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C! SELF-MAPS ON CLOSED MANIFOLDS
WITH ALL THEIR PERIODIC POINTS HYPERBOLIC

JAUME LLIBRE AND VICTOR F. SIRVENT

ABSTRACT. We present several results providing sufficient conditions
for the existence of almost quasi—unipotent maps on different closed
manifolds having infinitely many periodic points all of them hyper-
bolic.

1. INTRODUCTION AND DEFINITIONS

Let X be a topological space and f : X — X be a continuous map on
X. We say that © € X is a periodic point of period p if fP(x) = x and
fle)#zif1<j<p—1

Let X be a differentiable manifold and f a differentiable map. We say
that a periodic point of period p is hyperbolic, if the derivative of fP at
x,i.e. DfP:TX, — TX,, has no eigenvalues of modulus equal 1.

We say that a manifold is closed if it is compact and without boundary.

If the dimension of X is n, the map f induces a homomorphism on
the k—th rational homological group of X for 0 < k < n, ie. fi :
Hi(X,Q) — Hi(X,Q). The Hp(X,Q) is a finite dimensional vector
space over Q and f,; is a linear map whose matrix has integer entries.

A linear transformation is called quasi—unipotent if its eigenvalues are
roots of unity. We say that a continuous map f : X — X is quasi-
unipotent if the maps f,; are quasi—unipotent, for 0 < k < n, where n is
the dimension of the manifold X.

We remark that there diffeomorphisms with finitely many periodic
points, all of them hyperbolic, which are quasi-unipotent like the Morse-
Smale diffeomorphisms [8]. These maps are an important family of dy-
namical systems. On the other hand, in the classical construction of the
Smale’s horseshoe (cf. [9]); there is a diffeomorphism f : S* — S?) such
that it has infinitely many periodic points all of them hyperbolic and with
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all possible periods. The map f is quasi—unipotent. There are maps on
the n-dimensional torus, which are minimal (all orbits are dense) and
they are quasi—unipotent (cf. [2]).

In section 2 we present six theorems giving sufficient conditions for the
existence of almost quasi—unipotent maps on different closed manifolds
having infinitely many periodic points all of them hyperbolic. These
results generalise the conditions given J. Franks in [3]. We note that the
results of section 2 can be extended to manifolds with boundary which
do not have periodic points on the boundary.

The Lefschetz number of f is defined as

L(f) = ) (=) trace(fur)-
k=0
The Lefschetz Fixed Point Theorem states that if L(f) # 0 then f has
a fixed point (cf. [1]).
The Lefschetz zeta function of f is defined as

(r(t) = exp (Z %m) tm) :

m>1

Since (y(t) is the generating function of the Lefschetz numbers, L(f™),
it keeps the information of the Lefschetz number for all the iterates of f.
There is an alternative way to compute it:

(1) Gr(t) = [T det(Idi — t£0) V",

k=0
where n = dim X, my; = dim Hi(X,Q), Idy is the identity map on
Hi(X,Q), and by convention det(Idy — tfu) = 1 if my =0 (cf. [4]).

Let M be a C' compact manifold and let f : M — M be a C! map.
Let = be a hyperbolic periodic point of period p of f and EY its unstable
linear space, i.e. the subspace of the tangent space T,M generated by
the eigenvalues of D fP(x) of norm larger than 1. Let v be the orbit of
x, the index u of ~y is the dimension of E?. We define the orientation
type A of v as +1 if DfP(z) : E* — EY preserves orientation and —1 if
reverses the orientation. The collection of the triples (p,u, A) belonging
to all the periodic orbits of f is called the periodic data of f. The same
triple can appear more than once if it corresponds to different periodic
orbits.

Theorem 1 (Franks [3]). Let f be a C' map on a closed manifold having
finitely many periodic points all of them hyperbolic, and let > be the
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periodic data of f. Then the Lefschetz zeta function (f(t) of f satisfies

(2) )= [ @—amev

(pu,A)eX

2. C'' MAPS WITH INFINITELY MANY HYPERBOLIC PERIODIC POINTS
As usual we shall consider that 1 is a power of 2.

Theorem 2. Let f be a C' map on S* having only hyperbolic periodic
points.

(a) If f is an orientation preserving map, having at most one periodic
orbit with even index of period a power of 2 different from 1, then
f has infinitely many periodic points.

