b2
,

defined in the open quadrant of R2 \ {xy = 0} containing the equilibrium point p.
Then we have

∂(DP )

∂x
+

∂(DQ)

∂y
=

(a1 − a2)b2c1 + a1(−b1 + b2)c2

a2b1 − a1b2
xlyk.

If (a1−a2)b2c1+a1(−b1+b2)c2 ̸= 0, by Dulac’s Theorem system (5) has no periodic
orbits.

Assume that (a1 − a2)b2c1 + a1(−b1 + b2)c2 = 0. Then the differential system
ẋ = DP , ẏ = DQ is Hamiltonian, and

H = x
(a2−a1)b2
a1b2−a2b1 y

a1(b1−b2)
a1b2−a2b1 ((b1 − b2)c2 + (a1 − a2)b2x + (b1 − b2)b2y)

is a first integral of system (5), consequently this system cannot have limit cycles
in the quadrant containing the equilibrium point p.

In order to complete the proof of this statement we only need to show that under
convenient conditions system (5) has periodic solutions. Under the assumption
(a1 − a2)b2c1 + a1(−b1 + b2)c2 = 0, if

(a2b1 − a1b2)(−a2b2c
2
1 + a2b1c1c2 + a1b2c1c2 − a1b1c

2
2) < 0,

then the equilibrium point p has purely imaginary eigenvalues. Hence, since addi-
tionally the system has the first integral H it follows that the singular point p is a
center, consequently under these assumptions system (5) has periodic orbits. This
completes the proof statement (a) of Theorem 1. �

Proof of statement (b) of Theorem 1. Doing an affine change of variables we can
suppose that the two parallel invariant straight lines of statement (b) of Theorem
1 of the polynomial differential system (2) of degree 2 are x − 1 = 0 and x + 1 = 0.
Then, if K1 = K1(x, y) (respectively K2 = K2(x, y)) is the cofactor of x − 1 = 0
(respectively x + 1 = 0), from the definition of invariant straight line (3) we obtain
that P = a(x − 1)(x + 1), where K1 = a(x + 1) and K2 = a(x − 1). Therefore,
it is sufficient to prove statement (b) of Theorem 1 for the following polynomial
differential system of degree 2:

(6) ẋ = P (x, y) = a(x − 1)(x + 1), ẏ = Q(x, y),

where a ∈ R and Q(x, y) an arbitrary polynomial of degree 2.
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If a = 0 then all the straight lines x = constant are invariant and consequently
system (6) has no periodic solutions. Assume that a ̸= 0, then the solution x(t, x0)
of the first equation of system (6) such that x(0, x0) = x0 is

x(t, x0) =
x0 cosh(at) − sinh(at)

cosh(at) − x0 sinh(at)
.

Since the function x(t, x0) is not periodic, it follows that system (6) has no periodic
orbits. This completes the proof statement (b) of Theorem 1. �

Proof of statement (c) of Theorem 1. Repeating the proof of statement (b) of The-
orem 1 for the invariant straight lines x− ε = 0 and x+ ε = 0, we get the following
polynomial differential system of degree 2:

(7) ẋ = P (x, y) = a(x − ε)(x + ε), ẏ = Q(x, y),

where a ∈ R and Q(x, y) an arbitrary polynomial of degree 2. Then when ε → 0
system (7) becomes

(8) ẋ = P (x, y) = ax2, ẏ = Q(x, y),

and for this system the invariant straight line x = 0 has multiplicity 2.

As in the previous proof if a = 0 system (7) has no periodic solutions. Assume
that a ̸= 0, then the solution x(t, x0) of the first equation of system (10) such that
x(0, x0) = x0 is

x(t, x0) =
x0

1 − ax0t
.

Since this function is not periodic, system (6) cannot have periodic orbits. This
completes the proof statement (c) of Theorem 1. �

3. Proof of Theorem 4

In this section we prove the main results of our paper, i.e. Theorem 4. For this
we will use some tools presented in sections 1 and 2.

Proof of statement (a) of Theorem 4. Doing an affine change of variables we can
suppose that the n parallel invariant straight lines of statement (a) of Theorem 4
of the polynomial differential system (2) of degree n are

x − α1 = 0, x − α2 = 0, . . . , x − αn = 0,

with α1 < α2 < . . . < αn.

