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VECTOR FIELDS WITH HOMOGENEOUS
NONLINEARITIES AND MANY LIMIT CYCLES

ARMENGOL GASULL1, JIANG YU2 AND XIANG ZHANG3

Abstract. Consider planar real polynomial differential equations
of the form ẋ = Lx +Xn(x), where x = (x, y) ∈ R2, L is a 2 × 2
matrix and Xn is a homogeneous vector field of degree n > 1. Most
known results about these equations, valid for infinitely many n,
deal with the case where the origin is a focus or a node and give
either non–existence of limit cycles or upper bounds of one or two
limit cycles surrounding the origin. In this paper we improve some
of these results and moreover we show that for n ≥ 3 odd there
are equations of this form having at least (n + 1)/2 limit cycles
surrounding the origin. Our results include cases where the origin
is a focus, a node, a saddle or a nilpotent singularity. We also
discuss a mechanism for the bifurcation of limit cycles from infinity.

1. Introduction and statement of the main results

For two dimensional real polynomial differential systems

(1)
dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y), (x, y) ∈ R2,

with P (x, y), Q(x, y) ∈ R[x, y] the ring of polynomials, the integer n =
max{degP, degQ} is called the degree of the system. A limit cycle of
system (1) is an isolated periodic solution in the set of all its periodic
solutions. The second part of the Hilbert’s 16th problem [16] consists
in determining a uniform upper bound on the number of limit cycles
of all polynomial differential systems of degree n, together with the
distribution of these maximum number of limit cycles. For more details
see e.g. [9, 17, 15, 23] and the references therein. As we know, this
problem is still open even for n = 2.
Here we restrict our study to the existence and number of limit cycles

surrounding the origin for the real planar polynomial differential sys-
tems with homogeneous nonlinearities and a singularity at the origin,
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i.e. of the form,

(2)

(
ẋ
ẏ

)
= L

(
x
y

)
+

(
Pn(x, y)
Qn(x, y)

)
, where L =

(
a b
c d

)
,

a, b, c, d ∈ R, and Pn(x, y) and Qn(x, y) are homogeneous polynomi-
als of degree n ≥ 2. One of the particularities of this family is that
each limit cycle that surrounds the origin can be expressed in polar
coordinates as r = R(θ), for some smooth 2π-periodic function, see for
instance [3, 4, 5, 8]. This particularity makes natural to face this very
special and simpler case of Hilbert’s 16th problem.
The number of limit cycles of (2) has been studied by many authors.

When the origin is a focus, there are plenty of results, see for instance
[3, 4, 5, 6, 10, 12, 13, 14, 18, 21] and the references therein. But there
are relatively few results when the origin is a node, a saddle, or a
nilpotent singularity.
In [2] the authors studied system (2) with b = c = 0 and a = d 6= 0,

and proved that if n is even the system has no limit cycles surrounding
the origin, and that if n is odd then the system has at most one limit
cycle, and there are examples of such systems which do have one limit
cycle. We notice that this case is the simplest one, because in polar
coordinates it writes as a Bernoulli equation and so it is integrable.
Consider now system (2) with b = c = 0 and a 6= d, ad > 0. Notice

that λ = a and µ = b are the eigenvalues of L and system (2) writes as

(3) ẋ = λx+ Pn(x, y), ẏ = µy +Qn(x, y),

with λµ > 0. In [5, 19] it is proved that if n is even system (3)
has no limit cycles. For n odd both papers provided some sufficient
(and different) conditions under which the system has either no limit
cycles or at most two limit cycles surrounding the origin. Examples
of systems (3) having exactly either two, or one, or no limit cycles
surrounding the origin already appear in Proposition 6.3 and Remark
6.4 of [11].

The first aim of this paper is to go further in the study of system (2)
with the origin a node, a saddle, a nilpotent singularity, or a focus,
obtaining some new results or improving previous ones. As far as we
know, when system (2) has the origin as a node, there are only some
sufficient conditions mentioned above on the existence of no more than
two limit cycles. Here we will prove that some systems (2) can have
(n+1)/2 limit cycles surrounding a node, and also obtain similar results
around other types of singularities.
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Theorem 1. Consider system (2).
(I) When n ≥ 3 is odd, there are systems of this form such that:

(a) The origin is a strong focus, or a saddle, or a node, and they
have n+1

2
limit cycles surrounding it.

(b) The origin is a weak focus, or a nilpotent singularity, and they
have n−1

2
limit cycles surrounding it.

(II) When n ≥ 2 is even and the origin is a node, a nilpotent sin-
gularity or a saddle, the system has no limit cycles surrounding the
origin.