(b) If f is either an orientation reversing map, or f has degree 0,
and 1t does not have pertodic points with even index with period
a power of 2, then f has infinitely many periodic points.

This theorem was proved in [3] when n = 1, similar arguments work
for n > 1, but for sake of completeness we present the proof here.

We first point out a remark done in [3]. The polynomials of the form
14¢™ and 1—1t", with m a positive integer and n an odd positive integer,

cannot be further factorized in the form
!

(3) [T+
i=1
On the other hand 1 — #*™ = (1 — t™)(1 + t™).

A factorization of a polynomial of type (3) which cannot be further
factorized and keeping the form (3) will be called a special factorization.
The special factorization is unique up to sign and order of the factors,
see Lemma 2 of [3].

Proof of Theorem 2. If f is orientation preserving, then from (1) we get
Cr(t) = 1/(1 —t)?. Assume that f under the assumptions of statement
(a) has finitely many periodic points. Therefore, by Theorem 1, if f has
finitely many periodic points then

_ LA £
Cr(t) = [L0Em)
So
(4) [Jaxe) =@ —e? T+

Since there is at most one point with index even and its period is a power
of 2 different from 1, there is only one ¢; which is a power of 2 different
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from 1. So, there is at most one factor of the form 1 — ¢ in the left hand
side of (4) when the special factorization is taken. On the right hand side
of (4), the factor 1 — ¢ appears with a power greater than or equal to 2.
Therefore the equality of (4) does not hold, hence f has infinitely many
periodic points and all of them hyperbolic. This completes the proof of
statement (a).

If f is orientation reversing, then (;(t) = ((1+1¢)(1—¢))~". If the map
f has finitely many hyperbolic periodic points, by Theorem 1 we have

(5) [[axe)=a-pa+6[Ja+e).

We take the special factorization on booth sides of this equation. Since
f does not have periodic points of even index with period a power of
2. Then, there is no factors of the form 1 — ¢ on the left hand side
of (5). On the right hand side of (5) there is at least one factor of this
form. Therefore the equality of (5) does not hold, so f has infinitely
many periodic points. If the degree of f is 0, then (f(t) = (1—¢)"' and a
similar argument allow us to conclude that f has infinitely many periodic
points . This completes the proof of statement (b). O

Similar arguments to the ones of the proof of Theorem 2 can be used
for proving the following the Theorems 3, 4 and 5.

Theorem 3. Let X be a closed manifold and f : X — X be a C* map
with all its periodic points hyperbolic. If f has neither periodic points of
even index with period 2, nor fixed points, and

_ L=
G(0) = (1 —t)ym (1 +t)me’

where my and mo are positive integers and the n;’s are odd integers such
that n; > 3. Then [ has infinitely many periodic points.

Proof. If f has finitely many periodic points then, according to Theo-
rem 1, we have

6  JaxeJ[aze)=a-pma+m[Ja£e).
i j !

If f does not have periodic points of even index of period 2, nor fixed
points. Then there is no factor of the form 1 — ¢ in the left hang side
of the (6), when the special factorization is taken. However in the right
hand side the factor 1 — ¢ appears at least m; times. So it is not possible
to have an equality in (6). Therefore f has infinitely many periodic
points. Il
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Theorem 4. Let X be a closed manifold and f : X — X be a C* map
with all its periodic points hyperbolic. If f has at most one periodic orbit
of even index with period a power of 2 different from 1 and
p(t)
)= —2
where m > 2 and p(t) is a polynomial that could have one of the following
forms

(a) p(t) =1,

(b) p(t) = Hilzl(l + t™), where the n;’s are odd integers greater than
2,

(c) p(t) = H?:l(l + tgkj), where the k;’s are positive integers,

(d)

p(t) = (ﬂu + t"i)) (ﬁ(l +t2’”>> ,

i=1 j=1
where the k;’s are positive integers and the n;’s are odd integers
greater than 2.

Then f has infinitely many periodic points.

Proof. We assume that p(t) is as in (d). As in Theorem 3, if f has finitely
many periodic points then, according to Theorem 1, we have
7 Jlaxe)JJa+e)[Jaxe) = a—om £
i j s !

