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Abstract. We characterize when the three–dimensional cored galactic Hamilton-
ian system with Hamiltonian

H =
1

2

(
p2x + p2y +

p2z
q

)
+

√
1 + x2 + y2 +

z2

q
,

is completely meromorphically integrable when q ∈ [
√

0.6, 1]. The key point for
this characterization is to transform the non–polynomial cored Hamiltonian system
into a polynomial one.

1. Introduction and statement of the main results

We consider the three-dimensional cored galactic Hamiltonian

H =
1

2

(
p2x + p2y +

p2z
q

)
+

√
1 + x2 + y2 +

z2

q
,

where q > 0. Its associated Hamiltonian system is

x′ = px,

y′ = py,

z′ =
pz
q
,

p′x = − x√
1 + x2 + y2 + z2/q

,

p′y = − y√
1 + x2 + y2 + z2/q

,

p′z = − z

q
√

1 + x2 + y2 + z2/q
,

(1)

where the prime denotes derivative with respect to the time t. Note that this Hamil-
tonian system has three degrees of freedom.

The motivation for the choice of the potential
√

1 + x2 + y2 + z2/q
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comes from the interest of this potential in galactic dynamics, see for instance [2, 3, 5,
6, 7, 9, 12, 13, 14, 15, 16]. The parameter q gives the ellipticity of the potential, which
ranges in the interval

√
0.6 ≤ q ≤ 1. Lower values of q have no physical meaning

and greater values of q are equivalent to reverse the role of the coordinate axes. So
in this paper we consider q ∈ [

√
0.6, 1]. Note that the parameter q used here is the

parameter denoted as q2 in some other papers where there q2 ∈ [0.6, 1].

The main aim of this paper is to study the existence or non–existence of an addi-
tional meromorphic first integral F of the 3-dimensional cored galactic Hamiltonian
system (1) independent of H, i.e. the gradients of F and H are linearly independent
at any point of the phase space except perhaps in a zero Lebesgue measure set and
such that {H,F} = 0. The existence of a such second independent and in involu-
tion first integral allows to simplify the study of the dynamics in two dimensions.
Moreover, we will also study the existence of an additional third meromorphic first
integral G of the 3-dimensional cored galactic Hamiltonian system independent with
H and F and such that {H,G} = {F,G} = 0. Note that the existence of such two
additional analytic first integrals independent and in involution will allow to describe
completely the dynamics of a Hamiltonian system with three degrees of freedom, such
as the 3-dimensional cored galactic Hamiltonian system (1) (see for more details [1]).

The Hamiltonian vector field X associated to system (1) is

X = px
∂

∂x
+ py

∂

∂y
+
pz
q

∂

∂y
− x√

1 + x2 + y2 + z2/q

∂

∂px

− y√
1 + x2 + y2 + z2/q

∂

∂py
− z

q
√

1 + x2 + y2 + z2/q

∂

∂py
.

Let U be an open and dense set in R6. We say that the non–locally constant function
F : U → R is a first integral of the vector field X on U , if F (x(t), y(t), z(t), px(t), py(t),
pz(t)) = constant for all values of t for which the solution (x(t), y(t), z(t), px(t), py(t),
pz(t)) of X is defined in U . Clearly F is a first integral of X on U if and only
if XF = 0 on U . An meromorphic first integral is a first integral F being F a
meromorphic function. The Hamiltonian H is an analytic first integral of system (1)
and thus it is a meromorphic first integral. By definition a Hamiltonian system with
3 degrees of freedom having 3 independent first integrals that are in involution is
completely integrable, see again [1] for more details.

Proposition 1. When q = 1 the 3-dimensional cored galactic Hamiltonian system (1)
is completely integrable with the first integrals H, F = ypx− xpy and G = zpx− xpz.

Since XF = 0 and XG = 0 when q = 1, and clearly H, F and G are independent
and in involution, the proposition follows. Hence, from now on we will restrict to the
case q 6= 1, i.e. q ∈ [

√
0, 6, 1).

Note that the 3-dimensional cored galactic Hamiltonian system (1) is not a poly-
nomial differential system, and consequently the Darboux theory of integrability (see
for instance [4, 8]), which is very useful for finding first integrals, cannot be applied
to system (1).
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Our main result is the following one.