It can be easily seen that statement II of the theorem cannot be
extended to systems having a focus or a weak focus at the origin. It
suffices, for instance, to consider quadratic systems (n = 2) having
limit cycles surrounding this point. We believe that a similar result to
the one of Statement I when n is even and the origin is a focus could
be true. We have not been able to prove it yet.
Notice that in the situations where the origin is a saddle or a nilpo-

tent singularity of index zero we know that, apart from the origin, the
limit cycles must also surround other critical points, in such a way that
the sum of all their indices is +1.
Statement II when the origin is an elementary node was already

proved in [2, 5, 19].

Next we will give some results of uniqueness of limit cycles surround-
ing the origin, when n is odd. Notice that under the light of Theorem 1,
we must add some additional hypotheses on the nonlinear part.
We remark that using, if necessary, a linear change of variables, it is

not restrictive to assume that L is written in real Jordan normal form.
Hence L is:

L1 =

(
λ 0
0 µ

)
, L2 =

(
λ 0
1 λ

)
, L3 =

(
α −β
β α

)
.

Set

(4)
f(θ) = cos θPn(cos θ, sin θ) + sin θQn(cos θ, sin θ),
g(θ) = cos θQn(cos θ, sin θ)− sin θPn(cos θ, sin θ).

Note that f(θ) and g(θ) are homogeneous trigonometric polynomials
of degree n + 1 in the variables cos θ and sin θ.
We will use the following small improvement of [8, Thm. A], where

we utilize the next definition.

Definition. When we say that the stability of a critical point, a pe-
riodic orbit or infinity coincides with the sign of a real number p or a
real function g this will mean that when p > 0 or g > 0 (resp. p < 0
or g < 0) then the object is repeller (resp. attractor).
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Theorem 2. Consider the expression of system (2) in polar coordi-
nates,

dr

dt
= u(θ)r + f(θ)rn,

dθ

dt
= v(θ) + g(θ)rn−1,

and define
F (θ) = u(θ)g(θ)− v(θ)f(θ).

If F (θ) does not vanish (so n is odd), then the origin is the unique
critical point of (2) and this system has at most one limit cycle which,
if exists, is hyperbolic. Moreover its stability coincides with (is opposite
to) the sign of F when it is a clockwise (counterclockwise) limit cycle.

Observe that under the hypotheses of the above result, the existence
of a (hyperbolic) limit cycle is guaranteed by the Poincaré annular
Criterion when the origin and infinity have the same stability.
Also, as a consequence of the above theorem we can give explicit

quantitative hypotheses under which system (2) has non-existence or
uniqueness and hyperbolicity of the limit cycle.

Theorem 3. For n odd, assume that minθ∈R |g(θ)| = N > 0 and define

M1 = max
θ∈R

|g(θ) cos2 θ + cos θ sin θf(θ)|,

K1 = max
θ∈R

|g(θ) sin2 θ − cos θ sin θf(θ)|,

M2 = max
θ∈R

|g(θ) cos θ sin θ − cos2 θf(θ)|, M3 = max
θ∈R

|f(θ)|.

In each one of the following cases,

• L = L1, with λµ > 0 and |λ/µ− 1| < N/M1,
• L = L1, with λµ > 0 and |µ/λ− 1| < N/K1,
• L = L2 and |λ| > M2/N ,
• L = L3 with β 6= 0 and |α/β| > M3/N,

system (2) has no limit cycles if

κ = ν

∫ 2π

0

f(θ)

|g(θ)| dθ ≥ 0, where ν =

{
λ when L = L1 or L = L2,

α when L = L3,

and has exactly one limit cycle when κ < 0, which is hyperbolic and
with stability given by the sign of −ν.

The above theorem when L = L1, is an extension and improvement
of statement (d) in [19, Thm. 2], where the authors proved that for
|λ− µ| sufficiently small system (3) with n odd has at most two limit
cycles. Here we have proved the non-existence or uniqueness in more
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general conditions. We note that our results also include the star node
as a special case, see [2, Thm. 2 (d)].
As we will see, there is a special case where κ can be easily computed.

