This is a preprint of: "Linearization of planar involutions in C^{1} ", Anna Cima, Armengol Gasull, Francesc Mañosas, Rafael Ortega, Ann. Mat. Pur. Appl., vol. 194, 1349–1357, 2015. DOI: [10.1007/s10231-014-0423-5]

Linearization of planar involutions in C^1

A. Cima*, A. Gasull*, F. Mañosas* and R. Ortega*

*Departament de Matemàtiques Universitat Autònoma de Barcelona, Barcelona, Spain {cima,gasull,manyosas}@mat.uab.cat

> *Departamento de Matemática Aplicada, Universidad de Granada, Granada, Spain rortega@ugr.es

Abstract. The celebrated Kerékjártó Theorem asserts that planar continuous periodic maps can be continuously linearized. We prove that C^1 -planar involutions can be C^1 -linearized.

2000 MSC: Primary: 37C15. Secondary: 37C05, 54H20. Keywords: Kerékjártó Theorem, Periodic maps, Linearization, Involution.

1 Introduction and statement of the main result

A map $F : \mathbb{R}^n \to \mathbb{R}^n$ is called *m*-periodic if $F^m = \text{Id}$, where $F^m = F \circ F^{m-1}$, and *m* is the smallest positive natural number with this property. When m = 2 then it is said that *F* is an *involution*.

When there exists a \mathcal{C}^k -diffeomorphism $\psi : \mathbb{R}^n \to \mathbb{R}^n$, such that $\psi \circ F \circ \psi^{-1}$ is a linear map then it is said that F is \mathcal{C}^k -linearizable. In this case, the map ψ is called a *linearization* of F. This property is very important because it is not difficult to describe the dynamics of the discrete dynamical system generated by linearizable maps. For instance, planar *m*-periodic linearizable maps behave as planar *m*-periodic linear maps: they are either symmetries with respect to a "line" or "rotations".

There is a strong relationship between periodic maps and linearizable maps. For instance, it is well-known that when n = 1 every C^k periodic map is either the identity, or it is 2-periodic and C^k -conjugated to the involution – Id, see for instance [8]. When n = 2 the following result holds, see [4] for a simple and nice proof.

Theorem 1.1. (Kerékjártó Theorem) Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be a continuous m-periodic map. Then F is \mathcal{C}^0 -linearizable.

The situation changes for $n \ge 3$. In [1, 2], Bing shows that for any $m \ge 2$ there are continuous m-periodic maps in \mathbb{R}^3 which are not linearizable. Nevertheless, Montgomery and Bochner give a positive local result proving that for $\mathcal{C}^k, k \ge 1$, m-periodic maps having a fixed point are always locally \mathcal{C}^k -linearizable in a neighborhood of this point, see [9] or Theorem 3.1 below. In any case, in [3, 5, 7] it is shown that for $n \ge 7$ there are continuous and also differentiable periodic maps on \mathbb{R}^n without fixed points.

The aim of this paper is to prove the following improvement for planar involutions of the result of Kerékjártó.

Theorem A. Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be a \mathcal{C}^1 -differentiable involution. Then F is \mathcal{C}^1 -linearizable.

As we will see, our proof uses classical ideas of differential topology together with some ad hoc tricks for extending and gluing non-global diffeomorphisms. The authors thank Professor Sánchez Gabites for suggesting the use of the classification theorem of surfaces for the proof of Lemma 2.5.

2 Preliminary results on differential topology

In this paper, unless it is explicitly stated, a differentiable map will mean a map of class C^1 . Also a diffeomorphism will be a C^1 - diffeomorphism.

2.1 Results in dimension n

We state two results that we will use afterwards when n = 2. The first one asserts that any local diffeomorphism can be extended to be a global diffeomorphism, see [10].

Theorem 2.1. Let M be a differentiable manifold and let $g: V \to g(V) \subset M$ be a diffeomorphism defined on a neighborhood V of a point $p \in M$. Then there exists a diffeomorphism $f: M \to M$ such that $f|_W = g|_W$ for some neighborhood $W \subset V$ of p.