Theorem 2. The 3-dimensional cored galactic Hamiltonian system (1) with q ∈
[
√

0, 6, 1) is not completely integrable with analytic first integrals.

The proof of Theorem 2 is given in section 3.

2. Meromorphic first integrals of Hamiltonian systems with
homogenous potential

During the last century many integrable natural Hamiltonian systems with Hamil-
ton function of the form

(2) H =
1

2

n∑

i=1

p2i + V (q1, . . . , qn)

were found. Inside the class of Hamiltonian systems, the ones with homogenous poly-
nomial potentials was investigated with a special care. Among lots of results we want
to mention the work of Ziglin [18, 19] where the author developed an elegant theory
which relates the integrability of Hamiltonian systems with properties of the mon-
odromy group of variational equations along a particular solution and formulated the
necessary conditions of integrability for complex Hamiltonian systems. Yoshida [17]
used this theory to formulate a criterion of the non–existence of an additional first
integral for homogeneous Hamiltonian systems. Applications of Ziglin theory are con-
siderably restricted by the assumption about the existence of a nonresonant element
in the monodromy group. Some of the restrictions and difficulties of Ziglin’s theory
can be overcome if instead of the monodromy group we investigate the differential
Galois group. This approach was developed by Morales and Ramis [10, 11].

Let c = (c1, . . . , cn) 6= (0, . . . , 0) be a solution of the non-linear system V ′(c) = c
with V (q1, . . . , qn) a homogeneous potential of degree k. Solutions of this system are
called the Darboux points. Let λ1(c), . . . , λn(c) = k − 1 be the eigenvalues of the
Hessian matrix V ′′(c) of the potential calculated at a Darboux point. Then we have
the following result due to Morales–Ramis (see [11]). We state it only in the case of
completely meromorphic integrable Hamiltonian systems with Hamiltonian (2) and
homogeneous potential V of degree 4.

Theorem 3. If a Hamiltonian system with Hamiltonian of the form (2) with homoge-
nous potential V (q1, . . . , qn) of degree 4 is completely integrable with meromorphic first
integrals, then each λi(c) for 1 ≤ i ≤ n− 1 belongs to one of the following cases:

j + 2j(j − 1), −1

8
+

2

9
(1 + 3j)2,

3

8
+ 2j(j + 1),

where j is an integer number, for all non–zero Darboux point c of V .

3. Proof of Theorem 2

We introduce the change of variables

X = x, Y = y, Z =
z√
q
, PX = px, PY = py, PZ =

√
qpz
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and the change of the independent variable from t to s given by

dt =
√

1 +X2 + Y 2 + Z2 ds,

the differential system (1) becomes

Ẋ = PX

√
1 +X2 + Y 2 + Z2,

Ẏ = PY

√
1 +X2 + Y 2 + Z2,

Ż =
PZ

q2

√
1 +X2 + Y 2 + Z2,

ṖX = −X,
ṖY = −Y,
ṖZ = −Z.

(3)

Now we observe that in these variables the first integral H becomes

H =
1

2

(
P 2
X + P 2

Y +
P 2
Z

q2

)
+
√

1 +X2 + Y 2 + Z2.

Now we observe that since Ḣ = 0 we can rewrite system (3) as the following system
in the seven variables (X, Y, Z, PX , PY , PZ , H):

Ẋ = PX

(
H − 1

2

(
P 2
X + P 2

Y +
P 2
Z

q2

))
= P1(X, Y, Z, PX , PY , PZ , H),

Ẏ = PY

(
H − 1

2

(
P 2
X + P 2

Y +
P 2
Z

q2

))
= P2(X, Y, Z, PX , PY , PZ , H),

Ż =
PZ

q2

(
H − 1

2

(
P 2
X + P 2

Y +
P 2
Z

q2

))
= P3(X, Y, Z, PX , PY , PZ , H),

Ṗx = −X = P4(X, Y, Z, PX , PY , PZ , H),

Ṗy = −Y = P5(X, Y, Z, PX , PY , PZ , H),

Ṗz = −Z = P6(X, Y, Z, PX , PY , PZ , H),

Ḣ = 0 = P7(X, Y, Z, Px, Py, Pz, H).