More concretely, when

(5)

(
ẋ
ẏ

)
= L

(
x
y

)
+ (x2 + y2)k

(
Ax+By
Cx+Dy

)
,

where L ∈ {L1, L2, L3}, then if (D − A)2 + 4BC < 0, sgn(κ) =
sgn(ν(A + D)). To get this value and to study in more detail the
situation where g(θ) 6= 0 (N > 0), we present in Section 3 a method
for studying the bifurcation of limit cycles from infinity under this hy-
pothesis. Notice that in the particular case (5),

g(θ) = C cos2 θ + (D − A) cos θ sin θ − B sin2 θ

and then the condition g(θ) 6= 0 simply reads as (D−A)2 + 4BC < 0.
As an illustration of the applicability of Theorem 3, consider sys-

tem (5) with A = −B = C = D = 1,

(6)
ẋ = λx+ (x2 + y2)k(x− y),
ẏ = µy + (x2 + y2)k(x+ y),

k ∈ N \ {0} and λµ > 0, studied in [19] when k = 1. In that paper,
the authors showed that when k = 1, given λ < 0, if |µ − λ| is small
enough, then system (6) has a unique limit cycle around the origin.
Using our results we prove that for λ/µ ∈ (3 − 2

√
2, 3 + 2

√
2) the

system has exactly one limit cycle (resp. no limit cycles) when λ < 0
(resp. λ > 0), see Example 7. In fact, as we will see, our result covers
the values λ/µ that correspond to the cases of system (6) for which the
origin is the unique critical point.
This paper is organized as follows. In the next section we will prove

Theorem 1. The proofs of Theorems 2 and 3 will be given in Section 3.
This last section also includes our study of the bifurcations at infinity.

2. Proof of Theorem 1

2.1. Proof of statement I. Consider the following family of systems
of the form (2),

(7)
ẋ = −yn + ε(ax+ by + Pn(x, y)),
ẏ = x+ ε(cx+ dy +Qn(x, y)),

where Pn, Qn are homogeneous polynomials of odd degree n ≥ 3,
a, b, c, d are real numbers and ε is a small parameter. Let

x(θ) = Cs(θ), y(θ) = Sn(θ),
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be the solution of the Cauchy problem,

ẋ = −yn, ẏ = x,

satisfying the initial conditions x(0) =
√
2/(n+ 1), y(0) = 0. Notice

that H(x, y) = n+1
2
x2 + yn+1 is a first integral of the system. Clearly,

n+ 1

2
Cs2 θ + Snn+1 θ = 1,

dCs θ

dθ
= − Snn θ,

d Sn θ

dθ
= Cs θ.

Following Lyapunov [22], see also [7], it follows that Cs(θ) and Sn(θ)
are T periodic functions with period

T = Tn =
2
√
2√

n+ 1

Γ
(

1
n+1

)
Γ
(
1
2

)

Γ
(

1
n+1

+ 1
2

) .

Moreover, the integrals
∫ T

0

Csi θ Snj θdθ 6= 0, i, j ∈ Z+,

if and only if i and j are both even, where Z+ is the set of nonnegative
integers.
Take the generalized Lyapunov polar coordinate change of variables

(8) x = ρ
n+1
2 Cs θ, y = ρ Sn θ.

Then, the Hamiltonian function writes as

H(x, y) =
n+ 1

2
x2 + yn+1 =

n + 1

2
ρn+1Cs2 θ + ρn+1 Snn+1 θ = ρn+1.

By the Pontryagin–Melnikov method, each simple zero ρ0 of the func-
tion

(9) M(ρ) =

∫

H(x,y)=ρn+1

(ax+ by+Pn(x, y))dy− (cx+ dy+Qn(x, y))dx

provides a periodic orbit of (7) with |ε| sufficiently small, and when
ε → 0 this periodic orbit approaches H(x, y) = ρn+1

0 .
Assume that Pn and Qn have the expressions

Pn(x, y) =

n∑

i=0

aix
iyn−i, Qn(x, y) =

n∑

i=0

bix
iyn−i.
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Applying the generalized polar coordinates (8) to compute M(ρ) in (9)
and using the fact that n is odd, we get

(10) M(ρ) =

∫ T

0

(
aCs2 θ + d Snn+1 θ

)
dθ ρ

n+3
2 +

n−1
2∑

j=0

∫ T

0

(
a2j+1Cs

2j+2 θ Snn−2j−1 θ+ b2j Cs
2j θ Sn2n−2j θ

)
dθρ

3n+1
2

+(n−1)j

=
(
δ +

n−1
2∑

j=0

cjρ
(n−1)(j+1)

)
ρ

n+3
2 ,

where

δ =

∫ T

0

(
a Cs2 θ + d Snn+1 θ

)
dθ,

cj =

∫ T

0

(
a2j+1Cs

2j+2 θ Snn−2j−1 θ + b2j Cs
2j θ Sn2n−2j θ

)
dθ.