It follows from the definition (3) of an invariant straight line that it is sufficient
to prove statement (a) of Theorem 4 for the following polynomial differential system
of degree n:

(9) ẋ = P (x, y) = a(x − α1) · · · (x − αn), ẏ = Q(x, y),

where a ∈ R and Q(x, y) is an arbitrary polynomial of degree n.

If a = 0 then all the straight lines x = constant are invariant and consequently
system (9) has no periodic solutions. Assume that a ̸= 0, then all the equilibrium
points of the polynomial differential system (9) are on one of the invariant straight
lines x = αi for i = 1, . . . , n. Therefore, by Theorem 6 none of the equilibrium
points of system (9) can be surrounded by periodic orbits. �
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Proof of statement (b) of Theorem 4. Recall the definition of multiplicity k of an
invariant straight line stated in section 1. Repeating the arguments of the beginning
of the proof of statement (c) of Theorem 1 and taking into account the proof of
statement (a) of Theorem 4 we see that it is sufficient to prove statement (b) of
Theorem 4 for the following polynomial differential system of degree n:

(10) ẋ = P (x, y) = a(x − α1)
β1 . . . (x − αk)βk , ẏ = Q(x, y),

where α1 < . . . < αk and β1 + . . . + βk = n where βi is a positive integer for
i = 1, . . . , k. Note that for this system the invariant straight line x = αi has
multiplicity βi for i = 1, . . . , k.

As in the proof of the previous statement, if a = 0 system (10) has no periodic
solutions. Assume that a ̸= 0, then all the equilibrium points of the polynomial
differential system (10) are on one of the invariant straight lines x = βi. Again,
by Theorem 6 none of the equilibrium points of system (10) can be surrounded by
periodic orbits. �

4. Proof of Theorem 5

Here we prove the five statements of Theorem 5.

Proof of statement (a) of Theorem 5. It follows immediately from Theorem 4. �

For proving statement (b) of Theorem 5 we shall need to distinguish between
a focus and a center. Thus we briefly describe the algorithm due to Bautin for
computing the Liapunov constants. It is known that all the Liapunov constants
must be zero in order to have a center, for more details see Chapter 4 of [5], and
the references quoted there.

We consider a planar analytic differential equation of the form

(11)

ẋ = −y + P (x, y) = −y +
∞∑

k=2

Pk(x, y),

ẏ = x + Q(x, y) = x +
∞∑

k=2

Qk(x, y),

where Pk and Qk are homogeneous polynomials of degree k. In a neighborhood of
the origin we can also write this differential system in polar coordinates (r, θ) as

(12)
dr

dθ
=

∞∑

k=2

Sk(θ)rk,

where Sk(θ) are trigonometric polynomials in the variables sin θ and cos θ.

If we denote by r(θ, r0) the solution of (12) such that r(0, r0) = r0 then close to
r = 0 we have

r(θ, r0) = r0 +
∞∑

k=2

uk(θ)rk
0 ,

with uk(0) = 0 for k ≥ 2. The Poincaré return map near r = 0 is given by

Π(r0) = r(2π, r0) = r0 +
∞∑

k=2

uk(2π)rk
0 .

Since Π is analytic it is clear that Π(r0) ≡ r0 if and only if un(2π) = 0 for all n > 1,
i.e. if and only if the origin of system (11) is a center. The constants un(2π) for
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n > 1 are called the Liapunov constants, and if some of them is not zero, then the
origin of system (11) is not a center.

Proof of statement (b) of Theorem 5. We assume that two of the three invariant
straight lines are parallel and intersects the other invariant straight line, and that
all these invariant straight lines have multiplicity 1. Now we shall prove that the
cubic polynomial differential system (2) with these three invariant straight lines
can have limit cycles.