The second one is given in [6] for \mathcal{C}^{∞} - manifolds. Here we state a slightly modified version of the theorem for \mathcal{C}^1 -manifolds. We leave the details of this generalization to the reader. Notice that it allows to glue diffeomorphisms that match as a global homeomorphism, only changing them in a neighborhood of the gluing set, but not on the gluing set itself.

Theorem 2.2. For each i = 0, 1, let W_i be an n-dimensional C^1 -manifold without boundary which is the union of two closed n-dimensional submanifolds M_i, N_i such that

$$M_i \cap N_i = \partial M_i = \partial N_i = V_i.$$

Let $f: W_0 \to W_1$ be a homeomorphism which maps M_0 and N_0 diffeomorphically onto M_1 and N_1 respectively. Then there is a diffeomorphism $\tilde{f}: W_0 \to W_1$ such that $f(M_0) = M_1$, $f(N_0) = N_1$ and $\tilde{f}|_{V_0} = f|_{V_0}$. Moreover \tilde{f} can be chosen such that it coincides with f outside a given neighborhood Q of V_0 .

2.2 Results in the plane

The aim of this subsection is to prove the following local result, that will play a key role in our proof of Theorem A.

Lemma 2.3. Let $D \subset \mathbb{R}^2$ be an open and simply connected set such that $\{0\} \times \mathbb{R} \subset D$. Then there exist a open set V such that $\{0\} \times \mathbb{R} \subset V \subset D$ and a diffeomorphism $\psi : D \to \mathbb{R}^2$ such that $\psi|_V = \text{Id}$. To prove Lemma 2.3 we introduce two more results. The first one is a direct corollary of the natural generalization for non-compact C^1 -surfaces of the theorem of classification of C^{∞} -compact surfaces given in [6].

Theorem 2.4. Let M be a simply connected and non-compact C^1 - surface such that ∂M is connected and non-empty. Then M is diffeomorphic to $H = \{(x, y) \in \mathbb{R}^2 : x \ge 1\}.$

The second result is a lemma that allows to transform by a diffeomorphism any C^1 -curve "going from infinity to infinity" into a straight line.

Lemma 2.5. Let C be a closed, connected and non-compact C^1 -submanifold of \mathbb{R}^2 . Then there exists a diffeomorphism $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ such that $\varphi(C) = \{0\} \times \mathbb{R}$.

Proof. First of all note that $\mathbb{R}^2 \setminus C$ has two connected components that we will denote by C^+ and C^- . Denote also by C_1 and C_2 the simply connected and non compact differentiable surfaces obtained by adding C to C^+ and C^- . Applying Theorem 2.4 to C_1 and C_2 we obtain diffeomorphisms $\phi_1 : C_1 \longrightarrow H_1$ and $\phi_2 : C_2 \longrightarrow H_2$ where $H_1 = \{(x, y) \in \mathbb{R}^2 : x \ge 0\}$ and $H_2 = \{(x, y) \in \mathbb{R}^2 : x \le 0\}$. Clearly the map $\phi_2 \circ \phi_1^{-1}$ is a diffeomorphism of $\{0\} \times \mathbb{R}$ into itself. Thus $(\phi_2 \circ \phi_1^{-1})(0, y) = (0, \lambda(y))$ for a certain diffeomorphism $\lambda : \mathbb{R} \longrightarrow \mathbb{R}$. Consider the diffeomorphism $h : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ given by $h(x, y) = (x, \lambda(y))$ and define $G : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ as

$$G(x,y) = \begin{cases} (h \circ \phi_1)(x,y), & \text{if } (x,y) \in C_1; \\ \phi_2(x,y), & \text{if } (x,y) \in C_2. \end{cases}$$

Thus applying Theorem 2.2 with $W_0 = W_1 = \mathbb{R}^2$, $M_0 = C_1, N_0 = C_2, M_1 = H_1, N_1 = H_2$ and f = G we obtain the desired diffeomorphism $\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$.

We are ready to prove the main result of this subsection.