Clearly the function M(ρ) can have at most n+1
2

simple positive zeroes.

(a) It is not difficult to choose the parameters a, b, c and d such that
the origin is a strong focus, a node, or a saddle and δ = |a| + |d| 6= 0.
For instance, to have a saddle it suffices to consider bε > 0 and |ε| small
enough. Then, for a suitable choice of the coefficients a2j+1 of Pn and
b2j of Qn, and so of c0, . . . , cn−1

2
, M(ρ) does have n+1

2
positive simple

zeros. Consequently, system (7) can have n+1
2

limit cycles surrounding
the origin for |ε| sufficiently small, as we wanted to prove.

(b) When the origin is a weak focus or a nilpotent singularity, then
|a|+ |d| = 0 and δ = 0. So M(ρ) can have at most n−1

2
positive zeroes.

Then, the proof follows as in the previous case.

2.2. Proof of statement II. We prove this statement by distinguish-
ing L = L1 and L = L2. Note that this is not restrictive.
Case L = L2. System (2) can be written as

(11) ẋ = λx+ Pn(x, y), ẏ = x+ λy +Qn(x, y),

with Pn, Qn homogeneous polynomials of degree n > 1. Taking the
polar coordinate change of variables x = r cos θ, y = r sin θ, system (11)
becomes

(12) ṙ = (λ+ cos θ sin θ)r + f(θ)rn, θ̇ = cos2 θ + g(θ)rn−1,

with f(θ), g(θ) defined in (4). Recall that

g(θ) = cos θQn(cos θ, sin θ)− sin θPn(cos θ, sin θ)).
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If g(θ) has a zero at θ = −π

2
or

π

2
, then g(θ) must have the factor

cos θ. This implies that Pn(x, y) has the factor x, and so x = 0 is an
invariant line of system (11). Hence system (11) cannot have a limit
cycle surrounding the origin.
Next we assume that g(−π/2)g(π/2) 6= 0. Set

r∗(θ) = n−1

√
cos2 θ

−g(θ)
for g(θ) < 0.

Since n is even, g(θ) is a homogeneous trigonometric polynomial of odd
degree. This means that g(θ) has odd number of zeroes, and so it has
also odd number of zeroes in either (−π/2, π/2) or (π/2, 3π/2). With-
out loss of generality we assume that g(θ) has odd number of zeroes
in (−π/2, π/2). Let θ1 and θ2 be the zeroes of g(θ) in (−π/2, π/2),
which are closest to −π/2 and π/2, respectively. Of course we may
have θ1 = θ2. Then we have g(θ) < 0 in either the interval (−π/2, θ1)
or (θ2, π/2). In the interval such that g(θ) < 0, r = r∗(θ) is a curve
located in this interval with one end approaching the origin and the
other approaching the infinity. Note that on the curve r = r∗(θ), we
have θ̇ = 0.
From Coll et al [8, Prop. 4] we know that the limit cycles that

surround the origin have no points at which θ̇ = 0. This, together with
the fact proved in the previous paragraph show that system (11) has
no limit cycles surrounding the origin. We have completed the proof
when L = L2.

Case L = L1. Recall that the result was proved by Bendjeddou et al
[2] for λ = µ 6= 0, and by Llibre et al [19] for µ 6= λ and λµ > 0. Next
we prove the remaining cases.

Subcase λ = µ = 0. System (3) is homogeneous and in polar coordi-

nates we have that θ̇ = g(θ)rn−1. Since n is even, g(θ) = 0 must have
some real solution. It gives rise to an invariant line passing through the
origin. This implies that the system has no limit cycles surrounding
this point.

Subcase λ 6= 0 and µ = 0, or λ = 0 and µ 6= 0. Without loss of
generality we assume that the former happens. Then system (2), i.e
(3), written in the polar coordinates, becomes

(13)
ṙ = λ cos2 θ r + f(θ)rn,

θ̇ = −λ cos θ sin θ + g(θ)rn−1,

with f and g defined in (4).
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If g(θ) has a zero θ0 such that either sin θ0 = 0 or cos θ0 = 0, then
system (13) has either y = 0 or x = 0 as an invariant line. So the
system has no limit cycles surrounding the origin.
Assume that g(θ) has no zeroes at θ = −π

2
, 0, π

2
, π. Since g(θ) is a

homogeneous trigonometric polynomial of odd degree, it must have an
odd number of zeroes. So g(θ) must have an odd number of zeroes in
at least one of the intervals (−π

2
, 0), (0, π

2
), (π

2
, π) and (π, 3π

2
). Without

loss of generality we assume that g(θ) has an odd number of zeroes,
saying −π

2
< θ1 < . . . < θ2l+1 < 0, in the interval (−π

2
, 0). In any

case we must have λ cos θ sin θ/g(θ) > 0 for either θ ∈ (−π
2
, θ1) or

θ ∈ (θ2l+1, 0). In such an interval the curve

r = n−1

√
λ cos θ sin θ

g(θ)
,

connects the origin and the infinity. Notice that on this curve θ̇ = 0.
So, as in the proof of the case L = L2, we get that system (13) has no
limit cycles surrounding the origin.