Doing an affine change of variables we can suppose that the three invariant
straight lines of this statement are x − 1 = 0, x + 1 = 0 and y − 1 = 0. Proceeding
as in the proof of statement (b) of Theorem 1, we have that it is sufficient to prove
this statement for the following cubic polynomial differential system

ẋ = P (x, y) = (x − 1)(x + 1)(a1x + b1y + c1),
ẏ = Q(x, y) = (y − 1)(a2x + b2y + c2 + d2x

2 + e2xy + f2y
2),

where a1, b1, c1, a2, b2, c2, d2, e2, f2 ∈ R. In fact we shall prove this statement for
the particular system

(13)
ẋ = P (x, y) = (x − 1)(x + 1)(a1x + b1y),
ẏ = Q(x, y) = (y − 1)(a2x + b2y + d2x

2 + e2xy + f2y
2),

where a1, b1, a2, b2, d2, e2, f2 ∈ R.

We recall the conditions stated in section 2 in order that an one–parameter
family of periodic orbits exhibits a Hopf bifurcation at an equilibrium point. The
origin (0, 0) is an equilibrium point of system (13), and its eigenvalues are

(14) λ± = −1

2

(
a1 + b2 ±

√
a2
1 + b2

2 − 2a1b2 + 4a2b1

)
.

We assume that

(15) a2
1 + b2

2 − 2a1b2 + 4a2b1 < 0.

Let

µ = a1 + b2, α(µ) = −1

2
µ, β(µ, b1, b2, a2) =

1

2

√
−µ2 − 4(µ − b2)b2 − 4a2b1.

By (15) the eigenvalues (14) are of the form λ±(µ, b1, b2, a2) = α(µ)±β(µ, b1, b2, a2)i.
So, when µ = 0 they are

±β(0, b1, b2, a2) i = ±
√

b2
2 − a2b1 i.

We assume that b2
2 − a2b1 > 0. We also have that (dα/dµ)|µ=0 = −1/2 ̸= 0. Now

we claim that the origin of system (13) with µ = 0, b2 = 0, a2 = 1, b1 = −1 and
d2e2 + 2f2 + e2f2 ̸= 0 is not a center. Before proving the claim we note that for
these values the eigenvalues (14) are ±i and the condition (15) becomes −4 < 0.
Hence, once the claim be proved all the conditions for having a Hopf bifurcation
hold, consequently there are systems (13) with limit cycles, and statement (b) will
be proved.

Now we prove the claim. System (13) becomes

(16)
ẋ = P (x, y) = −(x − 1)(x + 1)y,
ẏ = Q(x, y) = (y − 1)(x + d2x

2 + e2xy + f2y
2).
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We write this system in polar coordinates (r, θ) where x = r cos θ and y = r sin θ,
and we have

ṙ = − sin θ
(
d2 cos2 θ + (e2 − 1) sin θ cos θ + f2 sin2 θ

)
r2

− sin θ
(
cos3 θ − d2 sin θ cos2 θ − e2 sin2 θ cos θ − f2 sin3 θ

)
r3,

θ̇ = −1 − cos θ
(
d2 cos2 θ + (e2 − 1) sin θ cos θ + f2 sin2 θ

)
r

+cos θ sin θ
(
d2 cos2 θ + (e2 + 1) sin θ cos θ + f2 sin2 θ

)
r2.

This system in a neighborhood of the origin can be written as

dr

dθ
= r2 sin θ

(
d2 cos2 θ + (e2 − 1) sin θ cos θ + f2 sin2 θ

)

−r3 sin θ
(
(d2 − 1)(d2 + 1) cos5 θ + d2(2e2 − 1) sin θ cos4 θ

+
(
e2
2 − e2 + 2d2f2

)
sin2 θ cos3 θ + (d2 + 2e2f2 − f2) sin3 θ cos2 θ

+
(
f2
2 + e2

)
sin4 θ cos θ + f2 sin5 θ

)
+ O(r4).

Now using the Bautin’s algorithm described we get that

u1(2π) = 1, u2(2π) = 0, u3(2π) = −π

4
(d2e2 + 2f2 + e2f2).

Hence, due to the fact that d2e2 + 2f2 + e2f2 ̸= 0 we do not have a center at the
origin of system (16). This completes the proof of statement (b). �

Proof of statement (c) of Theorem 5. Consider a polynomial differential system (2)
of degree 3 with one invariant straight line with multiplicity 2 intersecting an in-
variant straight line with multiplicity 1. We shall show that these systems can have
limit cycles.