Proof of Lemma 2.3. We consider first the case when there exists $\epsilon > 0$ such that $[-\epsilon, \epsilon] \times \mathbb{R} \subset D$. In this particular case denote by

$$D_{+} = \{(x, y) \in D : x > 0\}$$
 and $D_{\epsilon} = \{(x, y) \in D : x \ge \epsilon\}.$

Since D is an open and simply connected set, by the Riemann Theorem there exists a diffeomorphism $G: D \to \mathbb{R}^2$. Set

$$C_+ = G(\{\epsilon\} \times \mathbb{R}).$$

Clearly we have that C_+ is a closed, connected and non-compact submanifold of \mathbb{R}^2 . Thus by Lemma 2.5 there exists a diffeomorphism

$$\Phi_+ : \mathbb{R}^2 \to \mathbb{R}^2$$
 such that $\Phi_+(C_+) = \{\epsilon\} \times \mathbb{R}$.

Composing Φ_+ with an appropriate involution, if necessary, we can assume that $(\Phi_+ \circ G)(D_\epsilon) = \{(x, y) \in \mathbb{R}^2 : x \ge \epsilon\} \doteq H_\epsilon$. Set

$$\psi_+ = \Phi_+ \circ G.$$

Thus we have that $\psi_+(D_\epsilon) = H_\epsilon$ and $\psi_+(\{\epsilon\} \times \mathbb{R}) = \{\epsilon\} \times \mathbb{R}$. Therefore $\psi_+(\epsilon, y) = (\epsilon, h(y))$ for some diffeomorphism h of \mathbb{R} . Let $H : \mathbb{R}^2 \to \mathbb{R}^2$ be the diffeomorphism defined by $H(x, y) = (x, h^{-1}(y))$.

Lastly if we denote by $\Upsilon_+ = H \circ \psi_+$ we get that Υ_+ is a diffeomorphism between D_{ϵ} and H_{ϵ} such that $\Upsilon_+|_{\{\epsilon\}\times\mathbb{R}} = \mathrm{Id}$. As before, denote by $\mathbb{R}^2_+ = \{(x, y) \in \mathbb{R}^2 : x > 0\}$ and consider the map $T_+ : D_+ \to \mathbb{R}^2_+$ defined by

$$T_{+}(z) = \begin{cases} \Upsilon_{+}(z) & \text{if } x \in D_{\epsilon}, \\ z & \text{otherwise} \end{cases}$$

Applying Theorem 2.2 with $W_{\epsilon} = D_+$, $W_1 = \mathbb{R}^2_+$, $M_0 = M_1 = (0, \epsilon] \times \mathbb{R}$, $N_0 = D_{\epsilon}$, $N_1 = H_{\epsilon}$ and $f = T_+$ we obtain a diffeomorphism $g_+ : D_+ \to \mathbb{R}^2_+$ such that $g|_{(0,\epsilon/2)\times\mathbb{R}} = \mathrm{Id}$.

In a similar way if we denote by $D_- = \{(x, y) \in D; x < 0\}$, and $\mathbb{R}^2_- = \{(x, y) \in \mathbb{R}^2 : x < 0\}$ we can construct a diffeomorphism $g_- : D_- \to \mathbb{R}^2_-$ such that $g_+|_{(-\epsilon/2,0)\times\mathbb{R}} = \mathrm{Id}$. Clearly the map $g: D \to \mathbb{R}^2$ defined by

$$g(z) = \begin{cases} g_+(z) & \text{if } x \in D_+, \\ g_-(z) & \text{if } x \in D_-, \\ z & \text{otherwise.} \end{cases}$$

is a diffeomorphism and $g|_{(-\epsilon/2,\epsilon/2)\times\mathbb{R}} = \text{Id}$. This ends the proof in this particular case.

Next we will see how to reduce the general case to one that we have already solved.