(4)

Note that the function F (x, y, z, px, py, pz) is a meromorphic first integral of system
(1) if and only if F (X, Y,

√
qZ, PX , PY , PZ/

√
q) is a meromorphic first integral of

system (3). Now substituting
√

1 +X2 + Y 2 + Z2 by H − (P 2
X + P 2

Y + P 2
Z/q

2)/2
in the expression of the meromorphic first integral F (X, Y,

√
qZ, PX , PY , PZ/

√
q), if

it appears, we obtain a meromorphic first integral of system (4). In short, every
meromorphic first integral of system (1) produces a meromorphic first integral of
system (4). The converse also holds easily taking into account that H is an analytic
function in the variables (X, Y, Z, PX , PY , PZ). So in order to find a meromorphic
first integral of system (1) it is sufficient to find a meromorphic first integral of the
polynomial differential system (4).
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We restrict the differential system (4) to H = 0. Then system (4) restricted to
H = 0 becomes

Ẋ = −PX

2

(
P 2
X + P 2

Y +
P 2
Z

q2

)
,

Ẏ = −PY

2

(
P 2
X + P 2

Y +
P 2
Z

q2

)
,

Ż = −PZ

2q2

(
P 2
X + P 2

Y +
P 2
Z

q2

)
,

ṖX = −X,
ṖY = −Y,
ṖZ = −Z.

(5)

The differential system (5) is a Hamiltonian system with Hamiltonian

1

2
(X2 + Y 2 + Z2)− 1

8

(
P 2
X + P 2

Y +
P 2
Z

q2

)2
.

Now we use the theory summarized in section 2 to compute the values of the
parameter q for which system (5) may be completely meromorphically integrable, i.e.,
there exist two functionally independent meromorphic first integrals in involution.

Setting p1 = X, p2 = Y , p3 = Z, q1 = PX , q2 = PY , q3 = PZ , system (5) can be
written as a Hamiltonian system with Hamiltonian H = (p21+p22+p23)/2+V (q1, q2, q3)
with

(6) V (q1, q2, q3) = −1

8

(
q21 + q22 +

q23
q2

)2
,

being V a homogeneous potential of degree four. The Darboux points of the potential
in (6) with q ∈ [

√
0.6, 1) are

c1 = (−
√

2 + q22i, q2, 0), c2 = (
√

2 + q22i, q2, 0), c3 = (−
√

2i, 0, 0), c4 = (
√

2i, 0, 0)

c5 = (0,−
√

2i, 0), c6 = (0,
√

2i, 0), c7 = (0, 0,−
√

2q2i), c8 = (0, 0,
√

2q2i).

Now the eigenvalues of V ′′(ck) are given in Table 1. By Theorem 3, taking into account
Table 1, if system (5) is completely meromorphically integrable, the eigenvalues of
V ′′(ck) must be one of the three possibilities given in Theorem 3.

If q ∈ [
√

0.6, 1) then 1/q2 ∈ (1, 1.66 · · · ). First observe that j+2j(j−1) is either 0,
1 or greater than or equal to 3. Moreover, −1

8
+ 2

9
(1 + 3j)2 is either 7

72
= 0.09722 · · · ,

55
72

= 0.76388 · · · or greater than or equal to 199
72

= 2.76388 · · · . Finally, 3
8

+ 2j(j + 1)

is equal to 3
8

= 0.375 or greater than or equal to 35
8

= 4.375. Hence the eigenvalues
{1, 1/q2, 3} do not belong to any of the three cases given in Theorem 3. This shows
that when q ∈ [

√
0.6, 1) system (5) is not completely meromorphically integrable and

thus system (4) is not completely integrable with meromorphic first integrals. This
completes the proof of Theorem 2.
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Darbouxpoint Eigenvalues

c1 {1, 1/q2, 3}
c2 {1, 1/q2, 3}
c3 {1, 1/q2, 3}
c4 {1, 1/q2, 3}
c5 {1, 1/q2, 3}
c6 {1, 1/q2, 3}
c7 {q2, q2, 3}
c8 {q2, q2, 3}

Table 1. Eigenvalues of V ′′(c) of each Darboux point c.
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