Proceeding as in the proof of statement (c) of Theorem 1 and see also the proof
of statement (b) of Theorem 5 we have that it is sufficient to prove statement (c)
of Theorem 5 for the following polynomial differential system of degree 3

ẋ = P (x, y) = (x − 1)2(a1x + b1y + c1),
ẏ = Q(x, y) = (y − 1)(a2x + b2y + c2 + d2x

2 + e2xy + f2y
2),

where a1, b1, c1, a2, b2, c2, d2, e2, f2 ∈ R. We consider the particular subsystem

(17)
ẋ = (x − 1)2(a1x + b1y),
ẏ = (y − 1)(a2x + b2y + d2x

2 + e2xy + f2y
2),

where a1, b1, a2, b2, d2, e2, f2 ∈ R.

The origin (0, 0) is an equilibrium point of system (17), and its eigenvalues are

(18) λ± =
1

2

(
a1 − b2 ±

√
a2
1 + b2

2 + 2a1b2 − 4a2b1

)
.

We assume that

(19) a2
1 + b2

2 + 2a1b2 − 4a2b1 < 0.

Let

µ = a1 − b2, α(µ) =
1

2
µ, β(µ, b1, b2, a2) =

1

2

√
−µ2 + 4(µ + b2)b2 + 4a2b1.

By (19) the eigenvalues (18) are of the form λ±(µ, b1, b2, a2) = α(µ)±β(µ, b1, b2, a2)i.
So, when µ = 0 they are

±β(0, b1, b2, a2) i = ±
√

b2
2 + a2b1 i.
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We assume that b2
2 + a2b1 > 0. We also have that (dα/dµ)|µ=0 = 1/2 ̸= 0. Now

we claim that the origin of system (13) with µ = 0, b2 = 0, a2 = b1 = 1 and
d2e2 + 2f2 + e2f2 ̸= 0 is not a center. Before proving the claim we note that for
these values the eigenvalues (18) are ±i and the condition (19) becomes −4 < 0.
Hence, once the claim be proved all the conditions for having a Hopf bifurcation
hold, consequently there are systems (17) with limit cycles, and statement (c) will
be proved.

Now we prove the claim. Systems (17) becomes

(20)
ẋ = (x − 1)2y,
ẏ = (y − 1)(x + d2x

2 + e2xy + f2y
2).

We write this system in polar coordinates (r, θ) where x = r cos θ and y = r sin θ,
and we have

ṙ = − sin θ
(
(d2 + 2) cos2 θ + (e2 − 1) sin θ cos θ + f2 sin2 θ

)
r2

+sin θ
(
cos3 θ + d2 sin θ cos2 θ + e2 sin2 θ cos θ + f2 sin3 θ

)
r3,

θ̇ = −1 − cos θ
(
d2 cos2 θ + (e2 − 1) sin θ cos θ + (f2 − 2) sin2 θ

)
r

+cos θ sin θ
(
d2 cos2 θ + (e2 − 1) sin θ cos θ + f2 sin2 θ

)
r2.

This system in a neighborhood of the origin can be written as

dr

dθ
= r2 sin θ

(
(d2 + 2) cos2 θ + (e2 − 1) sin θ cos θ + f2 sin2 θ

)

−r3 sin θ
(

cos3 θ + d2 sin θ cos2 θ + e2 sin2 θ cos θ + f2 sin3 θ

+d2(d2 + 2) cos5 θ + 2(1 + d2)(e2 − 1) sin θ cos4 θ
+

(
e2
2 + 2f2 + 2d2f2 − 3 − 2d2 − 2e2

)
sin2 θ cos3 θ

+2(e2 − 1)(f2 − 1) sin3 θ cos2 θ + (f2 − 2)f2 sin4 θ cos θ
)

+ O(r4).

Then using the Bautin’s algorithm we get that

u1(2π) = 1, u2(2π) = 0, u3(2π) = −π

4
(d2e2 + 2f2 + e2f2).

Hence, since d2e2 + 2f2 + e2f2 ̸= 0 we do not have a center at the origin of system
(20). This completes the proof of statement (c). �

Proof of statement (d) of Theorem 5. We shall show that if the 3 invariant straight
lines of multiplicity 1 intersect at a unique point, then the polynomial differential
system (2) of degree 3 can have limit cycles.