Consider a differentiable map $\sigma : \mathbb{R} \to (0,1)$ such that $D_{\sigma} \doteq \{(x,y) \in \mathbb{R}^2; |x| < \sigma(y)\} \subset D$. Denote by $D_{\sigma/3} \doteq \{(x,y) \in \mathbb{R}^2; |x| < \sigma(y)/3\}$. We want to transform with a diffeomorphism the set D_{σ} into the vertical strip $(-1,1) \times \mathbb{R}$. Moreover, we want that this diffeomorphism is the identity on $D_{\sigma/3}$. To this end we construct a diffeomorphism $h : \mathbb{R}^2 \to \mathbb{R}^2$ of the type $h(x,y) = (h_y(x),y)$ where $h_y : \mathbb{R} \to \mathbb{R}$ is an odd diffeomorphism satisfying $h_y(x) = x$ if $0 \le x \le \frac{\sigma(y)}{3}$ and $h_y(\sigma(y)) = 1$. Then h maps diffeomorphically D onto h(D). Moreover, $h|_{D_{\sigma/3}} = \text{Id}$ and $h(D) \supset h(D_{\sigma}) = (-1,1) \times \mathbb{R}$. Using the first part of the proof with any $\epsilon < 1$ we can assert that there exist a diffeomorphism $g : h(D) \to \mathbb{R}^2$ and a neighborhood V of $\{0\} \times \mathbb{R}$ such that $g|_V = \text{Id}$. We obtain the desired result by considering the diffeomorphism $g \circ h$ and the neighborhood $V \cap D_{\sigma/3}$.

The last preliminary result is given in next lemma.

Lemma 2.6. Let $\alpha, \beta : \mathbb{R} \to \mathbb{R}$ be continuous maps, such that $\alpha(y) \neq 0$ for all $y \in \mathbb{R}$. Then, there exists a diffeomorphism $F : \mathbb{R}^2 \to \mathbb{R}^2$ such that $F|_{\{0\} \times \mathbb{R}} = \text{Id}$ and

$$(dF)_{(0,y)} = \left(\begin{array}{cc} \alpha(y) & 0\\ \beta(y) & 1 \end{array}\right)$$

for all $y \in \mathbb{R}$.

Proof. Set $R(x, y) = 1 + \beta(x+y) - \beta(y)$ and $S(x, y) = \alpha(x+y) - \frac{\beta(x+y)(\alpha(x+y) - \alpha(y))}{R(x,y)}$. We have that R(0, y) = 1 and $S(0, y) = \alpha(y) \neq 0$ for all $y \in \mathbb{R}$. By continuity, there exists an open neighborhood V of $\{0\} \times \mathbb{R}$ such that $R(x, y) \neq 0$ and $S(x, y) \neq 0$ for all $(x, y) \in V$. Moreover we can choose V simply connected and satisfying the following property: If (x, y_1) and (x, y_2) belong to V then $(x, y) \in V$ for all $y \in (y_1, y_2)$. Now consider $H : V \to \mathbb{R}^2$ defined as

$$H(x,y) = (H_1(x,y), H_2(x,y)) = \left(\int_y^{y+x} \alpha(s) \, ds \, , \, y + \int_y^{y+x} \beta(s) \, ds\right).$$

Clearly H is \mathcal{C}^1 and H(0, y) = (0, y) for all $y \in \mathbb{R}$.

We claim that H restricted to an appropriate open subset of V is an embedding. To prove this fact, note first that $\det((dH)_{(x,y)}) = R(x,y)S(x,y) \neq 0$ for all $(x,y) \in V$. Then H is a local diffeomorphism. Moreover, by the Implicit Function Theorem, since $\frac{\partial H_2}{\partial y}(0,b) \neq 0$ it follows that for any $b \in \mathbb{R}$ there exist an open interval I_b containing 0 and a differentiable map $\phi_b : I_b \to \mathbb{R}$ satisfying the following property: For all $x \in I_b$, $(x,\phi_b(x)) \in V$ and $H_2(x,\phi_b(x)) = b$. We can choose I_b maximal with respect this property. Since $\frac{\partial H_2}{\partial y}(x,y) \neq 0$ for all $(x,y) \in V$ it follows that I_b and ϕ_b are uniquely determined and the graph of $\phi_b(x)$ tends to the boundary of V when xtends to the boundary of I_b .

For any $b \in \mathbb{R}$ denote by J_b the graph of ϕ_b and set $\tilde{W} = \bigcup_{b \in \mathbb{R}} J_b$. Now we claim that H restricted to \tilde{W} is globally one-to-one. To do this note that the equation H(x, y) = (a, b) with $(x, y) \in \tilde{W}$ implies that $(x, y) \in J_b$. Then calling $L_b(s) = H_1(s, \phi_b(s))$ we need to solve the equation $L_b(s) = a$. Since

$$L_b'(s) = \frac{\partial H_1}{\partial x}(s,\phi_b(s)) + \frac{\partial H_1}{\partial y}(s,\phi_b(s))\phi_b'(s)$$

= $\frac{\partial H_1}{\partial x}(s,\phi_b(s)) - \frac{\partial H_1}{\partial y}\frac{\frac{\partial H_2}{\partial x}}{\frac{\partial H_2}{\partial y}}(s,\phi_b(s)) = S(s,\phi_b(s)) \neq 0,$

it follows that L_b is monotone and consequently H(x, y) = (a, b) has at most one solution in \tilde{W} .