Subcase λµ < 0. It corresponds to the case where the origin is a saddle.
The proof is quite similar to the one of the case studied above. In fact,
in this situation, system (2) writes in polar coordinates as

ṙ = λ cos2 θ − µ sin2 θ r + f(θ)rn,

θ̇ = (µ− λ) cos θ sin θ + g(θ)rn−1.

Then the proof simply follows replacing λ cos θ sin θ by (λ−µ) cos θ sin θ
in all the formulas.

3. Proof of Theorems 2 and 3

We start proving Theorem 2, which as we have already said, is a
small improvement of Theorem A of [8] adapted to our interests. Our
proof is inspired in the one given in that paper.

Proof of Theorem 2. First let us show that the origin is its unique crit-
ical point. Notice that

(
u(θ)r + f(θ)rn

)
v(θ)− r

(
v(θ) + f(θ)rn−1

)
u(θ) = −rnF (θ).

Hence on the critical points rnF (θ) = 0 and therefore r = 0.
Moreover, as in the proof of Theorem 1, the set of points where

θ̇ = 0 plays an important role. Define Θ0 := {(r, θ) : r > 0 and v(θ) +
g(θ)rn−1 = 0} and Θ± := {(r, θ) : r > 0 and ± (v(θ)+g(θ)rn−1) > 0}.
Following [3, 4, 7] we know that the limit cycles cannot cut the set
Θ0. Moreover, they must surround the origin because it is the unique
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singularity of the system, and can be expressed as r = R(θ) for some
smooth function R. Notice that from these results, the limit cycles are
also 2π-periodic solutions of the non-autonomous differential equation

(14)
dr

dθ
=

u(θ)r + f(θ)rn

v(θ) + g(θ)rn−1
= S(r, θ).

It is well-known that the stability of r = R(θ), as a solution of (14) is
given by the sign of ∫ 2π

0

∂S(R(θ), θ)

∂r
dθ,

see [20]. In any case, notice that when the limit cycle is contained
in Θ− the stability increasing θ and the one increasing t are reversed.
Therefore, in this later case, the stability of the limit cycle, as solution
of system (2) is opposite to the one as solution of (14). When the limit
cycle is contained in Θ+, both stabilities coincide.
To prove the uniqueness and hyperbolicity of the limit cycle notice

that
∫ 2π

0

∂S(R(θ), θ)

∂r
dθ =

∫ 2π

0

(1− n)F (θ)Rn−1(θ)

(v(θ) + g(θ)Rn−1(θ))2
dθ +

∫ 2π

0

u(θ) + f(θ)Rn−1(θ)

v(θ) + g(θ)Rn−1(θ)
dθ =

∫ 2π

0

(1− n)F (θ)Rn−1(θ)

(v(θ) + g(θ)Rn−1(θ))2
dθ +

∫ 2π

0

R′(θ)

R(θ)
dθ =

(1− n)

∫ 2π

0

F (θ)Rn−1(θ)

(v(θ) + g(θ)Rn−1(θ))2
dθ.

Hence when Θ0 is not a simple closed curve, since all limit cycles lay
in the same connected component of R2 \Θ0, we have that all have the
same stability. Therefore the limit cycle is unique, hyperbolic and its
stability is given by the sign of ±F when it is contained in Θ∓.
When Θ0 is a simple closed curve (not passing by the origin), fol-

lowing the same arguments that in the previous case we get that the
system can have at most two limit cycles, one contained in Θ+ and the
other one in Θ−, both hyperbolic and with different stabilities. Let us
prove that both limit cycles cannot coexist. To do this, notice that the
shape of Θ0 forces that neither v nor g vanish. Moreover −v/g > 0.
Let r = R(θ) be one limit cycle. Notice that

R′(θ)

R(θ)
=

u(θ)

v(θ)
− F (θ)Rn−1(θ)

v(θ)(v(θ) + g(θ)Rn−1(θ))
.
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Integrating both sides we get that

0 6=
∫ 2π

0

F (θ)Rn−1(θ)

v(θ)(v(θ) + g(θ)Rn−1(θ))
dθ =

∫ 2π

0

u(θ)

v(θ)
dθ = K.