Doing an affine change of variables we can suppose that the three invariant
straight lines of multiplicity 1 intersecting at a point of the polynomial differential
system (2) of degree 3 are x−1 = 0, y−2 = 0 and y−x−1 = 0. Proceeding as in the
proof of some previous statements we have that it is sufficient to prove statement
(d) of Theorem 5 for the following polynomial differential system of degree 3:

(21)
ẋ = P (x, y) = (x − 1)(a1x + b1y + c1 + d1x

2 + e1xy + f1y
2),

ẏ = Q(x, y) = (y − 2)(a2x + b2y + c2 + d2x
2 + e2xy + f2y

2),

where a1, b1, c1, a2, b2, c2, d2, e2, f2 ∈ R and the coefficients d2, e2, f2 satisfy the
following relations:

d2 = −a1 + a2 + c1 − c2 + d1,
e2 = a1 − a2 − b1 + b2 − 2c1 + 2c2 + e1,
f2 = b1 − b2 + c1 − c2 + f1.
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We consider the particular system

(22)
ẋ = (x − 1)(a1x + b1y + d1x

2 + e1xy + f1y
2),

ẏ = (y − 2)(a2x + b2y + (−a1 + a2 + d1)x
2+

(a1 − a2 − b1 + b2 + e1)xy + (b1 − b2 + f1)y
2),

where a1, b1, d1, e1, f1, a2, b2 ∈ R.

The origin (0, 0) is an equilibrium point of system (22), and its eigenvalues are

(23) λ± = −1

2

(
a1 + 2b2 ±

√
a2
1 + 4b2

2 − 4a1b2 + 8a2b1

)
.

We assume that

(24) a2
1 + 4b2

2 − 4a1b2 + 8a2b1 < 0.

Let

µ = a1 + 2b2, α(µ) = −1

2
µ, β(µ, b1, b2, a2) =

1

2

√
−µ2 + 4(µ − 2b2)b2 − 4a2b1.

By (24) the eigenvalues (23) are of the form λ±(µ, b1, b2, a2) = α(µ)±β(µ, b1, b2, a2)i.
So, when µ = 0 they are

±β(0, b1, b2, a2) i = ±
√

−2b2
2 − a2b1 i.

We assume that 2b2
2 + a2b1 < 0. We also have that (dα/dµ)|µ=0 = −1/2 ̸= 0.

Now we claim that the origin of system (13) with µ = 0, b2 = 0, a2 = 1, b1 = −1
and 4d2

1 + 3e1d1 + 6d1 − 4f2
1 − 2e1 + 3e1f1 + 8f1 − 3 ̸= 0 is not a center. Before

proving the claim we note that for these values the eigenvalues (23) are ±i and the
condition (24) becomes −8 < 0. Hence, once the claim be proved all the conditions
for having a Hopf bifurcation hold, consequently there are systems (22) with limit
cycles, and statement (d) will be proved.

Now we prove the claim. System (22) becomes

(25)

ẋ = (x − 1)(−y + d1x
2 + e1xy + f1y

2),

ẏ = (y − 2)

(
1

2
x +

(
1

2
+ d1

)
x2 +

(
1

2
+ e1

)
xy + (f1 − 1)y2

)
.

We write this system in polar coordinates and we obtain

ṙ =
1

2

(
− 2d1 cos3 θ − 2(2 + 2d1 + e1) cos2 θ sin θ − (1 + 4e1 + 2f1) cos θ sin2 θ

+4(1 − f1) sin3 θ
)
r2 +

1

2

(
2d1 cos4 θ + 2e1 cos3 θ sin θ

+(1 + 2d1 + 2f1) cos2 θ sin2 θ + (1 + 2e1) cos θ sin3 θ + 2(f1 − 1) sin4 θ
)
r3,

θ̇ = −1 − 1

2

(
(−2(1 + 2d1) cos3 θ + (−1 + 2d1 − 4e1) cos2 θ sin θ

+2(3 + e1 − 2f1) cos θ sin2 θ + 2f1 sin3 θ
)
r

+
1

2

(
cos3 θ sin θ + cos2 θ sin2 θ − 2 cos θ sin3 θ)r2.
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This system in a neighborhood of the origin can be written as