Lastly, we claim that there exists an open neighborhood W of $\{0\} \times \mathbb{R}$ contained in \tilde{W} . For $b \in \mathbb{R}$, let \bar{W}_b be an open neighborhood of (0, b) in V such that $H|_{\bar{W}_b}$ is a diffeomorphism onto $H(\bar{W}_b)$ and let $\epsilon > 0$ be such that $(-\epsilon, \epsilon) \times (b - \epsilon, b + \epsilon) \subset H(\bar{W}_b)$. Then $W_b = H^{-1}((-\epsilon, \epsilon) \times (b - \epsilon, b + \epsilon))$ is open. Note that

$$W_b = \bigcup_{s \in (-\epsilon,\epsilon)} H^{-1}((-\epsilon,\epsilon) \times \{s\}) \subset \bigcup_{s \in (-\epsilon,\epsilon)} J_s \subset \tilde{W}.$$

Therefore the claim is proved by selecting $W \subset \bigcup_{b \in \mathbb{R}} W_b$ with the following properties: W is open, connected, simply connected and contains $\{0\} \times \mathbb{R}$. Thus we will have that $H|_W$ is a diffeomorphism onto H(W). Therefore H(W) is also connected and simply connected. By Lemma 2.3 there exist open sets $V_1 \subset W$, $V_2 \subset H(W)$ and diffeomorphisms $\varphi_1 : W \to \mathbb{R}^2$ and $\varphi_2 : H(W) \to \mathbb{R}^2$ such that $\varphi_1|_{V_1} = \text{Id}$ and $\varphi_2|_{V_2} = \text{Id}$. Then $F = \varphi_2 \circ H \circ \varphi^{-1} : \mathbb{R}^2 \to \mathbb{R}^2$ is a diffeomorphism and for any $(x, y) \in V_1 \cap H^{-1}(V_2)$ we have

$$d(F)_{(x,y)} = d(\varphi_2)_{H \circ \varphi^{-1}(x,y)} \circ d(H)_{\varphi^{-1}(x,y)} \circ d(\varphi^{-1})_{(x,y)} = \mathrm{Id} \circ d(H)_{(x,y)} \circ \mathrm{Id} \,.$$

In particular, we obtain that

$$d(F)_{(0,y)} = d(H)_{(0,y)} = \begin{pmatrix} \alpha(y) & 0\\ \beta(y) & 1 \end{pmatrix},$$

for all $y \in \mathbb{R}$, as we wanted to prove.

3 Proof of Theorem A

We will use the classical Kerékjártó Theorem and the Montgomery-Bochner Theorem, see [9]. We also include the proof of the second result because it is very simple and explains what is understood by a locally linearizable map.

Theorem 3.1. (Montgomery-Bochner Theorem, see [9]). Let $\mathcal{U} \subset \mathbb{R}^n$ be an open set and let $F : \mathcal{U} \to \mathcal{U}$ be a class $\mathcal{C}^r, r \geq 1$, m-periodic map, having a fixed point $p \in \mathcal{U}$. Then, there is a a neighborhood of p, where F is \mathcal{C}^r -linearizable and conjugated to the linear map $L(x) := d(F)_p x$.

Proof. Consider the map from \mathcal{U} into \mathbb{R}^n , $\psi = \sum_{i=0}^{m-1} L^{-i} \circ F^i$. Since both, F and L, are m-periodic it holds that $L \circ \psi = \psi \circ F$. Moreover, since $d(\psi)_p = m$ Id, by applying the Inverse Function Theorem we get that ψ is locally invertible and has the same regularity as F.