If f has at most one point of even index then on the left hand side of
(7) there is at most one factor of the form (1 — t), when the special
factorization is taken. On the right hand side of (7) the factor 1 — ¢
appears at least with power m, which is greater than 2, so the equality
(7) does not hold. Hence f has infinitely many periodic points. This
completes the proof of statement (d).

The proof of statements (a), (b) and (c) are similar. O

Theorem 5. Let X be a closed manifold and f : X — X be a C* map
with all its periodic points hyperbolic. If f has neither periodic points of
even index with period 2, nor fixed points and

p(t)
t) = ——
where p(t) is a polynomial that could have one of the following forms
t

(a) p(t) =1,
(b) p(t) = Hilzl(l + t"), where the n;’s are odd integers greater than
2

)
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c) p(t) =TT%,(1 + & , where the k;’s are positive integers,
t 21+t :

A l2
k.
s~ (Tose) (o).

i=1 j=1
where the k;’s are positive integers and the n;’s are odd integers
greater than 2.

Then f has infinitely many periodic points.

The proof of Theorem 5 is very similar to the proof of Theorem 4.

Theorem 6. Let f be a C* map on S*™*! having only hyperbolic periodic
points.

(a) If f is an orientation preserving map having at least one periodic
orbit of odd period p with index u and f does not have periodic
orbits of period even multiples of p with index v # u (mod 2).
Then f has infinitely many periodic points.

(b) Assume that f is an orientation preserving map which has peri-
odic points of period a power of 2 whose indexes have the same
parity. Let u be this parity, if f does not have fixed points of in-
dex v with v # u (mod 2). Then f has infinitely many periodic
points.

(c) If f either is an orientation reversing map, or has degree 0, and f
does not have a periodic orbits with even index of period a power
of 2 different from 1, then f has infinitely many periodic points.

Proof. If the map f is orientation preserving map on S*"** then (;(¢) = 1.
If f has finitely many periodic points, according to Theorem 1, we have:

(8) [Ta+ew) =]+
J (2
We take the special factorization. If f has periodic points of index u with
a odd period p. Then the factor 1 £+ ¢? is on one side of the the equation
(8), say on the right hand side, i.e. in this case u is odd. Since there are
no periodic points of even index with periods of the form kp with k even
and 1, so there are no factors of the form 1 4 ¢*” on the left hand side
of (8). Therefore this equality does not hold, so the map f has infinitely

many periodic points. This completes the proof of statement (a).

If the index of all periodic points of period of power of 2 and fixed
points of the map f, have the same parity, then in (8) all the factors
with a power of 2 and 1 + ¢ are only on one side of the equation. So
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the equality (8) is not possible. Hence the map f has infinitely many
periodic points. This completes the proof of statement (b).

If f is an orientation reversing map then (¢(t) = (1 +¢)(1 —¢)~*. So
f has finitely many periodic points, we have the equation:

(9) A+t JJaxtw)y = -t JJa ).

Since f does not have periodic points of even index with period a power
of 2, nor does have fixed points with even index. There is no factors of
the form 1 — ¢ on the left hand side of (9). On the right hand side of
(9) there is at least one factor of this form. Therefore the equality of (9)
does not hold, so f has infinitely many periodic points. If the degree of
fis 0, then (;(t) = (1—¢)~" and a similar argument allow us to conclude
that f has infinitely many periodic points . This completes the proof of
statement (c). O

Theorem 7. Let X be a closed manifold and f : X — X be a C* map
with all its periodic points hyperbolic such that (f(t) = 1.

(a) If f has a periodic point with an odd period p, with indezx u and it
does not have periodic points of periods a multiple of p with index
v Zwu (mod 2). Then f has infinitely many periodic points.

(b) Assume that f has periodic points of period a power of 2 whose
indexes have the same parity. Let u be this parity. If f does not
have fized points of index v with v # u (mod 2). Then f has
infinitely many periodic points.

Proof. 1t is the same proof than in the statements (a) and (b) of Theorem
6. O

The possible zeta functions for quasi—unipotent maps on closed ori-
entable surfaces M, are computed in [6] for 0 < g < 3, where g is the
genus of the surface. For non-orientable surfaces Ny the zeta functions
are calculated in 7] for 1 < g < 9. These Lefschetz zeta functions are
of the type considered in the previous theorems. Similarly for the quasi—
unipotent maps on the 3 and 4 dimensional torus studied in [5].
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