dr

dθ
=

1

2

(
2d1 cos3 θ + 2(2d1 + e1 + 2) sin θ cos2 θ + (4e1 + 2f1 + 1) sin2 θ cos θ

+4(f1 − 1) sin3 θ
)
r2 +

1

4

(
− 4d1(2d1 + 1) cos6 θ

−2
(
6d2

1 + 8e1d1 + 13d1 + 2e1 + 4
)
sin θ cos5 θ

+
(
2

(
4d2

1 − 12e1d1 − 8f1d1 + 6d1 − 4e2
1 − 13e1 − 2f1 − 3

)
sin2 θ − 4d1

)
cos4 θ

+
( (

−12e2
1 + 16d1e1 − 16f1e1 + 12e1 + 42d1 − 24d1f1 − 26f1 + 31

)
sin3 θ

−4e1 sin θ
)
cos3 θ +

(
2

(
4e2

1 − 12f1e1 + 21e1 − 4f2
1 − 4d1 + 8d1f1 + 6f1 + 5

)
sin4 θ

−2(2d1 + 2f1 + 1) sin2 θ
)
cos2 θ +

(
2

(
−6f2

1 + 8e1f1 + 21f1 − 4e1 − 12
)
sin5 θ

−2(2e1 + 1) sin3 θ
)
cos θ + 8(f1 − 1)f1 sin6 θ − 4(f1 − 1) sin4 θ

)
r3 + O(r4).

Now using the Bautin’s algorithm we get that

u1(2π) = 1,
u2(2π) = 0,

u3(2π) = −π

4

(
4d2

1 + 3e1d1 + 6d1 − 4f2
1 − 2e1 + 3e1f1 + 8f1 − 3

)
.

Hence taking 4d2
1 + 3e1d1 + 6d1 − 4f2

1 − 2e1 + 3e1f1 + 8f1 − 3 ̸= 0 we do not have a
center at the origin of system (25). This completes the proof of statement (e). �

Proof of statement (e) of Theorem 4. Assume that the three invariant straight lines
of multiplicity 1 intersect pairwise in a unique point. Then the polynomial differen-
tial system (2) of degree 3 can have limit cycles. Doing an affine change of variables
we can suppose that these three invariant straight lines are x − 1 = 0, y − 1 = 0
and y + x − 3 = 0.

Proceeding as in the previous statements we have that it is sufficient to prove
statement (e) of Theorem 5 for the following polynomial differential system of degree
3:

(26)
ẋ = P (x, y) = (x − 1)(a1x + b1y + c1 + d1x

2 + e1xy + f1y
2),

ẏ = Q(x, y) = (y − 1)(a2x + b2y + c2 + d2x
2 + e2xy + f2y

2),

where a1, b1, c1, a2, b2, c2, d2, e2, f2 ∈ R and the coefficients d2, e2, f2 satisfy the
relations

d2 =
1

18
(6a1 − 6a2 + 9b1 + 18e1 + 9f1),

e2 =
1

36
(−6a1 − 12a2 + 3b1 − 12b2 − 18e1 + 27f1),

f2 =
1

18
(−3b1 − 6b2 − 9f1),

d1 =
1

4
(−2a1 − b1 − 2e1 − f1).
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Taking c1 = c2 = 0 we consideer the particular subsystem

(27)

ẋ = (x − 1)(a1x + b1y +
1

4
(−2a1 − b1 − 2e1 − f1)x

2 + e1xy + f1y
2),

ẏ = (y − 1)(a2x + b2y +
1

18
(6a1 − 6a2 + 9b1 + 18e1 + 9f1)x

2+

1

36
(−6a1 − 12a2 + 3b1 − 12b2 − 18e1 + 27f1)xy+

1

18
(−3b1 − 6b2 − 9f1)y

2),

where a1, b1, d1, e1, f1, a2, b2 ∈ R.

The origin (0, 0) is an equilibrium point of system (27), and its eigenvalues are

(28) λ± = −1

2

(
a1 + b2 ±

√
a2
1 + b2

2 − 2a1b2 + 4a2b1

)
.

We assume that

(29) a2
1 + b2

2 − 2a1b2 + 4a2b1 < 0,

Let

µ = a1 + b2, α(µ) = −1

2
µ, β(µ, b1, b2, a2) =

1

2

√
−µ2 + 4(µ − b2)b2 − 4a2b1.