Proof of Theorem A. By the Kerékjártó Theorem the map F is \mathcal{C}^0 conjugated to a linear involution. Hence it is conjugated either to S(x, y) = (-x, y) or to $-\operatorname{Id}$. First we consider the case when F is \mathcal{C}^0 -conjugated to S. Let $g: \mathbb{R}^2 \to \mathbb{R}^2$ be the homeomorphism such that $F \circ g = g \circ S$. Then, since g is a homeomorphism, we know that $L := g(\{0\} \times \mathbb{R})$ is a non-compact, closed and connected topological submanifold of \mathbb{R}^2 which is fixed by F. We claim that L is a differentiable submanifold of \mathbb{R}^2 . To do this we will show that L is locally the graph of a \mathcal{C}^1 function.

Let $(a, b) \in L$. Then (a, b) is a fixed point of F and by the Montgomery-Bochner theorem $d(F)_{(a,b)}$ is conjugated to S. Then $d(F)_{(a,b)} - \mathrm{Id} \neq 0$. If we write $F = (F_1, F_2)$ this implies that at least one of the functions $F_1(x, y) - x$ and $F_2(x, y) - y$ has non-zero gradient at (a, b). Assume for instance that $\frac{\partial(F_1(x,y)-x)}{\partial x}(a,b) \neq 0$. By the Implicit Function Theorem there exist neighborhoods V of (a, b) and W of b and a \mathcal{C}^1 - map $\psi : W \to \mathbb{R}$ such that $L \cap W = \{(\psi(t), t) : t \in W\}$. This proves the claim.

By Lemma 2.5 there exists a diffeomorphism $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ such that $\varphi(L) = \{0\} \times \mathbb{R}$. Therefore $\tilde{F} = \varphi \circ F \circ \varphi^{-1}$ is a \mathcal{C}^1 - involution that has $\{0\} \times \mathbb{R}$ as a line of fixed points. Then $\tilde{F}(0, y) = (0, y)$. Thus $d(\tilde{F})_{(0,y)} = \begin{pmatrix} A(y) & 0 \\ B(y) & 1 \end{pmatrix}$ for some $A, B : \mathbb{R} \to \mathbb{R}$ continuous. Moreover since $d(\tilde{F})_{(0,y)}$ must be conjugated to S it follows that A(y) = -1 for all $y \in \mathbb{R}$.

Now using Lemma 2.6 we choose $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ a diffeomorphism such that $\phi|_{\{0\}\times\mathbb{R}^2} = \mathrm{Id}$ and

$$d(\phi)_{(0,y)} = \begin{pmatrix} 1 & 0 \\ -B(y)/2 & 1 \end{pmatrix}.$$

Lastly define

$$\Phi(x,y) = \begin{cases} \phi(x,y) & \text{if } x \ge 0, \\ \tilde{F}(\phi(S(x,y))) & \text{otherwise.} \end{cases}$$

which is \mathcal{C}^1 because

$$\lim_{x \to 0^+} d(\Phi)_{(x,y)} = \begin{pmatrix} 1 & 0 \\ -B(y)/2 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 \\ B(y) & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -B(y)/2 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \lim_{x \to 0^-} d(\Phi)_{(x,y)}.$$

Since $\det(d(\phi)_{(0,y)}) = 1$ it follows that ϕ preserves orientation. In addition we know that all points on the line x = 0 are fixed and then $\phi(\{x, y) \in \mathbb{R}^2 : x \ge 0\}) = \{(x, y) \in \mathbb{R}^2 : x \ge 0\}$. Thus we obtain that Φ is a diffeomorphism. Computing directly Φ^{-1} we have

$$\Phi^{-1}(x,y) = \begin{cases} \phi^{-1}(x,y) & \text{if } x \ge 0, \\ S(\phi^{-1}(\tilde{F}(x,y)) & \text{otherwise.} \end{cases}$$

Finally, again a direct computation gives that $\Phi^{-1} \circ \tilde{F} \circ \Phi = S$. Since $\tilde{F} = \varphi \circ F \circ \varphi^{-1}$ the map $\Phi^{-1} \circ \varphi$ is the desired \mathcal{C}^1 -conjugation. This ends the proof for this case.