Notice that the right hand side is fixed while the sign of the left hand
side changes according whether the limit cycle is in Θ+ or in Θ−. In
short, it can only exist in the region Θε where sgn(εFv) = sgn(K). So
it is unique. �

Observe that using the above theorem, the existence of a (hyperbolic)
limit cycle is guaranteed when the origin and infinity have the same
stability. Hence in next result we study the stability of infinity for some
subfamilies of system (2) with n odd. In fact, in polar coordinates it
writes as in Theorem 2,

(15) ṙ = u(θ)r + f(θ)rn, θ̇ = v(θ) + g(θ)rn−1,

with f, g defined in (4) and

u(θ) =





λ cos2 θ + µ sin2 θ, if L = L1,
λ+ cos θ sin θ, if L = L2,
α if L = L3,

v(θ) =





(µ− λ) cos θ sin θ, if L = L1,
cos2 θ, if L = L2,
β if L = L3.

Next proposition computes what we will call Lyapunov constants at
infinity, V ∞

j , j = 1, 2.

Proposition 4. Consider system (2) and its equivalent polar expres-
sion (15). Assume that its associated function g(θ) does not vanish.
Then the stability of infinity is given by the sign of

V ∞
1 := −

∫ 2π

0

f(θ)

|g(θ)| dθ.

When V ∞
1 = 0 then the stability is given by the sign of

V ∞
2 := −

∫ 2π

0

F (θ)Φ(θ)g(θ)

|g3(θ)| dθ,

where F = ug − vf and Φ is a smooth positive function given in the
proof of this proposition.
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Proof. Taking the change of variable R = r−(n−1), and treating θ as
an independent variable, we get that for R > 0, small enough (equiva-
lently, r > 0, big enough),

(16)
dR

dθ
= (1− n)

f(θ)

g(θ)
R +

∞∑

j=2

(
− c(θ)

g(θ)

)j−2

A(θ)Rj,

where

A(θ) = (n− 1)
f(θ)v(θ)− g(θ)u(θ)

g2(θ)
= (1− n)

F (θ)

g2(θ)
.

Notice that F coincides with the function introduced in Theorem 2.
Following [1], for any small positive number ρ, consider the solution

(17) R(θ, ρ) = R1(θ)ρ+R2(θ)ρ
2 + . . . ,

of equation (16) satisfying R(0, ρ) = ρ. Then we have

R1(0) = 1, R2(0) = R3(0) = . . . = 0,

and

R′
1(θ) = (1− n)

f(θ)

g(θ)
R1(θ),

R′
2(θ) = (1− n)

f(θ)

g(θ)
R2(θ) +A(θ)R2

1(θ),

R′
3(θ) = (1− n)

f(θ)

g(θ)
R3(θ) + 2A(θ)R1(θ)R2(θ)−

v(θ)

g(θ)
A(θ)R3

1(θ).

The equations for Rj(θ), j > 3, can be similarly obtained.
The solutions of the above differential equations satisfying the given

initial conditions are

R1(θ) = exp

(
(1− n)

∫ θ

0

f(s)

g(s)
ds

)
=: Φ(θ),

R2(θ) = Φ(θ)

∫ θ

0

A(s)Φ(s)ds,

R3(θ) = Φ(θ)

(∫ θ

0

A(s)Φ(s)ds

)2

− Φ(θ)

∫ θ

0

v(s)

g(s)
A(s)Φ2(s)ds.

Since f(θ)/g(θ) is 2π periodic, there exists a constant q1 such that
∫ θ

0

f(s)

g(s)
ds = q1θ + ϕ1(θ),

with ϕ1(θ) a 2π periodic function. In fact

q1 =
1

2π

∫ 2π

0

f(θ)

g(θ)
dθ.
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If q1 6= 0, its sign determines the stability of system (2) at infinity,
taking into account that when g(θ) is negative the stability increasing
θ and the one increasing t are reversed. From q1 we easily get V ∞

1 .
If q1 = 0 then Φ(θ) is 2π periodic We set

∫ θ

0

A(s)Φ(s)ds = q2θ + ϕ2(θ),

with q2 a constant and ϕ2(θ) a 2π periodic function. Similarly that in
the previous case from q2 we obtain V ∞

2 . �

Remark 5. (i) Consider a family of systems of the form (2), under the
hypotheses of Proposition 4 and depending smoothly on one parameter,
say s ∈ R. Then, if for s = s∗ it holds that V2(s