By (29) the eigenvalues (28) are λ±(µ, b1, b2, a2) = α(µ)±β(µ, b1, b2, a2)i. So, when
µ = 0 they are

±β(0, b1, b2, a2) i = ±
√

−b2
2 − a2b1 i.

We assume that b2
2 + a2b1 < 0. We also have that (dα/dµ)|µ=0 = −1/2 ̸= 0. Now

we claim that the origin of system (27) with µ = 0, b2 = 0, a2 = 1, b1 = −1
and (6e1 − 3f1 + 5)(6e1 + 9f1 − 5) ̸= 0 is not a center. Before proving the claim
we note that for these values the eigenvalues (28) are ±i and the condition (29)
becomes −4 < 0. Hence, once the claim be proved all the conditions for having a
Hopf bifurcation hold, consequently there are systems (27) with limit cycles, and
statement (e) will be proved.

Now we prove the claim. System (27) becomes

(30)

ẋ = (x − 1)

(
−y +

1

4
(1 − 2e1 − f1)x

2 + e1xy + f1y
2

)
,

ẏ = (y − 1)
(
x +

1

18
(18e1 + 9f1 − 15)x2 +

1

36
(−18e1 + 27f1 − 15)xy

+
1

18
(3 − 9f1)y

2
)
.
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We write this system in polar coordinates (r, θ) and we have

ṙ =
1

12

(
3(2e1 + f1 − 1) cos3 θ − 2(12e1 + 3f1 + 1) cos2 θ sin θ

+(6e1 − 21f1 + 17) cos θ sin2 θ + 2(3f1 − 1) sin3 θ
)
r2

− 1

12

(
3(2e1 + f1 − 1) cos4 θ − 12e1 cos3 θ sin θ − 2(6e1 + 9f1 − 5)θ cos2 θ sin2 θ

+(6e1 − 9f1 + 5) cos θ sin3 θ + 2(3f1 − 1) sin4 θ
)
r3,

θ̇ = −1 − 1

6

(
(6e1 + 3f1 − 5) cos3 θ + 2(3f1 − 5) cos2 θ sin θ

+(−6e1 − 3f1 − 5) cos θ sin2 θ − 6f1 sin3 θ
)
r

+
1

12

(
(18e1 + 9f1 − 13) cos3 θ sin θ + (−18e1 + 9f1 − 5) cos2 θ sin2 θ

−2(9f1 − 1) cos θ sin3 θ
)
r2.

This system in a neighborhood of the origin can be written as

dr

dθ
=

1

12

(
− 3(2e1 + f1 − 1) cos3 θ + 2(12e1 + 3f1 + 1) cos2 θ sin θ

+(−6e1 + 21f1 − 17) sin2 θ cos θ − 2(3f1 − 1) sin3 θ
)
r2

+
1

72

(
3(2e1 + f1 − 1)(6e1 + 3f1 − 5) cos6 θ

−8
(
18e2

1 + 9f1e1 − 6e1 + 3f1 − 5
)
cos5 θ sin θ +

(
18(2e1 + f1 − 1)

−2
(
54f2

1 + 144e1f1 − 99f1 − 150e1 + 25
)
sin2 θ

)
cos4 θ

+
(
6(4e1 − 2f1 + 5)(6e1 + 9f1 − 5) sin3 θ − 72e1 sin θ

)
cos3 θ

+
( (

−36e2
1 + 252f1e1 − 132e1 + 135f2

1 − 6f1 − 65
)
sin4 θ

−12(6e1 + 9f1 − 5) sin2 θ
)
cos2 θ +

(
6(6e1 − 9f1 + 5) sin3 θ

−2
(
−54f2

1 + 36e1f1 + 63f1 − 6e1 − 5
)
sin5 θ

)
cos θ − 12f1(3f1 − 1) sin6 θ

+12(3f1 − 1) sin4 θ
)
r3 + O(r4).

Now using the Bautin’s algorithm we obtain that

u1(2π) = 1,
u2(2π) = 0,

u3(2π) =
π

144
(6e1 − 3f1 + 5)(6e1 + 9f1 − 5).

Hence taking (6e1 − 3f1 + 5)(6e1 + 9f1 − 5) ̸= 0 we do not have a center at the
origin of system (30). This completes the proof of statement (e). �
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