Now we consider the case when F is \mathcal{C}^0 -conjugated to $-\operatorname{Id}$. Then F has a unique fixed point p. By the proof of Theorem 3.1 the map $\operatorname{Id} - F$ conjugates F to $-\operatorname{Id}$ in a neighborhood W of p. By Theorem 2.1 the embedding $(\operatorname{Id} - F)|_V$ can be extended to be a global diffeomorphism $\pi : \mathbb{R}^2 \to \mathbb{R}^2$ such that $\pi|_V = (\operatorname{Id} - F)|_V$ for some neighborhood $V \subset W$ of p. Since F is topologically conjugated to $-\operatorname{Id}$ we can select V so that $F(V) \subset V$. Consider now $\tilde{F} = \pi \circ F \circ \pi^{-1}$. The map \tilde{F} has 0 as a fixed point and $\tilde{F}|_{\pi(V)} = -\operatorname{Id}$. Let $\gamma : \mathbb{R}^2 \to \mathbb{R}^2$ be the homeomorphism such that $\gamma^{-1} \circ \tilde{F} \circ \gamma = -\operatorname{Id}$ and consider $L = \gamma(\{0\} \times \mathbb{R})$. Then L is a connected, closed and non-compact topological submanifold of \mathbb{R}^2 invariant by \tilde{F} . Our next objective will be to modify L for obtaining a \mathcal{C}^1 submanifold with the same properties.

Let r > 0 be such that $B_r = \{x \in \mathbb{R}^2 : |x| < r\} \subset \pi(V)$ and set $t_0 = \max\{t \in \mathbb{R} : |\gamma(0, t)| = r\}$. Then $L_1 = \gamma(\{0\} \times (t_0, \infty))$ does not intersect B_r . Since $\tilde{F}|_{B_r} = -\text{Id}$ it follows that $\tilde{F}(L_1) = \gamma(\{0\} \times (-t_0, -\infty))$ neither cuts B_r . Set $L_0 = \{t\gamma(0, t_0); t \in [-1, 1]\}$ and

$$\tilde{L} = L_1 \cup L_0 \cup \tilde{F}(L_1).$$

Clearly \tilde{L} is also a connected closed and non-compact topological submanifold of \mathbb{R}^2 invariant by \tilde{F} . Hence it divides \mathbb{R}^2 in two connected and open regions A and B that are permuted by \tilde{F} . Consider now a differentiable map $f: (0, \infty) \to \mathbb{R}^2$ satisfying the following properties:

- 1. $f(t) = t\gamma(0, t_0)$ if $t \le 1/2$,
- 2. $f(t) \in A$ for all t > 1/2,
- 3. $\lim_{t\to\infty} |f(t)| = \infty$,
- 4. f is one to one.

Denote by $M_0 = f((0, \infty))$. By construction, M_0 is a connected and differentiable submanifold of \mathbb{R}^2 and $M_0 \cap \tilde{F}(M_0) = \emptyset$. Thus $M = M_0 \cup \tilde{F}(M_0) \cup \{(0,0)\}$ is a connected, closed and noncompact differentiable submanifold of \mathbb{R}^2 which is invariant by \tilde{F} . By Lemma 2.5 there exists a diffeomorphism $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ such that $\varphi(M) = \{0\} \times \mathbb{R}$. Therefore the map

$$\hat{F} = \varphi \circ \tilde{F} \circ \varphi^{-1}$$

is a differentiable involution that has $\{0\} \times \mathbb{R}$ as an invariant line. Thus $\hat{F}(0, y) = (0, g(y))$ for a certain one dimensional differentiable involution $g : \mathbb{R} \to \mathbb{R}$. In this case the map h(y) = y - g(y) is a global diffeomorphism that conjugates g with $-\operatorname{Id}$. Therefore the map $\tilde{\varphi} : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $\tilde{\varphi}(x, y) = (x, h(y))$ is a diffeomorphism that conjugates \hat{F} with an involution \bar{F} that satisfies that $\bar{F}|_{\{0\}\times\mathbb{R}} = -\operatorname{Id}$. Therefore

$$d(\bar{F})_{(0,y)} = \begin{pmatrix} A(y) & 0\\ B(y) & -1 \end{pmatrix},$$

for some continuous functions A and B with A(0) = -1 and B(0) = 0. Note that since A(0) = -1and \overline{F} is a diffeomorphism, it follows that A(y) < 0 for all $y \in \mathbb{R}$. On the other hand since $\overline{F}^2 = \mathrm{Id}$ we will have

$$d(F)_{(0,-y)} \circ d(F)_{(0,y)} = \mathrm{Id},$$

which implies that

$$A(-y) = \frac{1}{A(y)}$$
 and $B(-y) = \frac{B(y)}{A(y)}$

for all $y \in \mathbb{R}$.