∗) 6= 0 and for
|s−s∗| 6= 0 small enough (s−s∗)V1(s) < 0 then one limit cycle bifurcates
from infinity via a Hopf-like bifurcation.
(ii) From the expression of R3 given in the proof of the above propo-

sition we could obtain an expression of V ∞
3 . Then, for two-parameter

families, with parameters s ∈ R2, such that V ∞
3 (s∗) 6= 0 and V ∞

1 (s∗) =
V ∞
2 (s∗) = 0, and satisfying some more suitable hypotheses, two limit

cycles will bifurcate from infinity. Notice that under the hypotheses of
Theorem 2, V ∞

2 6= 0, and the described situation never happens.
(iii) Similarly, integral expressions for V ∞

j , j ≥ 4 could be given.

To obtain algebraic expressions for V ∞
j , even for j = 1, 2 is, in gen-

eral, not possible because in particular the roots of the homogeneous
polynomial g are in general not computable by radicals. A simpler case
is the one given in next lemma.

Lemma 6. Consider system (5),

ẋ = ax+ by + (x2 + y2)k(Ax+By),
ẏ = cx+ dy + (x2 + y2)k(Cx+Dy).

Then, using the same notation that in Proposition 4, the function g(θ)
does not vanish if and only if 4BC + (A−D)2 < 0. Moreover, in this
case,

sgn(V ∞
1 ) = − sgn(A+D).

Proof. For this system f(θ) and g(θ) in (4) are

f(θ) = A cos2 θ + (B + C) cos θ sin θ +D sin2 θ,
g(θ) = C cos2 θ + (D − A) cos θ sin θ − B sin2 θ.



14 A. GASULL, J. YU, X. ZHANG

Clearly, g(θ) 6= 0 if and only if 4BC + (A −D)2 < 0. Then, following
the notation of Proposition 4, we get after some computations that

R1(2π) = exp

(
−2k

∫ 2π

0

f(θ)

g(θ)
dθ

)

= exp

(
sgn(C)

−4kπ(A +D)√
−4BC − (A−D)2

)
.

From the above expression the result follows taking into account that
sgn(g(θ)) = sgn(C) and once more that when g(θ) is negative the
stability increasing θ in equation (16) and the one increasing t are
reversed. �

There is an easy intuitive way to know for system (5) the sign of
the first Lyapunov quantity at infinity. Reparametrize the system in
R2 \ {(0, 0)}, as

(
x′

y′

)
=

1

(x2 + y2)k

(
ax+ by
cx+ dy

)
+

(
A B
C D

)(
x
y

)
.

When r2 = x2 + y2 is big enough, the system is very close to the linear

system with associated matrix

(
A B
C D

)
. The stability of infinity of

this linear system when 4BC + (A − D)2 < 0 is opposite to the one
of the origin. Hence it is given by minus the sign of its trace, that
is − sgn(A + D). Our approach allows to formalize this intuition and
moreover, as the next computations show, can be used to obtain V ∞

2

when A + D = 0. In this case, assuming that C > 0, it can be seen
that

Φ(θ) =

(
C −B + (B + C) cos(2θ) + 2D sin(2θ)

2C

)k

.

To continue, we distinguish three different cases for L = L1, L2 and
L3. In addition, for an arbitrary positive integer k it seems not easy
to get the values of R2(2π) that provide V ∞

2 . For illustration, we only
give R2(2π) for some small values of k. The computations are done
with mathematica.
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In case L = L1, with λµ > 0, we have u(θ) = λ cos2 θ + µ sin2 θ and
v(θ) = (µ− λ) cos θ sin θ. We get

R2(2π) =





π

C2
(µB − λC), for k = 2,

π

4C3
((λ+ µ)(BC − 2D2)− 3(µB2 + λC2)) , for k = 3,

π

8C4

(
5(µB3 − λC3)− (λ+ 2µ)(B2C − 4BD2)

+(2λ+ µ)(BC2 − 4CD2)
)
, for k = 4.

In case L = L2, we have u(θ) = λ+ cos θ sin θ and v(θ) = cos2 θ. Then
we obtain

R2(2π) =





π

C2
(λ(B − C)−D), for k = 2,

π

4C3

(
3(B − C)D−

λ(3B2 − 2BC + 3C2 + 4D2)
)
, for k = 3,

απ

8C4

(
λ(B − C)(5B2 + 2BC + 5C2 + 12D2)

−(5B2 − 6BC + 5C2 + 4D2)D
)
, for k = 4.

In case L = L3, we have u(θ) = α and v(θ) = β. Hence we have

R2(2π) =





απ

C2
(B − C), for k = 2,

απ

4C3
(2BC − 3(B2 + C2)− 4D2), for k = 3,

απ

8C4
(B − C)(5B2 + 2BC + 5C2 + 12D2), for k = 4.

In all the three cases, when g(θ) 6= 0, if the origin is stable (or unstable)
then the infinity is unstable (or stable). By perturbing Pn and Qn such
that A +D 6= 0 is sufficient small and has a suitable sign, then there
will be a limit cycle bifurcating from infinity.

3.1. Proof of Theorem 3. We start proving that in all the situations
the function F given in Theorem 2 does not vanish and consequently
we can apply this result. Recall that F (θ) = u(θ)g(θ)−v(θ)f(θ), where
u and v are given in (15), and f and g are given in (4). For L = L1,

F (θ) = (λ cos2 θ + µ sin2 θ)g(θ)− (µ− λ) cos θ sin θf(θ),

or equivalently,

F (θ) = µ
(
g(θ) + (λ/µ− 1)

(
g(θ) cos2 θ + cos θ sin θf(θ)

))
,
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where we have used that µ 6= 0. So, if |λ/µ− 1| < N/M1,

F (θ) = g(θ) + (λ/µ− 1)
(
g(θ) cos2 θ + cos θ sin θf(θ)

)
6= 0,

for all θ as we wanted to show.
Similarly, when λ 6= 0, F can be written as,

F (θ) = λ
(
g(θ) + (µ/λ− 1)

(
g(θ) sin2 θ − cos θ sin θf(θ)

))
,

and the same result as above holds when |µ/λ− 1| < N/K1.

For L = L2,

F (θ) = λg(θ) + g(θ) cos θ sin θ − cos2 θf(θ).

Then for |λ| > M2/N we have that for all θ, F (θ) 6= 0.

Finally, if L = L3 then F (θ) = αg(θ)−βf(θ). We obtain in the same
way that when |α/β| > M3/N, F (θ) 6= 0.

Therefore in all cases the system has at most one (hyperbolic) limit
cycle. To discern whether the limit cycle exists or not, we study the
stability of the origin and the one of infinity. Clearly the stability of
the origin is given by the sign of ν, that under the hypotheses of the
theorem is different from zero.
The stability of infinity is given by the sign of

V ∞
1 := −

∫ 2π

0

f(θ)

|g(θ)| dθ,

see Proposition 4. Therefore it is clear that when both stabilities co-
incide, that is 0 < νV ∞

1 = −κ, the corresponding system has a limit
cycle and that when κ > 0 it has no limit cycle, as we wanted to
prove. To finish the proof it only remains to study the case κ = 0 (i.e.
V ∞
1 = 0). This can be done using the expression of V ∞

2 in Proposition
4. From the above proof it can be easily seen that for all the cases,
sgn(F ) = sgn(νg). Hence

sgn(V ∞
2 ) = − sgn(Fg) = − sgn(νg2) = − sgn(ν).

Therefore the stabilities of the origin and infinity are opposite. Since
if the limit cycle exists it should be unique and hyperbolic, we have
proved that there are no limit cycles in this case. �
Next example shows how Theorem 3 applies in a simple example.

Example 7. Consider system (6),

ẋ = λx+ (x2 + y2)k(x− y),
ẏ = µy + (x2 + y2)k(x+ y),
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with k ∈ N \ {0}, λµ 6= 0. Let us compute all the constants involved in
Theorem 3. Since g(θ) ≡ f(θ) ≡ 1, trivially N = 1. Moreover,

M1 = max
θ∈R

| cos2 θ + cos θ sin θ| = 1 +
√
2

2
,

and similarly K1 = M1. Finally, ν = λ and by Proposition 4 and
Lemma 6, κ = −νV ∞

1 and sgn(V ∞
1 ) = − sgn(A + D) = − sgn(2).

Hence

sgn(κ) = sgn(ν) = sgn(λ).

So, by Theorem 3, if |λ/µ − 1| < N/M1 = 2(
√
2 − 1) or |µ/λ − 1| <

N/K1 = 2(
√
2 − 1) we have existence, uniqueness and hyperbolicity of

the limit cycle when λ < 0 and non-existence when λ > 0. Joining all
the results we have completely studied the number of limit cycles of the
system when λ/µ ∈ (3 − 2

√
2, 3 + 2

√
2). This interval is precisely the

set of values of λ/µ for which the origin is the only critical point of the
system.
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