Consider now the continuous maps $a, b : \mathbb{R} \to \mathbb{R}$ defined as:

$$a(y) = \begin{cases} 1 & \text{if } y \ge 0, \\ -\frac{1}{A(y)} & \text{otherwise,} \end{cases} \quad \text{and} \quad b(y) = \begin{cases} 0 & \text{if } y \ge 0, \\ -\frac{B(y)}{A(y)} & \text{otherwise.} \end{cases}$$

Direct computations show that

$$a(y) = -A(-y)a(-y)$$
 and $b(y) = b(-y) - B(-y)a(-y)$,

for all $y \in \mathbb{R}$.

Since $a(y) \neq 0$ for all $y \in \mathbb{R}$, by Lemma 2.6 we can choose a diffeomorphism $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ satisfying that $\phi|_{\{0\}\times\mathbb{R}} = \text{Id}$ and

$$d(\tilde{\phi})_{(0,y)} = \left(\begin{array}{cc} a(y) & 0\\ b(y) & 1 \end{array}\right).$$

As in the previous case we define the map

$$\Phi(x,y) = \begin{cases} \phi(x,y) & \text{if } x \ge 0, \\ \overline{F}(\phi(-x,-y)) & \text{otherwise,} \end{cases}$$

satisfying

$$\lim_{x \to 0^+} d(\Phi)_{(x,y)} = \begin{pmatrix} a(y) & 0 \\ b(y) & 1 \end{pmatrix} = \begin{pmatrix} -A(-y)a(-y) & 0 \\ b(-y) - B(-y)a(-y) & 1 \end{pmatrix}$$
$$= \begin{pmatrix} A(-y) & 0 \\ B(-y) & -1 \end{pmatrix} \begin{pmatrix} a(-y) & 0 \\ b(-y) & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \lim_{x \to 0^-} d(\Phi)_{(x,y)}.$$

The same considerations as in the previous case show that Φ is a C^1 -diffeomorphism that conjugates \bar{F} and -Id. Since \bar{F} and F are C^1 -conjugated this fact ends the proof of the theorem.

Acknowledgments

The first and second authors are supported by a MINECO/FEDER grant number MTM2008-03437. The third author by a MINECO/FEDER grant number MTM2008-01486 and the fourth author by a MINECO/FEDER grant number MTM2011-23652. The first three authors are also supported by a CIRIT grant number 2009SGR 410.

References

- R. H. Bing. A homeomorphism between the 3-sphere and the sum of two solid horned spheres, Ann. of Math. 56 (1952), 354–362.
- [2] R. H. Bing. Inequivalent families of periodic homeomorphisms of E³, Ann. of Math. 80 (1964), 78–93.
- [3] P. E. Conner and E. E. Floyd. On the construction of periodic maps without fixed points, Proc. Amer. Math. Soc. 10 (1959), 354–360.
- [4] A. Constantin and B. Kolev. The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere, Enseign. Math. 40 (1994), 193–204.
- [5] R. Haynes, S. Kwasik, J. Mast and R. Schultz. Periodic maps on R⁷ without fixed points, Math. Proc. Cambridge Philos. Soc. 132 (2002), 131–136.
- [6] M. W. Hirsch, "Differential Topology", Springer-Verlag, New York 1976.
- [7] J. M. Kister. Differentiable periodic actions on E⁸ without fixed points, Amer. J. Math. 85 (1963), 316–319.
- [8] M. Kuczma, B. Choczewski and R. Ger. "Iterative functional equations". Encyclopedia of Mathematics and its Applications 32. Cambridge University Press, Cambridge, 1990.
- [9] D. Montgomery and L. Zippin, "Topological transformation groups", Interscience, New York 1955.
- [10] M. Morse, Differentiable mappings in the Shoenflies theorem, Compositio Math. 14 (1959), 83-151.